
64 Informatica Economică vol. 25, no. 2/2021

Basic Hyperparameters Tuning Methods for Classification Algorithms

Claudia ANTAL-VAIDA

The Bucharest University of Economic Studies, Bucharest, Romania

claudia_antal@ymail.com

Considering the dynamics of the economic environment and the amount of data generated every

second, the decision-making process is changing and becomes data driven, highly influencing

the business strategies setup in order to keep the competitive advantage. However, without

technology, data analysis would not be feasible, reason why machine learning is seen as a

disruptive innovation for businesses, especially due to its capacity to convert data into action-

able outcomes. Though, for a high-quality machine learning model result, algorithm selection

and hyperparameters optimization play vital roles, hence became high-interest topics in the

field. To achieve this, various automatic selection methods have been proposed and the aim of

this paper is to compare two of them – GridSearch and RandomizedSearch - and assess their

impact on the model accuracy by comparing with the results obtained when default hyperpa-

rameters were applied.

Keywords: Hyperparameters, Tuning, GridSearch, RandomizedSearch, Classification

DOI: 10.24818/issn14531305/25.2.2021.06

Introduction

Machine learning has a wide applicability

in the financial field, being able to support and

improve fraud prevention, credit assessment,

risk management, product customization and

not only. The adoption and implementation of

these techniques have proven to increase effi-

ciency by faster performing routine opera-

tions, enhance credit assessment and risk min-

imization by establishing the credit worthi-

ness of a customer and predict potential future

behavior based on his financial history, im-

prove customer relationship and increase re-

tention by offering products tailored to the

customer’s needs, and offer better mecha-

nisms for fraud detections thru pattern recog-

nition [1]. Despite the potential and predicted

benefits of these technologies, a survey which

targeted data professionals around the worlds

outlined that only 45% of the companies were

already using Machine Learning, while 21%

said their companies were still exploring the

technology [2]. Most probably, the main rea-

son for the low adoption rates are the costs im-

plied, the difficulty to justify the investments

and assess the return of investment, but also

due to the overall risk of failure for projects to

implement emerging technologies, which is

higher than in case of traditional technology

projects [3].

One of the key questions in the financial area

is if a customer will meet his obligations to the

bank, problem which can be analyzed and

solved thru classification algorithms, by pre-

dicting his potential behavior based on histor-

ical records and financial indicators. For this

purpose, various machine learning algorithms,

such as Linear Regression, K-Nearest Neigh-

bor, Decision Trees, Random Forest,

XGBoost or Neural Networks, were proposed

and applied over time, outperforming the tra-

ditional statistical methods [4]. The software

packages for machine learning available on

the market have pre-defined libraries to per-

form predictions which can obtain good result

with the default parameters, however, the key

questions to answer when building a model is

what algorithm to choose and how to optimize

it for better results and a higher accuracy.

A Machine Learning model has hyperparam-

eters which can take various values to custom-

ize the model architecture and control its

learning process on a specific dataset, playing

an important role in the accuracy of the output.

Although the impact of the hyperparameter

values is known, the challenge comes with

setting up the best combination in order to

reach the best performance of a model on a

given dataset.

The hyperparameter tuning is not a new topic,

1

Informatica Economică vol. 25, no. 2/2021 65

but dates back in the 90s ([5], [6], [7]), and

since then, it was recognized that different

combinations of hyperparameters need to be

tailored to the dataset for better results [6].

Hyperparameter optimization has several im-

portant use cases, worth mentioning being the

following ones [8]:

• Considerably reduces the human effort to

identify the best combination of hyperpa-

rameters for the best performance;

• Improves the performance of the algo-

rithm, by customizing it to the given da-

taset;

• Improves the reproducibility and facili-

tates comparison between the models.

As the Machine Learning usage in companies

is increasing, hyperparameter optimization

plays a bigger role there with a commercial

substantial usage, though there are various

challenges faced in real-life problems [8]:

• For large models or datasets, the functions

evaluation can be very expensive;

• The complexity of the configurations and

the high-dimensional space of hyperpa-

rameter’s values makes it difficult to de-

cide which are the one which should be

optimized and within which ranges;

• No straightforward way of optimization

for generalized performance.

2 Hyperparameters Tuning

One of the biggest challenges in the Machine

Learning field is model selection and config-

uration, given the wide range of possibilities

which are applicable. Moreover, the unavaila-

bility of a mapping between machine learning

algorithms and problems to solve makes it

even more difficult, reason why controlled ex-

periments are required to assess what works

best for a given dataset.

A Machine Learning algorithm have 2 types

of variables: hyperparameters and parameters.

If model parameters represent properties of

the training data learnt by the model during

the training process, required for making pre-

dictions, model hyperparameters dictate the

behavior of the model during the training time

and are configured before model training even

begins [9].

Given a supervised machine learning problem

such as predicting if a customer will pay his

credit or not, a researcher may build a model

in a manual and iterative way: first selects one

or more algorithm either based on experience,

trial-and-error or based on the literature rec-

ommendations, second, determines the values

of the hyperparameters, followed by the train-

ing, testing and assessment of the models. If

the model does not provide satisfactory re-

sults, the researcher can manually adjust the

hyperparameters and repeat the training and

testing steps until achieving the expected re-

sults. Even though this task can be hardly

achieved manually, thru exploring various

combinations and comparing the output, there

are techniques which can support this task in

an automated manner, and this is referred in

the domain literature as hyperparameter tun-

ing or optimization. There are libraries in Py-

thon which can be called to perform such a

task and they result in a single set of well-per-

forming hyperparameters which can be used

for the model configuration [8].

There are various techniques which can

achieve this task, the most basic ones being

Grid Search and Random Search, while more

advanced techniques such as Bayesian Opti-

mization and Evolutionary Optimization are

also available. This paper focuses on the Grid

Search and Random Search techniques and

aims to assess their impact on classification

algorithms, by comparing the outputs when

default hyperparameters are considered with

the ones obtained after hyperparameters tun-

ing is performed.

Grid search is a basic hyperparameter tuning

method which builds models for the cartesian

product of the values provided, evaluates

them and selects the architecture which results

in the best performance. Although this method

is used for automatic tuning, the efficiency of

the algorithm rapidly decreases when the

range of hyperparameters being tuned in-

creases, resulting in expensive processing

costs.

Random search, initially presented by Berg-

stra and Bengio in 2012 [10], behaves in a

similar manner as Grid search, assessing the

models with different combinations of values,

but instead of performing an exhaustive

66 Informatica Economică vol. 25, no. 2/2021

search, it rather requires a statistical distribu-

tion for each hyperparameter which are ran-

domly sampled. Comparing with Grid Search,

this method is more efficient in a high-dimen-

sional space as not all hyperparameters are

equally important to optimize [11].

Grid Search performs well for combinations

that are known to perform well, while Ran-

dom Search helps to discover hyperparame-

ters combinations that are not intuitive. The

later is known to be faster than the first one as

it does not test the full range of possibilities

and it does also reduce the chances of model

overfitting to the training data [10].

Considering that the identification of the right

hyper-parameters is very important in the suc-

cess of a model (average change being of 46%

[12]), the purpose of this paper is to assess the

results of 6 widely used algorithms when

default hyperparameters are applied and iden-

tify ways to improve the outcome by tuning

the hyperparameters.

3 Experimental results

In this paper we will apply the Grid Search

and Random Search techniques for hyper-pa-

rameters tuning on the top machine learning

algorithms which are used for classification

problems. The classification algorithms con-

sidered are Logistic Regression, K Nearest

Neighbours, Decision Trees, Random Forest,

Neural Network and XGBoost.

The dataset used for this research was posted

by I-Cheng Yeh in UCI Machine Learning

Data repository [13], and contains 30,000 ob-

servations and 25 columns (one identifier, 23

dependent variable and a dependent variable),

described in Table 1.

Table 1. Dataset description

Attribute Description Type

ID Unique identifier of the client
Categorical

(Nominal)

LIMIT_BAL

Amount of the given credit (NT dollar): it includes both

the individual consumer credit and his/her family (sup-

plementary) credit.

Numeric

SEX Genger (1=male; 2=female) Binary

EDUCATION

Education

(1= graduate school; 2 = university; 3=high school;

4=others; 5=unknown)

Categorical

MARRIAGE Marital status (1=married; 2=single; 3=other) Categorical

AGE Age Numeric

PAY_1

The repayment status in September 2005 (-1 = pay

duly; 1 = payment delay for one month; 2 = payment

delay for two months; . . .; 8 = payment delay for eight

months; 9 = payment delay for nine months and above.)

Categorical

PAY_2 The repayment status in August 2005 Categorical

PAY_3 The repayment status in July 2005 Categorical

PAY_4 The repayment status in June 2005 Categorical

PAY_5 The repayment status in May 2005 Categorical

PAY_6 The repayment status in April 2005 Categorical

BILL_AMT1 Amount of bill statement in September, 2005 Continuous

BILL_AMT2 Amount of bill statement in August, 2005 Continuous

BILL_AMT3 Amount of bill statement in July, 2005 Continuous

BILL_AMT4 Amount of bill statement in June, 2005 Continuous

BILL_AMT5 Amount of bill statement in May, 2005 Continuous

BILL_AMT6 Amount of bill statement in April, 2005 Continuous

Informatica Economică vol. 25, no. 2/2021 67

PAY_AMT1 Amount paid in September, 2005 Continuous

PAY_AMT2 Amount paid in August, 2005 Continuous

PAY_AMT3 Amount paid in July, 2005 Continuous

PAY_AMT4 Amount paid in June, 2005 Continuous

PAY_AMT5 Amount paid in May, 2005 Continuous

PAY_AMT6 Amount paid in April, 2005 Continuous

default.payment.

next.month

Will pay next month?

(1= yes; 0= no)

Binary (Cate-

gorical)

Before running the algorithms, the dataset was

split into a training set and a test set with

traint_test_split function from the Python

sklearn library [14] and it resulted in two da-

tasets: a training one with 20 100 observa-

tions, representing 67% of the total number,

and a testing one with 9 900, representing 33%

of the initial dataset.

All the steps were performed in Phython, lev-

eraging the set of libraries and functions avail-

able [14].

2.1. Logistic Regression

Logistic Regression, a type of linear regres-

sion, is a supervised learning classification

method used to predict the probability of a tar-

get variable. The dependent variables can only

result in two classes, meaning it is binary in

nature [15].

For assessing the impact of the Hyperparame-

ter optimization, the algorithm was initially

running with the default hyperparameters of

the LogisticRegression function from skleran

library in Python [14]. After that, the

GridSearch and RandomizedSerach functions

were called to identify the optimal combina-

tion of hyperparameters and 2 more runs were

performed. The confusion matrixes for the 3

are presented in Figure 1, while the optimized

hyperparameters are presented in Table 2.

Fig. 1. Confusion Matrixes for Logistic Regression

Table 2 Optimal hyperparameters and accuracies for Logistic Regression algorithms

 Hyperparameters Accuracy

Default
{C=1.0, solver=‘lbfgs’¸ random_state=None, max_iter=100,

penalty=‘l2’}
81.66%

Grid Search
{C=0.5, solver=‘liblinear’, random_state= 0¸max_iter=100,

‘penalty’: ‘l1’}
81.68%

Randomized

Search

{C=0.25, solver=‘sag’, random_state=0, max_iter=100, pen-

alty=‘l2’}
81.68%

A minor improvement was observed between

the default version and the optimized ones, but

when it comes to the hyperparameter combi-

nations obtained thru the tunning methods, the

68 Informatica Economică vol. 25, no. 2/2021

two obtained very similar results, the only dif-

ference being the categorization: the

GridSearch hyperparameters correctly identi-

fied more True Negatives than the Random-

izedSearch pair.

2.2. K Nearest Neighbor

K Nearest – Neighbor is a nonparametric

classifier which estimated the probability of a

data point to pertain to a group, based on the

distance between the two [16]. It learns from

the similarities between classes and once a

new record is added to the model, it compares

it with the nearest neighbors and adds it to the

most similar class.

For assessing its accuracy, the algorithm was

initially running with the default hyperparam-

eters of the KNeighborsClassifier function

from sklearn library in Python [14], followed

by two more runs based on the optimized

combination of hyperparameters obtained

with Grid Search and Random Search. The

confusion Matrixes of the 3 models are pre-

sented in Figure 2, while the accuracies and

the optimal parameters are presented in Table

3.

Fig. 2. Confusion Matrixes for K Nearest Neighbor

Table 3. Optimal hyperparameters and accuracies for K Nearest Neighbor algorithms

 Hyperparameters Accuracy

Default {metric=‘minkowski’, n_neighbors=5, weights=‘uniform’} 79.11%

Grid Search {metric=’euclidean’, n_neighbors=25, ‘weights’: ‘distance’} 81.28%

Random-

ized Search
{‘metric’: ‘minkowski’, n_neighbors=29} 81.33%

If for the default parameters, the accuracy was

of 79.11%, we observe an increase in accuracy

when applying the optimized parameters:

based on the Grid Search combination of hy-

perparameters, the accuracy obtained was

81.28%, while for the Randomized Search

one, the accuracy was even higher, of 81.33%.

2.3. Decision Trees

Decision Trees is a non-parametric super-

vised machine learning algorithm where the

datapoints are continuously split based on dif-

ferent criteria; the branches represent

combination of features which lead to the re-

sulting classes (leaf nodes) [17].

In order to assess the impact of the Hyperpa-

rameter optimization, the DecisionTreeClas-

sifier from sklearn [14] was run with the de-

fault values, while for the next two runs, the

same function was applied, but with the opti-

mal combination obtained thru the Grid and

Randomized methods. The output is presented

in Figure 3, while the accuracies and obtained

combinations of hyperparameters are capture

in Table 4.

Informatica Economică vol. 25, no. 2/2021 69

Fig. 3. Confusion Matrixes for Decision Trees

Table 4. Optimal hyperparameters and accuracies for Decision Trees algorithms

 Hyperparameters Accuracy

Default
{criterion=‘gini’, splitter=‘best’, max_depth=None, min_sam-

ples_split=2, max_features=None}
73.09%

Grid Search {criterion=‘entropy’, max_features= ‘log2’, splitter= ‘best’} 73.20%

Random-

ized Search

{criterion=‘entropy’, splitter= ‘best’, min_samples_split= 12,

max_depth= 2}
82.62%

If the Grid Search hyperparameter combina-

tion did not improve considerably the output,

the results obtained with Randomize Search

brought an improvement of ~9.5pp compared

to previously obtained results. In this case, the

later optimization method had a considerable

impact on the accuracy of the model, increas-

ing the number of True Negative identified

cases by more than 1 000.

2.4. Random forest

Random forest is a widely used technique for

classification problems which was initially

proposed by Breiman in 2001 [18]. It is an en-

semble classifier based on bootstrap followed

by aggregation which uses a combination of

decision trees trained in parallel for several

times and its output is built upon the majority

decisions of the trees. For our research, we

used the RandomForestClassifier from

sklearn [14] and the output of the three runs

are presented in Figure 4, while the hyperpa-

rameter’s values are consolidated in Table 5.

Fig. 4. Confusion Matrixes for Random Forest

70 Informatica Economică vol. 25, no. 2/2021

Table 5. Optimal hyperparameters and accuracies for Random Forest algorithms

 Hyperparameters Accuracy

Default {n_estimators= 100, max_depth=None} 80.63%

Grid Search {n_estimators= 40, max_depth=5} 81.68%

Randomized

Search
{n_estimators= 410, max_depth=7} 82.59%

The accuracies from Table 5 prove that better

combinations than the defaults can be applied

to improve the models. Based on the combi-

nation obtained thru Grid Search, the accuracy

of the model increased by almost 1pp, while

thru the pair obtained thru Random-

izedSearch, the accuracy was higher with al-

most 2pp. Though, the second combination

better predicted the number of True Nega-

tives, meaning that the algorithm correctly

identified the cases when a customer did not

actually pay his debts. In such a case, getting

an accurate prediction for the True Negative

would minimize the risk of loss.

2.5. Neural Network

Neural Networks or Artificial Neural Net-

works is a learning system inspired by human

biology and the way the neurons of the human

brain function together. It uses a network

function to understand and translate the input

into the desired output [19] and proved to per-

form well in identifying complex patterns and

make predictions for new records fed to the

mode([20], [4], [21]). For the current re-

search, the neural_network from sklearn was

used in Phython [14] and the results of the

analysis are summarized in Figure 5, present-

ing the confusion matrixes obtained for the

three runs, and Table 6, which summarizes

the hyperparameters used.

Fig. 5. Confusion Matrixes for Neural Network – MLP

Table 6. Optimal hyperparameters and accuracies for Neural Network - MLP algorithms

 Hyperparameters Accuracy

Default
{activation= ‘relu’, hidden_layer_sizes= ‘100’,

solver=‘adam’}
82.08%

Grid Search
{activation= ‘tanh’, hidden_layer_sizes= (20, 2),

solver=‘adam’}
82.28%

Randomized

Search
{activation= ‘relu’} 82.32%

As presented in Table 6, with the default pa-

rameters, the algorithm obtained an accuracy

of 82.08%. For the optimized algorithms

based on Grid Search and Random Search, we

noticed a slightly increased accuracy, of

82.28% and 82.32% from 82.08%.

2.6. XGBoost

XGBoost stands for extreme gradient boost-

ing and is an implementation of gradient

Informatica Economică vol. 25, no. 2/2021 71

boosted decision trees designed for speed and

performance, introduced in 2016 by Tianqi

Chen [22]. This method scales beyond billions

of examples using less resources than the ex-

isting systems, focusing on computational

speed and model performance. For the current

paper, we used the xgboost library in Phyton

[23]. Figure 6 highlights the confusion ma-

trixes obtained for this algorithm, while Table

7 presents the pairs of hyperparameters ap-

plied.

Fig. 6. Confusion Matrixes for XGBoost

Table 7. Optimal hyperparameters and accuracies for XGBoost algorithms

 Hyperparameters Accuracy

Default
{booster= ‘gbtree’, n_estimators= ‘100’, learning_rate= ‘0.1’,

gamma= 0}
82.67%

Grid Search {booster=‘gbtree’, n_estimators= 10} 82.68%

Randomized

Search

{booster=‘gbtree’¸n_estimators= 380, learning_rate= 0.2,

gamma= 15}
82.73%

This algorithm obtained a good accuracy even

with the default parameters, proving it is an

optimized library. More than that, the time re-

quired to perform the processing was consid-

erably lower than the one required for other

algorithms. When it comes to the

hyperparameter tuning, the accuracy slightly

enhanced based on the combinations obtained

with Grid and Random Search, but the accu-

racy obtained

All the results of the current analysis are con-

solidated in Table 8.

Table 8. Consolidated results

Algorithm

Accuracy

(default)

Accuracy

(GS)

Delta

GS vs Default

Accuracy

(RS)

Delta

RS vs Default

Logistic Regres-

sion
81.66% 81.68% 0.02pp 81.68% 0.02pp

K Nearest

Neighbor
79.11% 81.28% 2.17pp 81.33% 2.22pp

Decision Trees 73.09% 73.20% 0.11pp 82.62% 9.53pp

Random Forest 80.63% 81.68% 1.05pp 82.59% 1.96pp

Neural Network 82.08% 82.28% 0.2pp 82.32% 0.24pp

XGBoost 82.67% 82.68% 0.01pp 82.73% 0.06pp

For all the analyzed algorithms we noticed im-

provements when running the algorithm with

the optimized combination of

hyperparameters, however, the increase is not

noticeable in most of the cases. The only three

algorithms where the accuracy improved by

72 Informatica Economică vol. 25, no. 2/2021

more than 1 percentual point are K Nearest

Neighbor (vs GS: 2.17pp, vs RS: 2.22pp), De-

cision Trees, where the optimization revealed

a more effective parameter combination, in-

creasing the accuracy by 9.53 pp when Ran-

domizedSearch hyperparameters were used,

and Random forest, where the accuracy in-

crease by 1.96 pp with Randomized Search

hyperparameters.

Although it was not the purpose of the current

study, another conclusion we can draw is that

XGboost outperformed the other algorithms

for the given dataset, even with default param-

eters.

To conclude, even though these methods can

improve the accuracy of the models, we ob-

served an impact on the run time, which, in

most of the cases considerably increased.

These methods require high computational

power to be time efficient.

4 Conclusions

Machine learning has a wide variety of appli-

cations in the banking area and the institutions

can highly benefit from it, but due the novelty

and also the cost of their implementation, they

can be reluctant to them, and prefer instead the

traditional methods which can also provide

traceable outcomes. In order to increase the

adoption, proving its high potential and the ac-

curacy of the outcomes is very important. For

high-quality results, model selection and hy-

perparameter tuning play vital roles and the

current paper focuses on the assessment of

two basic techniques used for hyperparameter

tuning: Grid Search and Randomized Search.

For this analysis, 6 machine learning algo-

rithms were considered which were run with

default hyperparameters, but also with the op-

timized pairs resulted from the two methods.

During the first run (based on default hyperpa-

rameters), we obtained the highest accuracies

for XGBoost (82.67%) and Neural Networks

(82.08%), the first proving to be very efficient

from a run time perspective, as stated by

Tianqi Chen, who actually proposed the

method [22]. After applying the Grid Search

for all the algorithms, the accuracies in-

creased, but the delta was minimal in most of

the cases. The only algorithms where the

accuracy increased by more than one percen-

tual point were K-Nearest Neighbor (2.17pp

increase) and Random Forest, where a delta of

1.05 pp was observed. Based on the Random-

ized Search method, the results were similar,

the accuracy being noticeable only in three

cases: for Decision Trees, the optimized hy-

perparameter pair improved the accuracy by

9.53 percentual points, for K-Nearest Neigh-

bor, it improved by 2.22pp, while for Random

Forest the increase was of 1.96 pp. The delta

for the remaining three algorithms was below

0.25pp.

In conclusion, these basic hyperparameter

tuning methods have the potential to increase

the accuracy of a model, but in the current

case study, the delta was not noticeable.

Though, Random Search gave slightly better

results than Grid Search, in line with what

Bergstra and Bengio published in 2012 [10].

For future studies, we will take a deeper look

into the hyperparameters of the algorithms

which are highly impacting the accuracy of

the model and we will investigate other tuning

methods in order to identify one which outper-

forms the ones already studied.

References

[1] R. Chuprina, "Machine Learning in Fi-

nance: Benefits, Use Cases and Opportu-

nities," SPD Group, 14 January 2020.

[Online]. Available: https://spd.group/ma-

chine-learning/ml-in-finance/#How_Ma-

chine_Learning_in_Fi-

nance_Changes_the_industry_Mod-

ern_Realities_and_Future_Forecasts.

[Accessed 23 April 2021].

[2] B. Hayes, "Machine Learning Adoption

Rates Around the World," Business

Broadway, 1 February 2021. [Online].

Available: https://businessoverbroad-

way.com/2021/02/01/machine-learning-

adoption-rates-around-the-world/. [Ac-

cessed 23 April 2021].

[3] I. Lee and K. Lee, "The Internet of Things

(IoT): Applications, investments, and

challenges for enterprises," Business Ho-

rizons, vol. 58, pp. 431-440, 2015.

[4] S. Lessman, B. Baesens, H.-V. Seow and

L. C. Thomas, "Benchmarking state-of-

Informatica Economică vol. 25, no. 2/2021 73

the-art classification algorithms for credit

scoring: An update of research," European

Journal of Operational Research, 2015.

[5] D. Michie, D. J. Spiegelhalter and C. C.

Taylor, Machine learning, neural and sta-

tistical classification, River, NJ: Ellis Hor-

wood, 1995.

[6] R. D. King, C. Feng and A. Sutherland,

"Statlog: Comparison of Classification

Algorithms on Large Real-World Prob-

lems," Applied Artificial Intelligence an

International Journal, 1995.

[7] R. Kohavi and G. John, "Automatic Pa-

rameter Selection by Minimizing Esti-

mated Error," in Proceedings of the

Twelfth International Conference on Ma-

chine Learning, 1995.

[8] M. Feurer and F. Hutter, "Hyperparameter

Optimization," in Automated Machine

Learning. The Springer Series on Chal-

lenges in Machine Learning., Springer,

Cham, 2019.

[9] A. Zheng, Evaluating Machine Learning

Models - A Beginner's Guide to Key Con-

cepts and Pitfalls, O'Reilly, 2015.

[10] J. Bergstra and Y. Bengio, "Random

search for hyper-parameter optimization,"

Journal of Machine Learning Research,

pp. 281-305, 2012.

[11] J. Bergstra, R. Bardenet, Y. Bengio

and B. Kégl, "Algorithms for Hyper-Pa-

rameter Optimization," in International

Conference on Neural Information Pro-

cessing Systems, 2011.

[12] C. Thornton, F. Hutter, H. Hoos and

K. Leyton-Brown, "Auto WEKA: com-

bined selection and hyperparameters opti-

mization of classification algorithms," in

Proceedings of KDD'13, 2013.

[13] I.-C. Yeh, "UCI Machine Learning

Repository," 2016. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/de-

fault+of+credit+card+clients.

[14] F. Pedregosa, G. Varoquaux, A.

Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R.

Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Per-

rot and E. Duchesnay, "Scikit-learn: Ma-

chine Learning in {P}ython," Journal of

Machine Learning Research, vol. 12, no.

12, pp. 2825-2830, 2011.

[15] "Machine Learning - Logistic Regres-

sion," Tutorials Point, [Online]. Availa-

ble: https://www.tutorialspoint.com/ma-

chine_learning_with_python/ma-

chine_learning_with_python_classifica-

tion_algorithms_logistic_regression.htm.

[16] T. Seidl, "Nearest Neighbor Classifi-

cation," in Encyclopedia of Database Sys-

tems, Springer, 2009.

[17] N. S. Chauhan, "Decision Tree Algo-

rithm, Explained," KDnuggets, [Online].

Available: https://www.kdnug-

gets.com/2020/01/decision-tree-algo-

rithm-explained.html. [Accessed 16 April

2021].

[18] L. Breiman, "Random Forests," Ma-

chine Learning, vol. 45, 2001.

[19] "What is a Neural Network?," Deep

AI, [Online]. Available:

https://deepai.org/machine-learning-glos-

sary-and-terms/neural-network.

[20] A. Keramati and N. Yousefi, "A Pro-

posed Classification of Data Mining Tech-

niques in Credit Scoring," in International

Conference on Industrial Engineering and

Operations Management, Kuala Lumpur,

Malaysia, 2011.

[21] S. Hamori, M. Kawai, T. Kume, Y.

Murakami and C. Watanabe, "Ensemble

Learning or Deep Learning? Application

to Default Risk Analysis," Journal of Risk

and Financial Management, 2018.

[22] T. Chen and C. Guestrin, "XGBoost:

A Scalable Tree Boosting System," in Pro-

ceedings of the 22nd ACM SIGKDD In-

ternational Conference on Knowledge

Discovery and Data Mining, 2016.

[23] "XGBoost," [Online]. Available:

https://xgboost.readthedocs.io/en/lat-

est/index.html.

74 Informatica Economică vol. 25, no. 2/2021

Claudia ANTAL-VAIDA graduated the Faculty of Economic Cybernetics,

Statistics and Informatics at the Bucharest Academy of Economic Studies,

with bachelor’s degree in Cybernetics and a master’s degree in Business Anal-

ysis and Enterprise Performance Control. She is currently a PhD Student at

the same University, mostly interested in business analytics, machine learning

techniques, big data and business performance.

