
Informatica Economică vol. 25, no. 3/2021 5

Image Classification Using Machine Learning Algorithms in Google Earth
Engine Environment

Paul TEDORESCU, Simona-Nicoleta VOICU

National Institute for Research & Development in Informatics - ICI Bucharest
paul.teodorescu@ici.ro, simona.voicu@ici.ro

In this paper it is proposed to classify an image using a Machine Learning approach inside the
Google Earth Engine platform and Jupyter Notebook: feeding the computer with training data
(in our case being points/pixels having a label which represent the land-cover type), it will
learn to recognize the type of pixel through a model built on the technique called supervised
learning. Even if the reader is not so familiar with the GEE environment and with GEE data
structures and data types (like image, image Collections, features, feature Collections, geome-
try etc.), we’ll try to guide him step by step in this modern exercise of building a machine learn-
ing model which, having the intelligence to guess the land-cover for each pixel, it will finally
create a thematic map, very useful for scientist and specialists. This is actually what it’s called
Artificial Intelligence and the model built here can be re-used with new data, new images.
Keywords: Machine Learning, Google Earth Engine, Image classification, Jupyter Notebook,
Python
DOI: 10.24818/issn14531305/25.3.2021.01

Introduction
Information on the type of land covering a

geographical area plays a vital role in many
aspects of life, from science to economics and
from economics to politics. Accurate and
timely information on the type of land cover
is in high demand.
There are two ways to detect land cover types
from a satellite image: we can interpret the
land cover visually (for example green color
as vegetation, brown as soil or blue as water)
or we can apply Artificial Intelligence tech-
niques to geospatial data (Machine Learning)
to classify the land cover automatically. Clas-
sification in Machine Learning and statistics
is a learning approach: the computer learns
from the incoming data and makes predictions
with new data. In image classification, the
model built by research teams in their geospa-
tial data processing work, will learn to identify
land cover type for each pixel, helping them
to create thematic maps and to discover
changes over time for a specific geographical
area.
Google has assembled a huge amount of Earth
observation data from satellites like Landsat
8, Landsat 7, Landsat 5, Sentinel, MODIS,
SRTM and made them available in the cloud

through Google Earth Engine (GEE). More
than that, with his API’s and planetary analy-
sis functions, GEE is a powerful tool to clas-
sify images. In this article we’ll show how to
classify an image (a geographic zone from
Romania) using Google Earth Engine, it’s sat-
ellite maps and Machine Learning algorithms
to classify and detect „cover-land” infor-
mation (the terrain type of a surface chosen by
us) and also using Jupyter Notebook with Py-
thon programming language. With this mate-
rial, in which machine learning techniques
have been used, it is hoped that researchers
will be able to advance more easily in their
work of processing satellite data.

2 Materials and Methods
Google Earth Engine allows the analysis and
visualization of geospatial data. Geospatial
(spatial) data are data about objects (people,
roads) or events (earthquakes, floods), which
can be located geographically by coordinates.
There are two types of spatial data classified
as follows:
• vector data (points, lines, polygons are

used and represent cities, roads, build-
ings). They are used to store the outline of
objects;

1

6 Informatica Economică vol. 25, no. 3/2021

• raster data: stores the contents of objects.
For example: photos taken from an air-
plane or satellite. These dates are files that
store information in arrays of pixels; each
pixel contains information about a city, a
place, a forest, etc.). Raster images can be
found in the form: TIFF, JPEG, GIF,
PNG. The platform is efficient in storing
images captured by satellites. These satel-
lites are: MODIS (moderate resolution im-
aging spectroradiometer), LANDSAT and
SENTINEL.

The images captured with the help of satellites
are useful in forest analysis, deforestation
tracking, water-covered areas, land use
change, land cover, land health assessment,
etc. Moderate Resolution Imaging Spectrora-
diometer (MODIS) is an instrument equipped
with sensors that acquire images since 1999,
daily images, surface reflectance adjusted
BRDF for 16 days, reflection factor, is the
proportion of light reflected on the surface a
material, by-products such as indications of
vegetation or snow cover [1]. Google Earth
Engine organizes geospatial information to be
universally accessible and useful, and makes
it available for analysis. It is worth mentioning
that data and images can be imported from
third parties into the Earth Engine for analysis.
Any analysis performed in the Earth Engine
can be used by third party tools. The catalog
with available data sets includes:
• Landsat catalog (USGS / NASA);
• MODIS data sets;
• Sentinel-1 date;
• precipitation data;
• sea surface temperature data;
• data on climate, altitude and altitude.
Users can upload their own data to Earth En-
gine for analysis (raster data or vector data:
GeoTIFF or shape files). When we talk about
satellites, we refer to Remote Sensing images
(collecting information about objects at a dis-
tance, without direct contact, using sensors).
There are two ways to extract information
from satellite images of the terrain:
• Maps are made with variables such as bi-

omass, LAI (Leaf Area Index), tree can-
opy (these variables change depending on

the season, e.g.: LAI will be lower in win-
ter than in summer);

• Maps are made with variables such as land
cover, burned areas, floods, forests and a
distinction is made between agriculture,
forest, water areas, and this is called IM-
AGE CLASSIFICATION or THEMATIC
REMOTE SENSING (thematic RS).

Image classification is the most widely used
type of ML and remote sensing. Image classi-
fication is an automatic approach to classify-
ing raster (satellite) and vector images. For
GIS and remote sensing systems, supervised
and unsupervised image classification is used
[2].
In the land cover classification studies of the
last decade, results have been obtained with
better accuracy when satellite images from a
time series have been used, series of images
from the same area taken at different times
(time series satellite images) versus using im-
ages taken at one time. Recently, the availa-
bility of Google Earth Engine (GEE), which is
a cloud-based computing platform, has gained
attention for remote sensing-based applica-
tions: acquisition of information about a phe-
nomenon or object without physical contact
with that object. Temporal aggregation meth-
ods derived from time series images are
widely applied. For example, using „mean” or
„median” values from a time-series of images
(temporal series) is better than using only one
image from that time series. As will be shown
below, in GEE, many techniques simply use
and select as many images as possible, regard-
less of how many of these images (annual,
monthly, or seasonal) could affect the accu-
racy / precision of the classification. In the su-
pervised classification, it starts with a set of
training data, which are actually points on the
map (with their spectral values) at which it is
known what type of terrain it represents [3].
Romania (and regions in Romania) will be
chosen as the study area. As for data, it will be
used LANDSAT satellites data and MODIS
satellite data. LANDSAT satellites have the
optimal ground resolution and spectral bands
to efficiently track land use and to document
land change due to climate change, urbaniza-
tion, drought, wildfire, biomass changes.

Informatica Economică vol. 25, no. 3/2021 7

MODIS satellites (Moderate Resolution Im-
aging Spectroradiometer) provides complete
daily coverage of the earth. The purpose of
GEE is to classify the pixels of an image (pro-
cess called “image classification”), meaning
to identify and portray the type of land cover
on the ground. This research will explain how
to build a predictive model which will guess
the type of land as geographic information,
such as water, urban area, forest on a geo-
graphical region chosen by the user from a
Google map. The technique used is Machine
Learning. Image classification is perhaps the
most important part of digital image analysis.
In order to better deepen the research topic, we
tested the generation of maps on various areas
in Romania (Bucharest or the Carpathian
Mountains area) using the Jupyter Notebook
platform that uses the Python language. Jupy-
ter Notebook is a platform similar to Google
Earth Engine, which uses Python as a pro-
gramming language compared to JavaScript.

This has allowed the documentation, data vis-
ualization and storage to be much easier to
use. Jupyter Notebook allows data cleaning,
statistical modeling, ML model training and
data visualization. Jupyter allows users to
view code results online without dependence
on other parts of the code. In the notebook,
each cell of the code can be checked at any
time to draw an output. Because of this, Jupy-
ter helps print the output line, which becomes
extremely useful for the exploratory infor-
mation analysis (EDA) process. The Figure 1
summarizes the 3 components of this re-
search: a huge catalog of satellite images and
geospatial data sets (owned by Google), a Ma-
chine Learning algorithm to guess or predict
the “cover land” information and the final ap-
plication written in JavaScript/Phyton inside
the code editor provided by Google Earth En-
gine/Jupyter Notebook.

Fig. 1. Components of research

The goal is to build a model, also called „a
classifier”. This model will learn to identify
the type of terrain, only by feeding it with data
already labeled. The data from which the
model will learn contain an additional infor-
mation that designates the type of terrain. In
the "world" of artificial intelligence, it is said
”data is labeled” meaning that the data is
grouped into a specific category or class. The
type of terrain is actually the label of that point
on the map and represents the class to which
it belongs. Labels are nothing more than con-
secutive integers. For example, the number
zero can denote the type of land "water" and
the number "1" can denote the type of land
"vegetation" [4].

This model which was trained and was taught
to recognize the label will be used with new
data from the region to be classified and it will
identify which class/category/type of terrain
the new data will fall into. The model finally
will provide new information, a new attribute
for each pixel on the map: terrain type (the
pixel class). Every class (or type of terrain)
will have an associated color from the Annual
International Geosphere-Biosphere Program
(IGBP). Knowing that geospatial datasets
contain one or more layers called bands, for
training data we’ll select data from the first
MODIS band called LC-Type1 band. The rea-
son why the first Modis band was chosen is
because it contains that additional attribute

8 Informatica Economică vol. 25, no. 3/2021

called “label” which is in fact the type of ter-
rain or landcover type [5].

3 Google Earth Engine using JavaScript
The model which will be built in JavaScript,
will be a classifier and it will be called as such:
the Classifier. It contains in fact an algorithm,
a Machine Learning algorithm which will cat-
egorize the type of terrain (where that pixel,
from the Google map, resides). The Classifier
will initially be trained on MODIS data (used
as training data) in order to learn how to dis-
tinguish the type of terrain. After that we’ll ap-
ply the Classifier on a Google Maps region
chosen by the user, such as Banat, Transylva-
nia or a hand-drawn polygon. To be sure it’s
working well, we’ll take new data (called val-
idation data) and we’ll put the classifier back
to work, we’ll display the classified image
(where each type of terrain is colored differ-
ently), we’ll calculate the accuracy of the clas-
sification and we’ll print the error matrix.
Inside GEE editor will be chosen Landsat 8
satellite images, with the mention that any
other source image can be used, as can be seen
in image. Writing Landsat 8 in the search box,
GEE is listing all the Landsat 8 datasets. The
USGS Landsat 8 Collection 1 Tier 1 and Real-
Time data TOA Reflectance collection is cho-
sen and GEE will generate some variable
shown in the Figure 2. This variable can also
be manually written using a special ID of this
data set [6]. For the geographical area to be
classified, either it will be chosen to manually
draw a polygon (an area from Romania, case
in which GEE it will generate a variable) or it
will be added code to generate a variable with
the coordinates of the region/polygon called
Region Romania. This image collection is fil-
tered by date (the summer of 2019), by region
and another new filter for the clouds. We’ll re-
move images with high-cloud cover using:

sort('CLOUD_COVER')
filterMetadata(“CLOUD_COVER”,
“less_than”, 1)

Because images are taken at different times,
atmospheric conditions can change spectral
values. To reduce this effect, the first least
cloudy image is chosen from the collection,

using the first () function:

var landsat = ee.Image(ee.ImageCollec-
tion('LANDSAT/LC08/C01/T1_RT_TOA')

.filterDate('2019-06-01', '2019-09-
30')

.filterBounds(Region_Romania)
.sort('CLOUD_COVER')
.first());

After this filtering operation, to view the re-
sulting image, the addLayer function is used
(which adds an EE object as a map layer) hav-
ing the following parameters:
• the resulting image after applying the fil-

ters;
• the Landsat spectral bands we decided to

be displayed: we will choose only 3 bands
B4, B3 and B2 (blue, green, red);

• the chosen name of this layer to be dis-
played: „Landsat with 3 bands, RGB”.

Map.addLayer(land-
sat,{bands:["B4","B3","B2"]},"Landsat
with 3 bands, RGB")

To calculate the cloudiness score it is neces-
sary to clean the cloud images, using the com-
mand:

var cloudScore = ee.Algorithms.Land-
sat.simpleCloudScore (landsat).select
('cloud');

We will mask the clouds with a cloud index
higher than 50. This score (which is in the
range of [0.100]) is randomly selected at 50
(as a cloudiness index), but can have any
value. Then it is a need to apply a reducer (a
GEE technique) for the best possible masking
in the cloud. The Reduction function (which
acts on all the bands of an image and on all the
pixels) will receive Landsat data as input and
will aggregate pixels on all bands of an image.
The reducer will choose a minimum of the
spectral value for each pixel and for each
band, passing through the desired bands. The
result of these operations will generate the
variable "input". Basically, this variable con-
tains a desired image as clean as possible:

var input = landsat.updateMask(land-
sat.mask().re-
duce('min').and(cloudScore.lte(50)));

Informatica Economică vol. 25, no. 3/2021 9

For training data (which is actually a collec-
tion of features, a featureCollection), one of
the properties (or attribute) is the class label.
Labels are actually consecutive integers. For
example, the number zero can be assigned to
the label „water", and the number one can be
assigned to the label "vegetation". The train-
ing data is imported from a good source called
MODIS. As it was done with Landsat data, a
Modis data ID is also used and a data set from
January 2019 is chosen, the year from which
we also chose Landsat data. It is ideal to find
out the specific day, month and year of the
least cloudy map used for Landsat to be able
to use the same day of the year for MODIS
data. By using:

ee.Date(image.get('sys-
tem:time_start')).format('YYYY-MM-
dd').getInfo())

it was displayed the date of the least clouded
Landsat map: "2019_08_14 ”. So, that day it
will be specified in our code:

var modis = ee.Im-
age(“MODIS/006/MCD12Q1/2019_08_14”).se-
lect('Land_Cover_Type_1');

From this data set, only the first band called
“LC_Type1” or “Land-Cover_Type_1” is
chosen because it offers the class or label. The
chosen band "LC_Type1" has 17 classes,
which will be used for classification, i.e. for
recognizing the types of terrain after the clas-
sifier has learned to do so with training data.
With the Modis data set (contained in the
“modis” variable), the function addBands is
used to add the additional band containing 17
labels. The GEE documentation helps the user
to use libraries and functions, as can be seen
in Figure 2.

Fig. 2. GEE functions

Therefore, using the GEE platform, it ensures
that, to all the information that is brought by
the Landsat data (contained in the “input” var-
iable), an additional information is added: the
class or the type of terrain brought by the
MODIS data set. A sample of 5,000 points of
data is collected from the Landsat and MODIS
image.

var training = input.addBands(modis).sam-
ple({ numPixels: 5000, seed: 0});

After the printing operation on the GEE con-
sole, it can be seen how this operation supple-
mented the Landsat data information with an-
other information (from MODIS) that helps
the classifier to learn the class from where that
pixel belongs.
It is worth mentioning that GEE has another
technique for adding that information contain-
ing the type of terrain (class) from the MODIS
data set: using sampleRegions function. Like
addBands function, this one also converts
each pixel into a specific GEE data structure

10 Informatica Economică vol. 25, no. 3/2021

called feature and returns a collection of fea-
tures (featureCollections). Feature - as a GEE
data type - is an abstraction made by Google
Earth to be able to succeed in data processing.
Features are actually objects. They are GeoJa-
son data (a special format for encoding geo-
graphic data structures, a format that is able to
describe Geometry data types such as point,
line, polygon) and can be seen as a list of prop-
erties among which, the most important one,
is Geometry. These features can also be
viewed as a row in a table/matrix where one
of the columns is Geometry [7].
Returning to the sampleRegions operation:
practically this technique overlaps points (an
overlay process) from two images: one from
Landsat and one from MODIS:

var training = input.select(bands).sam-
pleRegions({
 collections: modis,
 properties: ['Land_Cover_Type_1'],
scale: 30});

Note that the feature collection is specified
and also the property containing the class: the
name of the Modis band which contains all the
classes called “Land_Cover_Type_1”.
The training data sample is now ready. With
this data, the model (the classifier) is trained
and therefore „taught” to recognize the type of
terrain for each pixel. The user can choose any
of classifiers presented by GEE (each having
its own classification algorithm), as seen in
Figure 3.

Fig. 3. The type of classifier: smileRandomforest

By selecting the classifier that works with the
RandomForest algorithm, with 50 trees, we
train the classifier with the training data:
var classifier = ee.Classifier.smileRan-
domForest (50) .train (training,
'Land_Cover_Type_1');

The result obtained (after the training and
learning operation of the classifier) will be
contained in the classifier variable. This is
also the name of the classifier ready to classify
any other data, dots or pixels. The model is fed
with new data of the image desired to be clas-
sified, contained in the variable "input":

var classified = input.classify (classi-
fier);

This line of code actually classifies the desired
image, using a trained classifier with 5,000
MODIS data.To verify the accuracy of the
classifier is necessary to see the Confusion
Matrix, also known as “the error matrix”. This
matrix reflects the difference between reality
(on the ground) and the predictions made by
the classifier.

var trainAccuracy = classifier.confusion-
Matrix();

Informatica Economică vol. 25, no. 3/2021 11

A new data collection will be used, as was ex-
plained at the beginning of this research. With
this new data set, the classifier should be re-
launched. In Machine Learning, this is called
„the validation operation”. Most of the time, it
is a good practice to use new sets of data,
called „test data” and/or „validation data”.
Actually, is better to use both sets of data, test
data and validation data. In this case it was
used only validation data. The new data is ran-
domly generated by changing the seed to „1”
in the sampling operation and then filter to re-
move null pixels, using the B1 Coastal Aero-
sol band:

var validation = in-
put.addBands(modis).sample({
numPixels: 5000,
seed: 1
 })
.filter (ee.Filter.neq('B1',null));

The validation data is now classified with:
var validated = validation.classify(clas-
sifier);

And the error matrix is once again being cal-
culated, this time on the validation data:

 var testAccuracy = validated.errorMa-
trix('Land_Cover_Type_1', 'classifica-
tion');

Display the results:

print('Validation error ,atric: ', tes-
tAccuracy);

To display a colored map of the selected re-
gion, it is necessary to define a color palette.
For this, we intend to use the same set of 17
colors that were used by the research pro-
gram called International Geosphere-Bio-
sphere Programme (IGBP) dedicated to stud-
ying the phenomenon of global change. This
is because Modis data contains the same
number of classes or labels: 17 classes, each
class being a type of terrain found on the
ground [8].
So, having defined a color palette, in our
code we use the variable igpbPalette (called
like that because it works with the IGPB
standard colors) and display two layers: a
map layer "Landsat" and a layer called „the-
matic map classified” which is the result of a
prediction made by the trained classifier
(trained using MODIS source):

Map.centerObject(Region_Romania,10);
Map.addLayer(input, {bands: ['B3', 'B2',
'B1'], max: 0.4}, 'landsat');
Map.addLayer(classified, {palette: igbp-
Palette, min: 0, max: 17}, 'harta temat-
ica-harta clasificata')

Fig. 4. The results of the classification process using a Machine Learning algorithm

12 Informatica Economică vol. 25, no. 3/2021

From the above classified map, the re-
searcher can easily “read” the type of terrain
(the class) by associating the map colors with
the IGBP color palette.
For example:
• the RED color is urban and built-up area
• the BLUE color is water
• the GREEN color is evergreen broadleaf

forest or mixed forest
• the GREY color is barren land

4 Jupyter Notebook using Python
For researchers there is a way to work with the
entire arsenal offered by Google Earth Engine
but not necessarily on the native platform and
not necessarily with JavaScript language. In-
stead, Jupyter platform use the Python lan-
guage which can do the same work in a differ-
ent way. Both JavaScript and Python are use-
ful, easy to learn and good for writing short
scripts, but Python aims much higher through
its ability to work with objects (object-ori-
ented programming language) and, in addi-
tion, it is the language that lends itself perfect
in the IT areas of Data Analytics, Artificial In-
telligence and Machine Learning. Given that
the classification process is part of ML jobs, it
would be more natural to use Python lan-
guage. This chapter explains the technique to
make the transition from the GEE framework
to a Python environment (such as Jupyter
Notebook) where users can still use the GEE
strengths. To set up the Python environment
that allows interaction with Google Earth En-
gine, a special package called geemap is re-
quired. Geemap package offers the entire Py-
thon ecosystem, with its various libraries and
special tools for exploring Google Earth En-
gine [9].
Users who want to migrate to Python ecosys-
tem, should follow the following steps:

1.A new environment called gee is created in
Command prompt

conda create –n gee python

2. The new environment is activated
conda activate gee

3. From within gee environment, install
geemap

conda install –c conda – forge geemap

4. The default loading of the Jupyter extension
is also expected
5. Launch Jupyter Notebook

jupyter notebook

6. Jupyter opens automatically and write
down the first command

import geemap

And follow the instructions to authorize ac-
cess needed by Earth Engine.
The Python programmers can write code in
Python to succeed in the classification exer-
cise done above. In this new demo it was se-
lected a region around Bucharest (the center
of the image having 26.053 and 44.452 as co-
ordinates), with a buffer zone of 10.000 me-
ters. To have an eye-catching display, it was
used the near-infrared band (B5), as was ex-
plained below:

region=ee.Geome-
try.Point([26.053,44.452]).buffer(10000)
image = ee.ImageCollection('LAND-
SAT/LC08/C01/T1_SR') \
 .filterBounds(re-
gion) \
 .filterDate('2019-
06-01', '2019-09-30') \

.sort('CLOUD_COVER') \
 .first() \
 .select('B[1-7]')
vis_params = {
 'min': 0,
 'max': 3000,
 'bands': ['B5',
'B4', 'B3']}
Map.centerObject(region, 8)
Map.addLayer(image, vis_params, "Landsat-
8")

Informatica Economică vol. 25, no. 3/2021 13

Fig. 5. Selected area of Romania to be classified, in a false-color composite

The image displayed (Figure 5) is in, what is
called, a false-color composites. Band B5 it
was used for near-infrared range, together
with B4 and B3 bands (red and green colors).
The selection of these bands was made to al-
low the user to visualize the wavelengths the
human eye does not see (near the infrared
range). The use of bands, such as near infra-
red, increases spectral separation and can en-
hance the interpretability of data. In contrast
to a true-color image, a false-color image is
not rendering in natural colors in order to ease
the detection of features that are not easy to be
seen. The use of near infrared band for the de-
tection of vegetation is very popular method
in satellite images. As was the case with the
above demonstration of the classification al-
gorithm from within GEE environment (see
the previous chapter), the Modis Land Cover
Type Yearly Global data are used as the train-
ing data. From Modis data, which are already

labeled, a sample is extracted based on some
criteria. A new layer called "training" and
consisting of 5000 Modis points/pixels (black
dots on the map as seen in Figure 6), will be
displayed on the screen.
This is actually a GEE technique for the for-
mation of training data, by using a method that
overlaps the Modis points (with sampleRe-
gion function) with the image to be classified
(see Figure 6) [10]. In this way, to all the data
provided by the chosen image, it will be added
that information given by Modis (from the
variable “points”) that specifies the class or
type of terrain of that pixel. The line of code
to do that is:

training = image.select(bands).sampleRe-
gions(**{
 'collection': points,
 'properties': [label],
 'scale': 30})

14 Informatica Economică vol. 25, no. 3/2021

Fig. 6. The overlay of Modis points with the image to be classified

A simple line of code is enough to describe the
first Modis point (which is a point, a Geome-
try type) and to demonstrate that MODIS data
contains an additional information (needed for
classification) called the “class” or “label”.
This info actually describes the type of terrain
of each point contained in the “points” vari-
able:

print(points.first().getInfo())

The result is shown below:
{'type': 'Feature', 'geometry': {'type':
'Point', 'coordinates':
[27.491495166136097,
44.83389043165135]}, 'id': '0', 'proper-
ties': {'LC_Type1': 12}}

Here, the description of the first Modis point

shows that it resides on the type of land having
number 12, which is croplands: at least 60%
of area is cultivated cropland. After feeding
the model (the classifier) with training data in
order to learn to predict the type of land of
every pixel, the researcher is using it to guess
the labels of new data, the data coming from
the region of his choice. Because Modis data
has 17 classes, to make the demonstration
more interesting and colorful, we are using a
set of 17 colors (a color for each class) which
is the same set used by the International Geo-
sphere-Biosphere Program. The result is a the-
matic map which is actually a prediction made
by the trained classifier (trained using MODIS
source, Figure 7).

Informatica Economică vol. 25, no. 3/2021 15

Fig. 7. The final display of the classified image in IGBP colors

5 Conclusion
Thematic maps, like the one built in this re-
search, helps to simplify and clarify the mes-
sage of the map. Classification and map gen-
eralization matters in every attempt to sim-
plify the real world when raw data brings con-
fusion. However, we need to be cautious be-
cause we may create false patterns which will
demolish the actual geographic phenomena
we are trying to present. The classification
process is grouping together similar observa-
tions and puts apart those observations that are
substantially different. Finding the ideal num-
ber of classes is challenging. In the above ex-
ercise, intentionally it was used more classes
than a usual map classification (it was done
for all the classes offered by MODIS data and
all 17 colors of International Geosphere-Bio-
sphere Program) but, in order to be safe, is bet-
ter to make a thematic map with 3-7 data clas-
ses. The more colors are used, the harder is to
read maps so the risk of map reading errors
increases.
This material presented how GEE knows how
to process data using its spectacular toolset
and functions and wanted to teach researchers
how to move to a Python platform to do the
same things but with a different language. The

benefits of Artificial Intelligence (specifically
Machine Learning) shown here, for the task of
a map classification, are only a small fraction
of the wide range of possibilities and strengths
of AI in satellite data processing.

Acknowledgement
The findings of this article are part of the
broader research project PN 19 37 06 01 “Ad-
vanced applications of Artificial Intelligence
and Big Data” by the National Institute for Re-
search & Development in Informatics – ICI
Bucharest.

References
[1] J. Schreier, G. Ghazaeyan and O.

Dubovyk, “Crop-specific phenomapping
by fusing Landsat and Sentinel data with
MODIS time series” in European Journal
of Remote Sensing, Volume 54, 2021, pp.
48-55.

[2] N. Gorelick, M. Hancher, M. Dixon, S.
IIyushchenko, D. Thau and R. Moree,
“Google Earth Engine: Planetary-scale
geospatial analysis for everyone” in Re-
mote Sensing of Environment, Volume
202, 2017, pp. 19-23.

[3] T. Noi Phan, V. Kuch and L. W. Lehnet,

16 Informatica Economică vol. 25, no. 3/2021

“Land Cover Classification using Google
Earth Engine and Random Forest Classi-
fier—The Role of Image Composition” in
Remote Sensing Journal, Volume 12,
2020, pp. 4-15.

[4] K. Vos, K.D. Splinter, M.D. Harley, J.A.
Simmons, I.L. Turner, “A Google Earth
Engine-enabled Python toolkit to extract
shorelines from publicly available satel-
lite imagery” in Environmental Model-
ling& Software Journal, Volume 122,
2019, pp. 3-6.

[5] H. Tamiminia, B. Salehi, M. Mahdianpari,
L.J.Quackenbush, S. Adeli and B. Brisco
“Google Earth Engine for geo-big data
applications: A meta-analysis and sys-
tematic review”, in ISPRS Journal of
Photogrammetry and Remote Sensing,
Volume 164, 2020, pp. 154-160.

[6] L. Giglio, L. Boschetti, D.P. Roy, M.L
Humber, C.O. Justice,“The Collection 6
MODIS burned area mapping algorithm
and produc”, in Remote Sensing of Envi-
ronment Journal, Volume 217, 2018, pp.

72-80.
[7] R. Camdem, “An Introduction to

GeoJSON”, 2019, Available: https://de-
veloper.here.com/blog/an-introduction-
to-geojson.

[8] IGBP, “Vegetation, Water, Humans and
the Climate”, 2004, Available:
http://www.igbp.net/publications/igbp-
bookseries/igbpbookseries/vegetation-
waterhumansandthecli-
mate2004.5.1b8ae20512db692f2a68000
7479.html.

[9] Q. Wu, “geemap: A Python package for
interactive mapping with Google Earth
Engine”, in The Journal of Open Source
Software, Volume 5, 2020, pp. 3-9.

[10] G.S Bhunia, P.K Shit, D.
Sengupta,“Free-Open Access Geospatial
Data and Tools for Forest Resources
Management”, in Spatial Modeling in
Forest Resources Management , 2020,
pp. 15-20.

Paul TEODORESCU An engineer by training with a solid background in com-
puter science, has worked in IT field in Romania and Canada. Specializing in
databases, PL/SQL, Oracle, Warehousing, Business Intelligence, Artificial Intel-
ligence (Machine Learning, Artificial Neural Networks, Natural Language Pro-
cessing), he lived and worked for 11 years in Canada. He is currently working at
Computer Science Research Institute in Bucharest - ICI - as a research scientist
and is involved in Artificial Intelligence and NLP projects.

Simona -Nicoleta VOICU has graduated the „Alexandru Ioan Cuza” University,
Iași, Faculty of Philosophy and Social - Political Sciences, Specialization Com-
munication and Public Relations, with a master's degree in Public Relations and
Advertising. She has over 7 years of experience in Communication and Social
Media, being involved in various projects in the central administration, but also
in the private sector. Since 2017 he carries out the activity within the National
Institute for Research - Development in Informatics - ICI Bucharest, and lately

she undertakes research activities within the Communication, Digital Applications and Systems
Department, Communication Infrastructures Service.

