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For the past 20 years, deforestation has been a major issue in Romania. While there have been 
reforestation attempts, it is still hard to get a clear picture of how the forest situation has 
changed over the years. This paper explores a possible solution to finding out how Romanian 
forests have evolved from the year 2000 to 2019 by using geospatial data in order to see where 
trees were cut down or where an effort was made to replant them. This is achieved by using a 
decision trees machine learning model and by using clear pictures of the ground as well as 
some ground variables to determine where a particular forest is. Furthermore, additional steps 
were taken in an effort to improve the result. 
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Introduction 
The aim of this paper is to explore the pos-

sibility of classifying geospatial data and dis-
tinguishing between forests and non-forests. 
This process can be seen as the training of a 
classifier to distinguish between 2 classes of 
pixels based on RGB colors but there are a lot 
of variables that need to be taken into consid-
eration. At face value, finding a forest on a 
map could be as easy as finding the darker 
spots on a map, as these represent trees as op-
posed to light green which is usually grass or 
shrubbery. Another important aspect is to dis-
tinguish between dark green forest pixels and 
a dark green pixel that could be potentially 
different kinds of vegetation such as a 
farmer’s crop. Moreover, there is a difference 
between a cluster of trees which represent a 
forest and some trees in someone’s back gar-
den. A series of steps have been taken in order 
to mitigate these problems, from data selec-
tion to result manipulation. 
There have been multiple attempts to classify 
forests in the past. These include both super-
vised and unsupervised methods. Clustering 
algorithms have been shown to produce 
poorer results than traditional supervised 
models [1]. Out of all standard supervised ma-
chine learning techniques, Artificial Neural 
Networks are the weakest out of all, with Ran-
dom Forests and Support Vector Machines 
coming out on top in terms of accuracy [2]. 

People have also experimented with using a 
combination of multiple data sources when 
training their classifiers to great effect [3]. 
 
2 Tools, environment and maps 
2.1 Google Earth Engine 
Google Earth Engine [4] is a platform devel-
oped by Google used for data science and 
analysis. It features a variety of satellite im-
ages and geospatial datasets that are available 
for free for anyone to use. It also has its own 
API developed for both JavaScript and Python 
that can be used to access and manipulate the 
data available. This API uses Google’s cloud 
in order to perform computations, meaning 
that every single operation applied on Earth 
Engine’s maps has to go through their servers. 
Because of this, problems that arise on the 
server side are harder to fix. The 2 main prob-
lems that arise are computation timeout errors 
and exceeding memory limit errors. 
 
2.2 Jupyter 
Jupyter is a project developed with the goal of 
providing open-source and interactive compu-
ting across multiple programming languages. 
The core programming languages supported 
are Julia, R and most importantly for this pa-
per, Python. Google offers their own free 
online version of Jupyter called Google Col-
laboratory. This environment runs in the cloud 
and stores its notebooks on Google Drive. It 
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also provides seamless integration with the 
Google Earth Engine API, making it a better 
candidate to be used for developing this ma-
chine learning model over other Jupyter Note-
books offered by other companies. 
 
2.3 Training data 
In order to train a classifier, a dataset must 
first be created. Because the aim is to classify 
forests, it stands to reason that the first ele-
ment that needs to be included is a photo-
graphic map of the ground. To that end, the 
LANDSAT 7 dataset was selected as it fits 
this need. While LANDSAT 7 is not the new-
est map that is readily available, with LAND-
SAT 8 having been launched in 2013, it is 
nonetheless still being updated and has a 
much longer timeframe, having been launched 
in 1999. As with every picture, the main com-
ponents of this map are the RGB (red, green 
and blue) channels. In addition to those, there 
are 4 more channels present in the image. The 
4th band is near infrared with a wavelength be-
tween 0.77-0.90 μm. The 5th and 7th bands are 
short infrared with wavelengths between 1.55-
1.75 μm and 2.08-2.35 μm. The last band is 
the 6th band which is the brightness tempera-
ture. This band is unique because it was ini-
tially collected at a resolution of 120m, having 
been resampled at 30m afterwards. As men-
tioned before, it’s really difficult to classify 
vegetation based solely on an image taken 
from a satellite. To that end, further data needs 
to be analyzed. A robust dataset which con-
tains numerous surface variables is required 
since there are a lot of factors that change with 
forests. Furthermore, this dataset needs to in-
clude historical data as far back as the year 
2000, in order to cover the timeframe of the 
LANDSAT 7 dataset. With all these factors in 
mind, the “ERA5-Land” dataset fits precisely 
these criteria, as it satisfies all requirements 
mentioned before. This map is provided by the 
Climate Data Store, and data collection started 
in 1981, which is well within the time frame 
established for the dataset required to train the 
classifier. In total there are 50 surface varia-
bles in this dataset, although not all are useful. 
For example, since the classifier uses data 
from the summer, it wouldn’t be 

advantageous to use variables related to snow, 
such as snowfall or snow albedo, so these var-
iables can be discarded without them affecting 
the final result in a negative way. Further-
more, variables that have to do with lakes or 
bodies of water can also be discarded since the 
main focus is on dry land. The one drawback 
of this dataset is its pixel size. The LANDSAT 
7 dataset has a pixel size of 30 m while ERA5-
Land has a pixel resolution of 11 km. Because 
approximately a third of Romania’s surface is 
covered by mountains and most forests are in 
these areas, another important aspect that 
needs to be included is elevation and slopes of 
the terrain. The Shuttle Radar Topography 
Mission (STRM) provides an elevation da-
taset which can be also used to calculate 
slopes. While this dataset was formed based 
on data from the year 2000, it will not be an 
issue since altitude doesn’t change over the 
years. 
 
2.4 Labels 
Lastly, a set of labels needs to be formed in 
order to associate them with the training data. 
Because the aim is to classify forests, a dataset 
which depicts them is required. Thus, the CO-
PERNICUS CORINE LAND COVER dataset 
provides precisely that. This dataset includes 
numerous number-coded types of land types, 
including 3 types of forests. The codes are in-
tuitively designed in such a way that it’s easy 
to extract the relevant data and the resolution 
of the map is ideal. At 100 meter per pixel, this 
is the same resolution as the LANDSAT 7 
maps. The one drawback of this dataset is its 
fragmentation. The 5 time periods covered by 
it are called assets and each one covers a dif-
ferent number of years, as shown in Table 1.  
 

Table 1. Time frame of assets 
Asset name Time period covered 

1990 1989 - 1998 
2000 1999 - 2001 
2006 2005 - 2007 
2012 2011 - 2012 
2018 2017 - 2018 

 
The first CORINE LAND COVER inventory 
was performed in 1990 and was subsequently 
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updated in the year 2000. Now it has an up-
date cycle every 6 years, which is why there 
is a discrepancy in the time passed between 
the first asset and subsequent ones. 
 
3 Classifier 
As mentioned before, this analysis of forested 
areas is achieved using the Google Earth En-
gine API. As such, the classifier being used is 
entirely dependent on the classifying algo-
rithms provided by the library. In total, there 
are 8 classification algorithms, with 5 of them 
being a variation on a decision tree. When 
choosing a classifier, not only the scope of the 
problem but also the limitations of the API 
have to be considered. The first three algo-
rithms are Naïve Bayes classifier [5], GMO 
maximum entropy model [6], and Support 
Vector Machines [7]. The Naïve Bayes classi-
fier has the underlying assumption that the 
features are independent, but for this scenario 
it is not the case. The GMO maximum entropy 
model is not feasible since it requires signifi-
cant computing resources, which as 

mentioned before, can be a problem consider-
ing that the processing is done server-side. 
Lastly, while a powerful algorithm, SVMs 
limit this problem to a binary classification 
problem, meaning that it cannot be expanded 
in the future to work for multiple kinds of veg-
etation. For the reasons outlined above, the 
classifier used will be based on a decision tree. 
The workflow of a standard machine learning 
application is detailed in Figure 1. Having a 
single decision tree [8] as the sole classifier 
poses the problem of overfitting or underfit-
ting it. With so many features, finding the 
right length of a tree can be very difficult. Too 
many layers and the tree will only be able to 
handle the scenarios found in the training data 
while having few layers makes the classifier 
too broad. However, a collection of shallow 
trees which vote on the result can overcome 
this limitation, as shown in Figure 2. This al-
gorithm of multiple weak trees voting on a re-
sult is called a decision forest [9]. There are 3 
such algorithms found in the Google Earth 
Engine library. 

 
Fig. 1. Basic machine learning pipeline. In this case, “Input document” represents the 3 maps 
used to extract the data and “Process data” represents the extraction of the relevant features. 

 

 
Fig. 2. Machine learning pipeline with a decision forest. Note that instead of each tree classi-

fier deciding, the results are tallied and based on that a decision is taken. 
 
Just classifying the data may not be enough to 
get an accurate picture of the situation. The 
main goal is to have smooth blobs that can be 
further analyzed based on their shape and vol-
ume. However, misclassifications can lead to 
blobs that have bald spots within their borders. 

There are multiple reasons that might cause 
this, potentially appearing due to missing data 
either because of the picture that was taken or 
as a result of the cloud removal process, or 
simply because the classifier misclassified 
that pixel. Not all these spots are not 
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necessarily wrong as larger spots can also be 
more open areas typically found within a for-
est such as meadows or open plateaus on top 
of the mountains. In image processing, the op-
eration which fills out gaps within a blob is 
called dilation. Dilation is the process by 
which pixels are added to the boundary of an 
object, in this case the forest. These borders 
don’t always have to be external, with en-
claves within the object also having pixels 
added. The number of pixels being added to 
the object is dependent on the shape and size 

of the structure going around, called a kernel. 
The opposite of dilation is called erosion and 
it’s a process which removes pixels from a 
blob in a binary image. When these two sim-
ple morphological operators are applied in 
succession, the resulting operation is called 
closing [10]. This ensures that the object is re-
turned as close as possible to the original 
shape while filling in gaps inside of it. Figure 
3 shows 2 classification scenarios, one which 
is ideal and one which is a more likely result 
due to misclassifications. 

 
Fig. 3. The 2 possible results. Blob I shows an ideal scenario of a classification. Blob II shows 

the likely result with bald spots within. 
 

 
Fig. 4. Final working pipeline of the classifier 

 
Figure 4 illustrates the complete model, from 
extracting the necessary data to the final result 
with closing applied on the output of the deci-
sion forest. The one drawback of this ap-
proach is the distortion of the blob’s borders. 
Following the closing function, fine details 
around the border will disappear, the blob 
having a smoother shape all around. There 
needs to be a balanced approach to this 
method as well. Selecting a kernel too big or 
performing multiple iterations may also close 
those larger spots that were indeed not a for-
est, as well as distorting the original shape of 

the result as mentioned before. However, hav-
ing a kernel that is too small or not performing 
enough iterations can lead to not closing the 
maximum number of bald spots within the fig-
ure. 
 
4 Testing model components 
4.1 Classifier selection 
As mentioned above in section 3, there are 5 
sets of labels that can be used to create the 
training dataset. Each of the 5 correspond to a 
dataset and in turn can be used to train 5 dif-
ferent classifiers. Considering that the period 
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that is of interest is between the year 2000 and 
2019, the 1990 dataset can be discarded as it 
is outside this range while all the others can be 
considered for this task. Intuitively, the classi-
fier to be chosen is the one with the best train-
ing and testing accuracy and precision. How-
ever, it does not provide a clear picture of its 
performance over the whole time period. To 
get a better understanding of this, each of the 

4 remaining classifiers need to be tested 
against each testing set. The hypothesis is that 
each classifier will have a strong performance 
when classifying data from its own time pe-
riod but the accuracy and precision will drop 
the further away the dataset is from the origi-
nal year. This does not include the morpholog-
ical function applied to the result of the clas-
sifier, as we are only interested in the former.

 
Table 2.  Accuracy and precision levels 

 2000 Label set 2006 Label set 2012 Label set 2018 Label set 
2000 Classifier Accuracy:0.9328 

Precision:0.8682 
Accuracy:0.9330 
Precision:0.8582 

Accuracy:0.9295 
Precision:0.8539 

Accuracy:0.9279 
Precision:0.8536 

2006 Classifier Accuracy:0.9217 
Precision:0.8755 

Accuracy:0.9273 
Precision:0.8738 

Accuracy:0.9248 
Precision:0.8710 

Accuracy:0.9236 
Precision:0.8704 

2012 Classifier Accuracy:0.9246 
Precision:0.8761 

Accuracy:0.9292 
Precision:0.8732 

Accuracy:0.9313 
Precision:0.8484 

Accuracy:0.9303 
Precision:0.8793 

2018 Classifier Accuracy:0.9171 
Precision:0.8780 

Accuracy:0.9223 
Precision:0.8761 

Accuracy:0.9232 
Precision:0.8793 

Accuracy:0.9236 
Precision:0.8825 

 
Table 2 shows the testing accuracy and preci-
sion of each classifier with each dataset. The 
training of these classifiers was done over 
their respective labels set, with 50000 ran-
domly sampled data points. For testing, 
10000 entries were randomly extracted from 
the set. These number of training and testing 
points were selected in a way to avoid 
timeout errors from the Google Earth Engine 
servers. Looking at the table, the original hy-
pothesis is rejected with most accuracies sit-
ting at around 0.93 and precision at 0.87. 
This means a different method to select the 
classifier. The 2012 classifier will be used 
since it is closest to the middle of the selected 
time frame 
 
4.2 Hyperparameters selection 
The random forest classifier has a variety of 
hyperparameters that need to be tuned in order 
to achieve maximum efficiency. The 6 

variables that go into training such an algo-
rithm are the number of trees inside the forest, 
the number of variables per split, the mini-
mum leaf population, the fraction of input per 
tree, the maximum number of nodes, and the 
randomization seed.  
Setting any of these parameters too high or too 
low can lead to overfitting or underfitting. The 
first one of these that needs to be chosen is the 
number of trees. While decision forests are 
impossible to overfit by increasing the number 
of trees, having too many can potentially lead 
to Google Earth Engine server problems. It 
has been argued [11] that increasing the num-
ber of trees over 128 does not yield significant 
improvements, so that will be the number of 
trees in the classifier. The randomization seed 
is only used to generate random numbers 
when training the classifier and has no influ-
ence over the final result, so the default value 
will be used in this instance.
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Fig. 5. Evolution of accuracy based on the variation of variables per split and minimum leaf 

population 
 
Figure 5 depicts the training accuracy of the 
classifier based on the variation of variables 
per split and the minimum leaf population. 
From this plot it can be inferred that the mini-
mum leaf population needs to be minimized 
for maximum efficiency while the number of 
variables per split stops influencing the accu-
racy in a significant way over 11. While with 
the increase of the latter the accuracy keeps 

going up, it’s only on the 3rd decimal as seen 
in Table 3, having a small statistical influence 
overall. However, the increase in the number 
of variables per split does affect the runtime 
of the algorithm, making it significantly 
slower. For this reason, the final algorithm 
will be trained with the number of variables 
per split set to 11 and the minimum leaf pop-
ulation set to 1.

 
Table 3. Accuracy increase with more than eleven variables per split 

Variables per split and min leaf population values Accuracy 
variables per split = 11 and min leaf population = 1 0.9945275510 
variables per split = 12 and min leaf population = 1 0.9945628506 
variables per split = 13 and min leaf population = 1 0.9952048473 
variables per split = 14 and min leaf population = 1 0.9951045303 
variables per split = 15 and min leaf population = 1 0.9953051643 
variables per split = 16 and min leaf population = 1 0.9953452911 
variables per split = 17 and min leaf population = 1 0.9953452911 
variables per split = 18and min leaf population = 1 0.9953452911 
variables per split = 19 and min leaf population = 1 0.9955258617 
variables per split = 20 and min leaf population = 1 0.9952851009 

 
4.3 Validation of the model 
After selecting the parameters of the decision 
forests, the whole model including the mor-
phological operator needs to be validated. As 
mentioned in section 2, the model is very sen-
sitive to the size of the kernel and the number 
of iterations performed on the output. There 

are multiple possible shapes of a kernel, in-
cluding a cross shape, square shape and circle 
shape. Furthermore, there are 2 different op-
tions when setting the size of the kernel. The 
first one is size by pixels and the second one 
is size by meters. In this case, the latter was 
chosen since the size of the pixel is 100 meters 
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and incrementing it would be too much. The 
aim is to consider accuracy, as well as preci-
sion and recall, since the objective is to 

minimize the false negatives rate, but also 
make sure the false positive doesn’t spike too 
much.

 

 
Fig. 6. Precision of the model based on the number of iterations and kernel size 

 

 
Fig. 7. Model recall based on number of iterations and kernel size 

 
Figures 6 and 7 show, as the precision of the 
model decreases as the recall increases. This 
means that the number of iterations and the 

size of the kernel must be chosen in such a 
way that both these values are maximized. 
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The optimal number of iterations is 1 with the 
size of the kernel between 60 and 100 meters.  
 
5 Analysis of results 
With the model validated, it can now be ap-
plied to the whole 20 years long dataset. Since 
the result for each year is a binary image, a 2 
bins histogram can be created for each one. 

With the total land area of Romania being ap-
proximately 240000 square kilometers and the 
size of one pixel set to 100 square meters, the 
resulting histogram would have over 2 billion 
elements each. That is way more than Google 
Earth Engine can handle, so the result would 
have to be randomly sampled.

 

 
Fig. 8. Evolution of forested areas in Romania from 2000 to 2019 

 
Figure 8 presents the evolution of forested ar-
eas in Romania from 2000 to 2019. The graph 
shows that there is a decrease in the total for-
ested area, going from 0.37 in the year 2000 
to 0.27 in 2019. While there are spikes going 
up and down, the general trend over the past 
20 years is that reforestation has not outpaced 
deforestation. In 2016, the total surface area 
covered by trees was around 27% [12], with 
Figure 8 showing that at 32%. With this we 
can conclude that there is at least a 5% dis-
crepancy between the results of the model and 
reality. Multiple factors can contribute to this 
fluctuation in the results such as the random 
sampling from the output image, the relatively 
small number of results when compared to the 
actual number of pixels or the variation in 
sampling size present within the 3 datasets 
used. A definitive conclusion cannot be given 
as to the reason for this inconsistent perfor-
mance because this matter requires further 

investigation. 
 
6 Conclusions 
To conclude with, we have created a pipeline 
to classify forested areas on a map using sat-
ellite images and ground variables. However, 
this analysis does not have to be limited to just 
forests, as it can be extended to find any kind 
of vegetation, provided that some minor 
changes are made to the features. Further-
more, while it is a powerful tool, we have seen 
some of the limitations of Google Earth En-
gine. The fact that all operations have to be 
done on their servers instead of local ma-
chines means that if a function takes a long 
time to return a result or runs out of memory, 
a simple hardware upgrade is not enough to 
overcome it. Even so, the variety of datasets 
that it provides is very diverse, making it a 
powerful source of data despite its shortcom-
ings.  
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One unique property that this type of problem 
has is that the position of the pixel on the map 
in relation to other pixels can also be an indi-
cator to the class it belongs to. For example, a 
single pixel marked as a non-forested area in-
side a forest blob is most likely a misclassifi-
cation and vice versa. This can’t be repre-
sented in the data to aid with classification so 
applying a morphological operation to the re-
sult of the classifier is a workaround unique to 
this classification problem.  
The results show a downward trend in regards 
to Romanian forests, even if the variation 
from year to year is too great to get an accurate 
picture of the situation. 
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