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Considering the dynamics of the economic environment and the amount of data generated every 

second, the decision-making process is changing and becomes data driven, highly influencing 

the business strategies setup in order to keep the competitive advantage. However, without 

technology, data analysis would not be feasible, reason why machine learning is seen as a 

disruptive innovation for businesses, especially due to its capacity to convert data into action-

able outcomes. Though, for a high-quality machine learning model result, algorithm selection 

and hyperparameters optimization play vital roles, hence became high-interest topics in the 

field. To achieve this, various automatic selection methods have been proposed and the aim of 

this paper is to compare two of them – GridSearch and RandomizedSearch - and assess their 

impact on the model accuracy by comparing with the results obtained when default hyperpa-

rameters were applied. 
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Introduction 

Machine learning has a wide applicability 

in the financial field, being able to support and 

improve fraud prevention, credit assessment, 

risk management, product customization and 

not only. The adoption and implementation of 

these techniques have proven to increase effi-

ciency by faster performing routine opera-

tions, enhance credit assessment and risk min-

imization by establishing the credit worthi-

ness of a customer and predict potential future 

behavior based on his financial history, im-

prove customer relationship and increase re-

tention by offering products tailored to the 

customer’s needs, and offer better mecha-

nisms for fraud detections thru pattern recog-

nition [1]. Despite the potential and predicted 

benefits of these technologies, a survey which 

targeted data professionals around the worlds 

outlined that only 45% of the companies were 

already using Machine Learning, while 21% 

said their companies were still exploring the 

technology [2]. Most probably, the main rea-

son for the low adoption rates are the costs im-

plied, the difficulty to justify the investments 

and assess the return of investment, but also 

due to the overall risk of failure for projects to 

implement emerging technologies, which is 

higher than in case of traditional technology 

projects [3]. 

One of the key questions in the financial area 

is if a customer will meet his obligations to the 

bank, problem which can be analyzed and 

solved thru classification algorithms, by pre-

dicting his potential behavior based on histor-

ical records and financial indicators. For this 

purpose, various machine learning algorithms, 

such as Linear Regression, K-Nearest Neigh-

bor, Decision Trees, Random Forest, 

XGBoost or Neural Networks, were proposed 

and applied over time, outperforming the tra-

ditional statistical methods [4]. The software 

packages for machine learning available on 

the market have pre-defined libraries to per-

form predictions which can obtain good result 

with the default parameters, however, the key 

questions to answer when building a model is 

what algorithm to choose and how to optimize 

it for better results and a higher accuracy. 

A Machine Learning model has hyperparam-

eters which can take various values to custom-

ize the model architecture and control its 

learning process on a specific dataset, playing 

an important role in the accuracy of the output. 

Although the impact of the hyperparameter 

values is known, the challenge comes with 

setting up the best combination in order to 

reach the best performance of a model on a 

given dataset. 

The hyperparameter tuning is not a new topic, 

1 
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but dates back in the 90s ( [5], [6], [7]), and 

since then, it was recognized that different 

combinations of hyperparameters need to be 

tailored to the dataset for better results [6]. 

Hyperparameter optimization has several im-

portant use cases, worth mentioning being the 

following ones [8]: 

• Considerably reduces the human effort to 

identify the best combination of hyperpa-

rameters for the best performance; 

• Improves the performance of the algo-

rithm, by customizing it to the given da-

taset; 

• Improves the reproducibility and facili-

tates comparison between the models. 

As the Machine Learning usage in companies 

is increasing, hyperparameter optimization 

plays a bigger role there with a commercial 

substantial usage, though there are various 

challenges faced in real-life problems [8]: 

• For large models or datasets, the functions 

evaluation can be very expensive; 

• The complexity of the configurations and 

the high-dimensional space of hyperpa-

rameter’s values makes it difficult to de-

cide which are the one which should be 

optimized and within which ranges; 

• No straightforward way of optimization 

for generalized performance. 

 

2 Hyperparameters Tuning 

One of the biggest challenges in the Machine 

Learning field is model selection and config-

uration, given the wide range of possibilities 

which are applicable. Moreover, the unavaila-

bility of a mapping between machine learning 

algorithms and problems to solve makes it 

even more difficult, reason why controlled ex-

periments are required to assess what works 

best for a given dataset.  

A Machine Learning algorithm have 2 types 

of variables: hyperparameters and parameters. 

If model parameters represent properties of 

the training data learnt by the model during 

the training process, required for making pre-

dictions, model hyperparameters dictate the 

behavior of the model during the training time 

and are configured before model training even 

begins [9].  

Given a supervised machine learning problem 

such as predicting if a customer will pay his 

credit or not, a researcher may build a model 

in a manual and iterative way: first selects one 

or more algorithm either based on experience, 

trial-and-error or based on the literature rec-

ommendations, second, determines the values 

of the hyperparameters, followed by the train-

ing, testing and assessment of the models. If 

the model does not provide satisfactory re-

sults, the researcher can manually adjust the 

hyperparameters and repeat the training and 

testing steps until achieving the expected re-

sults. Even though this task can be hardly 

achieved manually, thru exploring various 

combinations and comparing the output, there 

are techniques which can support this task in 

an automated manner, and this is referred in 

the domain literature as hyperparameter tun-

ing or optimization. There are libraries in Py-

thon which can be called to perform such a 

task and they result in a single set of well-per-

forming hyperparameters which can be used 

for the model configuration [8]. 

There are various techniques which can 

achieve this task, the most basic ones being 

Grid Search and Random Search, while more 

advanced techniques such as Bayesian Opti-

mization and Evolutionary Optimization are 

also available. This paper focuses on the Grid 

Search and Random Search techniques and 

aims to assess their impact on classification 

algorithms, by comparing the outputs when 

default hyperparameters are considered with 

the ones obtained after hyperparameters tun-

ing is performed. 

Grid search is a basic hyperparameter tuning 

method which builds models for the cartesian 

product of the values provided, evaluates 

them and selects the architecture which results 

in the best performance. Although this method 

is used for automatic tuning, the efficiency of 

the algorithm rapidly decreases when the 

range of hyperparameters being tuned in-

creases, resulting in expensive processing 

costs.  

Random search, initially presented by Berg-

stra and Bengio in 2012 [10], behaves in a 

similar manner as Grid search, assessing the 

models with different combinations of values, 

but instead of performing an exhaustive 
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search, it rather requires a statistical distribu-

tion for each hyperparameter which are ran-

domly sampled. Comparing with Grid Search, 

this method is more efficient in a high-dimen-

sional space as not all hyperparameters are 

equally important to optimize [11]. 

Grid Search performs well for combinations 

that are known to perform well, while Ran-

dom Search helps to discover hyperparame-

ters combinations that are not intuitive. The 

later is known to be faster than the first one as 

it does not test the full range of possibilities 

and it does also reduce the chances of model 

overfitting to the training data [10].  

Considering that the identification of the right 

hyper-parameters is very important in the suc-

cess of a model (average change being of 46% 

[12]), the purpose of this paper is to assess the 

results of 6 widely used algorithms when 

default hyperparameters are applied and iden-

tify ways to improve the outcome by tuning 

the hyperparameters. 

 

3 Experimental results 

In this paper we will apply the Grid Search 

and Random Search techniques for hyper-pa-

rameters tuning on the top machine learning 

algorithms which are used for classification 

problems. The classification algorithms con-

sidered are Logistic Regression, K Nearest 

Neighbours, Decision Trees, Random Forest, 

Neural Network and XGBoost. 

The dataset used for this research was posted 

by I-Cheng Yeh in UCI Machine Learning 

Data repository [13], and contains 30,000 ob-

servations and 25 columns (one identifier, 23 

dependent variable and a dependent variable), 

described in Table 1.  

 

Table 1. Dataset description 

Attribute Description Type 

ID Unique identifier of the client 
Categorical 

(Nominal) 

LIMIT_BAL 

Amount of the given credit (NT dollar): it includes both 

the individual consumer credit and his/her family (sup-

plementary) credit. 

Numeric 

SEX Genger (1=male; 2=female) Binary 

EDUCATION 

Education  

(1= graduate school; 2 = university; 3=high school; 

4=others; 5=unknown) 

Categorical 

MARRIAGE Marital status (1=married; 2=single; 3=other) Categorical 

AGE Age Numeric 

PAY_1 

The repayment status in September 2005 ( -1 = pay 

duly; 1 = payment delay for one month; 2 = payment 

delay for two months; . . .; 8 = payment delay for eight 

months; 9 = payment delay for nine months and above.) 

Categorical 

PAY_2 The repayment status in August 2005 Categorical 

PAY_3 The repayment status in July 2005 Categorical 

PAY_4 The repayment status in June 2005 Categorical 

PAY_5 The repayment status in May 2005 Categorical 

PAY_6 The repayment status in April 2005 Categorical 

BILL_AMT1 Amount of bill statement in September, 2005 Continuous 

BILL_AMT2 Amount of bill statement in August, 2005 Continuous 

BILL_AMT3 Amount of bill statement in July, 2005 Continuous 

BILL_AMT4 Amount of bill statement in June, 2005 Continuous 

BILL_AMT5 Amount of bill statement in May, 2005 Continuous 

BILL_AMT6 Amount of bill statement in April, 2005 Continuous 
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PAY_AMT1 Amount paid in September, 2005 Continuous 

PAY_AMT2 Amount paid in August, 2005 Continuous 

PAY_AMT3 Amount paid in July, 2005 Continuous 

PAY_AMT4 Amount paid in June, 2005 Continuous 

PAY_AMT5 Amount paid in May, 2005 Continuous 

PAY_AMT6 Amount paid in April, 2005 Continuous 

default.payment. 

next.month 

Will pay next month?  

(1= yes; 0= no) 

Binary (Cate-

gorical) 

 

Before running the algorithms, the dataset was 

split into a training set and a test set with 

traint_test_split function from the Python 

sklearn library [14] and it resulted in two da-

tasets: a training one with 20 100 observa-

tions, representing 67% of the total number, 

and a testing one with 9 900, representing 33% 

of the initial dataset. 

All the steps were performed in Phython, lev-

eraging the set of libraries and functions avail-

able [14]. 

 

2.1. Logistic Regression 

Logistic Regression, a type of linear regres-

sion, is a supervised learning classification 

method used to predict the probability of a tar-

get variable. The dependent variables can only 

result in two classes, meaning it is binary in 

nature [15]. 

For assessing the impact of the Hyperparame-

ter optimization, the algorithm was initially 

running with the default hyperparameters of 

the LogisticRegression function from skleran 

library in Python [14]. After that, the 

GridSearch and RandomizedSerach functions 

were called to identify the optimal combina-

tion of hyperparameters and 2 more runs were 

performed. The confusion matrixes for the 3 

are presented in Figure 1, while the optimized 

hyperparameters are presented in Table 2. 

 

 
Fig. 1. Confusion Matrixes for Logistic Regression 

 

Table 2 Optimal hyperparameters and accuracies for Logistic Regression algorithms 

 Hyperparameters Accuracy 

Default 
{C=1.0, solver=‘lbfgs’¸ random_state=None, max_iter=100, 

penalty=‘l2’} 
81.66% 

Grid Search 
{C=0.5, solver=‘liblinear’, random_state= 0¸max_iter=100, 

‘penalty’: ‘l1’}  
81.68% 

Randomized 

Search 

{C=0.25, solver=‘sag’, random_state=0, max_iter=100, pen-

alty=‘l2’} 
81.68% 

 

A minor improvement was observed between 

the default version and the optimized ones, but 

when it comes to the hyperparameter combi-

nations obtained thru the tunning methods, the 
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two obtained very similar results, the only dif-

ference being the categorization: the 

GridSearch hyperparameters correctly identi-

fied more True Negatives than the Random-

izedSearch pair. 

 

2.2. K Nearest Neighbor 

K Nearest – Neighbor is a nonparametric 

classifier which estimated the probability of a 

data point to pertain to a group, based on the 

distance between the two [16]. It learns from 

the similarities between classes and once a 

new record is added to the model, it compares 

it with the nearest neighbors and adds it to the 

most similar class. 

For assessing its accuracy, the algorithm was 

initially running with the default hyperparam-

eters of the KNeighborsClassifier function 

from sklearn library in Python [14], followed 

by two more runs based on the optimized 

combination of hyperparameters obtained 

with Grid Search and Random Search. The 

confusion Matrixes of the 3 models are pre-

sented in Figure 2, while the accuracies and 

the optimal parameters are presented in Table 

3.

 

 
Fig. 2. Confusion Matrixes for K Nearest Neighbor 

 

Table 3. Optimal hyperparameters and accuracies for K Nearest Neighbor algorithms 

 Hyperparameters Accuracy 

Default {metric=‘minkowski’, n_neighbors=5, weights=‘uniform’} 79.11% 

Grid Search {metric=’euclidean’, n_neighbors=25, ‘weights’: ‘distance’} 81.28% 

Random-

ized Search 
{‘metric’: ‘minkowski’, n_neighbors=29} 81.33% 

 

If for the default parameters, the accuracy was 

of 79.11%, we observe an increase in accuracy 

when applying the optimized parameters: 

based on the Grid Search combination of hy-

perparameters, the accuracy obtained was 

81.28%, while for the Randomized Search 

one, the accuracy was even higher, of 81.33%.  

 

2.3. Decision Trees 

Decision Trees is a non-parametric super-

vised machine learning algorithm where the 

datapoints are continuously split based on dif-

ferent criteria; the branches represent 

combination of features which lead to the re-

sulting classes (leaf nodes) [17].  

In order to assess the impact of the Hyperpa-

rameter optimization, the DecisionTreeClas-

sifier from sklearn [14] was run with the de-

fault values, while for the next two runs, the 

same function was applied, but with the opti-

mal combination obtained thru the Grid and 

Randomized methods. The output is presented 

in Figure 3, while the accuracies and obtained 

combinations of hyperparameters are capture 

in Table 4. 
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Fig. 3. Confusion Matrixes for Decision Trees 

 

Table 4. Optimal hyperparameters and accuracies for Decision Trees algorithms 

 Hyperparameters Accuracy 

Default 
{criterion=‘gini’, splitter=‘best’, max_depth=None, min_sam-

ples_split=2, max_features=None} 
73.09% 

Grid Search {criterion=‘entropy’, max_features= ‘log2’, splitter= ‘best’} 73.20% 

Random-

ized Search 

{criterion=‘entropy’, splitter= ‘best’, min_samples_split= 12, 

max_depth= 2} 
82.62% 

 

If the Grid Search hyperparameter combina-

tion did not improve considerably the output, 

the results obtained with Randomize Search 

brought an improvement of ~9.5pp compared 

to previously obtained results. In this case, the 

later optimization method had a considerable 

impact on the accuracy of the model, increas-

ing the number of True Negative identified 

cases by more than 1 000.  

 

2.4. Random forest 

Random forest is a widely used technique for 

classification problems which was initially 

proposed by Breiman in 2001 [18]. It is an en-

semble classifier based on bootstrap followed 

by aggregation which uses a combination of 

decision trees trained in parallel for several 

times and its output is built upon the majority 

decisions of the trees. For our research, we 

used the RandomForestClassifier from 

sklearn [14] and the output of the three runs 

are presented in Figure 4, while the hyperpa-

rameter’s values are consolidated in Table 5.

 

 
Fig. 4. Confusion Matrixes for Random Forest 
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Table 5. Optimal hyperparameters and accuracies for Random Forest algorithms 

 Hyperparameters Accuracy 

Default {n_estimators= 100, max_depth=None} 80.63% 

Grid Search {n_estimators= 40, max_depth=5} 81.68% 

Randomized 

Search 
{n_estimators= 410, max_depth=7} 82.59% 

 

The accuracies from Table 5 prove that better 

combinations than the defaults can be applied 

to improve the models. Based on the combi-

nation obtained thru Grid Search, the accuracy 

of the model increased by almost 1pp, while 

thru the pair obtained thru Random-

izedSearch, the accuracy was higher with al-

most 2pp. Though, the second combination 

better predicted the number of True Nega-

tives, meaning that the algorithm correctly 

identified the cases when a customer did not 

actually pay his debts. In such a case, getting 

an accurate prediction for the True Negative 

would minimize the risk of loss. 

 

2.5. Neural Network 

Neural Networks or Artificial Neural Net-

works is a learning system inspired by human 

biology and the way the neurons of the human 

brain function together. It uses a network 

function to understand and translate the input 

into the desired output [19] and proved to per-

form well in identifying complex patterns and 

make predictions for new records fed to the 

mode( [20], [4], [21]). For the current re-

search, the neural_network from sklearn was 

used in Phython [14] and the results of the 

analysis are summarized in Figure 5, present-

ing the confusion matrixes obtained for the 

three runs, and Table 6, which summarizes 

the hyperparameters used.

 

 
Fig. 5. Confusion Matrixes for Neural Network – MLP 

 

Table 6. Optimal hyperparameters and accuracies for Neural Network - MLP algorithms 

 Hyperparameters Accuracy 

Default 
{activation= ‘relu’, hidden_layer_sizes= ‘100’, 

solver=‘adam’} 
82.08% 

Grid Search 
{activation= ‘tanh’, hidden_layer_sizes= (20, 2), 

solver=‘adam’} 
82.28% 

Randomized 

Search 
{activation= ‘relu’} 82.32% 

 

As presented in Table 6, with the default pa-

rameters, the algorithm obtained an accuracy 

of 82.08%. For the optimized algorithms 

based on Grid Search and Random Search, we 

noticed a slightly increased accuracy, of 

82.28% and 82.32% from 82.08%. 

 

2.6. XGBoost 

XGBoost stands for extreme gradient boost-

ing and is an implementation of gradient 
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boosted decision trees designed for speed and 

performance, introduced in 2016 by Tianqi 

Chen [22]. This method scales beyond billions 

of examples using less resources than the ex-

isting systems, focusing on computational 

speed and model performance. For the current 

paper, we used the xgboost library in Phyton 

[23]. Figure 6 highlights the confusion ma-

trixes obtained for this algorithm, while Table 

7 presents the pairs of hyperparameters ap-

plied.

 

 
Fig. 6. Confusion Matrixes for XGBoost 

 

Table 7. Optimal hyperparameters and accuracies for XGBoost algorithms 

 Hyperparameters Accuracy 

Default 
{booster= ‘gbtree’, n_estimators= ‘100’, learning_rate= ‘0.1’, 

gamma= 0} 
82.67% 

Grid Search {booster=‘gbtree’, n_estimators= 10} 82.68% 

Randomized 

Search 

{booster=‘gbtree’¸n_estimators= 380, learning_rate= 0.2, 

gamma= 15} 
82.73% 

 

This algorithm obtained a good accuracy even 

with the default parameters, proving it is an 

optimized library. More than that, the time re-

quired to perform the processing was consid-

erably lower than the one required for other 

algorithms. When it comes to the 

hyperparameter tuning, the accuracy slightly 

enhanced based on the combinations obtained 

with Grid and Random Search, but the accu-

racy obtained  

All the results of the current analysis are con-

solidated in Table 8.

 

Table 8. Consolidated results 

Algorithm 

Accuracy 

(default) 

Accuracy 

(GS) 

Delta 

GS vs Default 

Accuracy 

(RS) 

Delta 

RS vs Default 

Logistic Regres-

sion 
81.66% 81.68% 0.02pp 81.68% 0.02pp 

K Nearest 

Neighbor 
79.11% 81.28% 2.17pp 81.33% 2.22pp 

Decision Trees 73.09% 73.20% 0.11pp 82.62% 9.53pp 

Random Forest 80.63% 81.68% 1.05pp 82.59% 1.96pp 

Neural Network 82.08% 82.28% 0.2pp 82.32% 0.24pp 

XGBoost 82.67% 82.68% 0.01pp 82.73% 0.06pp 

 

For all the analyzed algorithms we noticed im-

provements when running the algorithm with 

the optimized combination of 

hyperparameters, however, the increase is not 

noticeable in most of the cases. The only three 

algorithms where the accuracy improved by 
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more than 1 percentual point are K Nearest 

Neighbor (vs GS: 2.17pp, vs RS: 2.22pp), De-

cision Trees, where the optimization revealed 

a more effective parameter combination, in-

creasing the accuracy by 9.53 pp when Ran-

domizedSearch hyperparameters were used, 

and Random forest, where the accuracy in-

crease by 1.96 pp with Randomized Search 

hyperparameters. 

Although it was not the purpose of the current 

study, another conclusion we can draw is that 

XGboost outperformed the other algorithms 

for the given dataset, even with default param-

eters. 

To conclude, even though these methods can 

improve the accuracy of the models, we ob-

served an impact on the run time, which, in 

most of the cases considerably increased. 

These methods require high computational 

power to be time efficient. 

 

4 Conclusions 

Machine learning has a wide variety of appli-

cations in the banking area and the institutions 

can highly benefit from it, but due the novelty 

and also the cost of their implementation, they 

can be reluctant to them, and prefer instead the 

traditional methods which can also provide 

traceable outcomes. In order to increase the 

adoption, proving its high potential and the ac-

curacy of the outcomes is very important. For 

high-quality results, model selection and hy-

perparameter tuning play vital roles and the 

current paper focuses on the assessment of 

two basic techniques used for hyperparameter 

tuning: Grid Search and Randomized Search. 

For this analysis, 6 machine learning algo-

rithms were considered which were run with 

default hyperparameters, but also with the op-

timized pairs resulted from the two methods.  

During the first run (based on default hyperpa-

rameters), we obtained the highest accuracies 

for XGBoost (82.67%) and Neural Networks 

(82.08%), the first proving to be very efficient 

from a run time perspective, as stated by 

Tianqi Chen, who actually proposed the 

method [22]. After applying the Grid Search 

for all the algorithms, the accuracies in-

creased, but the delta was minimal in most of 

the cases. The only algorithms where the 

accuracy increased by more than one percen-

tual point were K-Nearest Neighbor (2.17pp 

increase) and Random Forest, where a delta of 

1.05 pp was observed. Based on the Random-

ized Search method, the results were similar, 

the accuracy being noticeable only in three 

cases: for Decision Trees, the optimized hy-

perparameter pair improved the accuracy by 

9.53 percentual points, for K-Nearest Neigh-

bor, it improved by 2.22pp, while for Random 

Forest the increase was of 1.96 pp. The delta 

for the remaining three algorithms was below 

0.25pp. 

In conclusion, these basic hyperparameter 

tuning methods have the potential to increase 

the accuracy of a model, but in the current 

case study, the delta was not noticeable. 

Though, Random Search gave slightly better 

results than Grid Search, in line with what 

Bergstra and Bengio published in 2012 [10]. 

For future studies, we will take a deeper look 

into the hyperparameters of the algorithms 

which are highly impacting the accuracy of 

the model and we will investigate other tuning 

methods in order to identify one which outper-

forms the ones already studied.  
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