
Informatica Economică vol. 24, no. 1/2020 75

CBSD – A Suitable Solution for Building a Centralized Educational

Library of Software

Irina-Miruna RADU

 The Bucharest University of Economic Studies, Romania

miruna.radu@outlook.com

The educational system is one of the few systems that have not found until this date a worldwide

accepted solution when it comes to building educational apps. And knowing the importance of

educational systems in developing future generation, further research is important in this field.

This article analyses one possible solution in building a centralized library of educational

pieces that can be reutilized through different applications. The methodology name is compo-

nent-based software development and through this paper, it is investigated the way this can

impact the way educational systems are developed. To achieve this goal different studies are

analyzed to underline the most common advantages and disadvantages of CBSD, which then

are analyzed through the aspects and problems that the current educational system is facing.

Keywords: CBSD, Component-Based Software Development, E-Education

DOI: 10.24818/issn14531305/24.1.2020.07

Introduction

In recent years, technology has evolved

exponentially and influenced the way of liv-

ing. This impact was seen even in domains

that in the past it did not seem possible to in-

troduce it for a clear benefit. No matter if we

talk about the healthcare environment, juridi-

cal field and even educational system they all

felt obliged to keep up with the trend to still

be relevant for the current society. The paper

will focus on the transition from traditional

education to e-education and how the method-

ology of component software development

can help in smoothing this process.

 More and more countries are turning their at-

tention in implementing a digital environment

for education because having an educated so-

ciety that is a “digital native” one can be the

key to a great civilization, one that can help in

growing a community globally. Having a

worldwide process of digitalization can bring

lots of benefits like having the knowledge, ex-

perts and other resources public accessible for

anyone at any time. But to be able to conquer

the full potential of educational software de-

velopers and also the educators need to give

importance to ways in which technology can

help without hurting the process of learning.

In a recent publication [1] that analyzes 126

evaluations of ways in which technology is

used in education, it is shown four important

key results. First one is regarding the fact that

even though access to computer and internet

alone do not improve grades, it can increase

computer proficiency. The second result

shows that educational software that is well

designed to help students acquire skills in

their own passing has shown that it can be use-

ful and has great potential. The third finding

presents the fact that small piece of one-time

action like reminders can be really useful and

impact on various education-related tasks,

sometimes at a lower cost. The last discovery

is the most expected by the educator commu-

nity and shows that online and in-person in-

structions are combined they can work as tra-

ditional in-person only classes. On the other

hand, the study also showed that students in

online-only courses tend to perform worse

than students in in-person-only courses.

Besides all of this, when constructing an e-ed-

ucational tool it is important to have in mind

that for a good blending education the devel-

oper needs to take into consideration different

teaching styles, different curricula and differ-

ent needs that pupils can have because all of

these are particular from region to region, in-

stitution to institution. So, getting to a point

where the educational tool meets the expecta-

tions that the public eye has a lot of effort

should be concentrated into it. On these

grounds, where these cannot be a one man job,

1

Informatica Economică vol. 24, no. 1/2020 76

but instead a community effort it is clear why

it is expected to analyze methodologies that

can transform the dream into reality. The one

that makes the subject of this study is about

introducing the mindset of software reutiliza-

tion in the development of e-education.

So, this paper aims to explore how the com-

munity can benefit from creating a worldwide

library of pieces that can be used and reused

and refined through different needs and ex-

pectations. These components can benefit

from expert knowledge and help in growing

from everyone interested in helping the sys-

tem. For the first part of this paper will try to

analyze synthesis and present what are the

most mentioned advantages and disad-

vantages of component-based software devel-

opment in articles, studies and conference pa-

pers, throughout the years. In the second part,

all the findings will be seen through the eyes

of the building and educational tool. So, the

advantages will be analyzed through the im-

pact they have in developing a collaborative

environment for building educational compo-

nents. The problems of component-based

software development that the analyzed stud-

ies outlined will be reflected throughout the

way they are impacting on e-education.

The study will be an eye-opener towards how

CBSD opportunities and challenges are seen

in the eyes of the specialists as their opinions

emerge from scientific articles and to come to

a conclusion if developing a library of compo-

nents can be an option for helping in increas-

ing popularity of e-education.

2 How CBSD emerged

More than fifty years ago, McIlory [2] pro-

posed to the world of software developers a

new concept that was inspired by the industri-

alization of engineering fields, a concept that

could change the mentality of the community

and could help the process of bringing soft-

ware to the market in a faster rhythm. This

idea is based on commercial component pro-

duction, building a product from little pieces

that can be manufactured anywhere and be

used by different companies into different

projects. This way the methodology of Com-

ponent-Based Software Engineering, also

known as component-based software develop-

ment (CBSD) arisen.

In the modern days, the CBSD methodology

can be easily explained by thinking of it as a

Lego game. There is one big software system

that needs a lot of effort to be built, but this

one can be broken into smaller pieces, just like

Lego parts, that can have a function on their

own and can be used in other systems as well.

Fig. 1. Component-based software development

As shown in Figure 1 usually there are differ-

ent components, little pieces on the market,

that can be chosen to be put together in order

to resolve a more complex need. It at some

point a piece becomes obsolete it should be

easily swapped out with a new one. So all

components that were built keeping in mind

the purpose of reutilization can be later put in

a library and can be used to build different

types of systems, systems that can continually

Informatica Economică vol. 24, no. 1/2020 77

grow and transform through replacing or up-

dating different components. [3]

Therefore, in the component thinking spirit,

the development team starts from the systems’

requirements and tries to cover most of them

with components that already exist on the

market. For the more specific needs of the

product, the developers create the necessary

parts as standalone pieces that respond to cer-

tain purposes and that can be used and reused

over time to build something new. Every little

piece is working on its own and can be reused

with little or no modification. For the success

of this architecture, the parts must be well doc-

umented, with less to no effort to understand,

accessible for deployment, simple to update to

recent versions and painless to replace by

other pieces.

3 More about Components

The specialty literature has a few definitions

when it comes to software components; these

pieces that can be put together to build more

complex applications. One definition presents

software components as being an encapsu-

lated container that is platform free and writ-

ten into a neutral language and that can be ac-

cessible from the outside through an interface

[4]. Microsoft Corporation emphasizes that a

component is a unit ready for packaging, dis-

tribution or delivery that brings services

within encapsulation boundary or data integ-

rity. In another definition [5] a software com-

ponent is seen as a unit that has an interface

following some clear specifications and de-

signed for a certain context, having some

specified dependencies. Moreover, a software

component can be deployed as a standalone

part, independently. To summarize a software

component is a piece with a well-defined in-

terface that is platform free, reusable and en-

capsulated to be ready for distribution and de-

livery independently from other components.

In addition, it is important to remember that a

component is built to solve a need, a certain

scenario of utilization.

The components are built in the idea of reuti-

lization, idea that has a word saying in the way

the architecture and also the development

should be structured and planned. To be able

to bring benefits to this kind of development,

the components should fulfill some require-

ments as mentioned in [6] :

 Standardization – CBSD components

have the data, interface, composition de-

fined to meet a standard component

model

 Independence – a component should not

be linked with other components be par-

ticular needs, instead, they should be able

to be deployed and composed with little

effort. In the case they have particular re-

quests, they should be specified in the in-

terface

 Documentation – to enable the full poten-

tial of components they require to be very

well documented so the developers can

quickly understand if that component can

be useful for their project

 The ability to be easily deployable – a

component has to be self-contained and

must have the behavior of a stand-alone

entity. Usually, a component is developed

in a binary way, with no need for compi-

lation before deployment. If a component

is a service, the deployment is on the ser-

vice provider side.

 Composability – a component must be

able to interact with other pieces and for

this, it must have a public specified inter-

face, with information about its methods

and attributes.

4 Types of Reutilization

As mentioned before, components can be seen

as little boxes formed from code and docu-

mentation. Depending on the access to this in-

formation, components can be developed hav-

ing different types of reutilization in mind [7]

:

White Box Reutilization

White box reutilization means that the devel-

oper gains access to all the parts of the com-

ponent no matter if it is the interface, the doc-

umentation or the code. In case that the com-

ponent requires to be improved with addi-

tional functionalities, it can be easily modified

through inheritance or delegation to solve the

newly appeared needs.

Black Box Reutilization

Informatica Economică vol. 24, no. 1/2020 78

In the case of black box, the developer that

wants to use the component gets access only

to the available interface, not having any kind

of information regarding the way the compo-

nent was implemented. In this situation, the

component must have a clear documentation

of the methods and restrictions necessary.

Glass Box Reutilization

Glass box reutilization is a type of reutiliza-

tion where the user can see both the exterior

and the interior but cannot “touch” the inte-

rior. Even though the developer cannot

change the implementation, he can still have a

better understanding of the solution, making

the interaction with the component clearer.

5 Research Method

For the purpose of this article, the research

method includes different stages: searching

for studies related to CBSD, evaluating their

information, determining which the most en-

countered characteristics are and relating the

findings within the topic of education.

The quantitative approach was chosen to com-

plete the purpose of this paper. Multiple re-

search papers, 10 papers for the advantages

and 7 for the challenges, where studied to pre-

sent a closer to reality overview on the impact

CBSD has on software development. The con-

clusion on the suitability of using this meth-

odology for creating a centralized library of

pieces that can be used for helping the educa-

tional system in building applications that can

be relevant in the global community is drawn

after analyzing the discoveries from the point

of view of the needs of education.

 Paper selection

In the first stage, databases like Google

Scholar, Science Direct and others were

searched for significant studies. For this selec-

tion were chosen publications from 2010 up to

now, that contained in their title keywords

like:,, component-based software develop-

ment”, “component-based software engineer-

ing“, “advantages” , “challenges”, “disad-

vantages”.

In the next stage, all the abstracts were dis-

sected and the studies that did not respond to

expectations were rejected from the research.

In the last step, every article was deciphered

and only for the ones that were considered rel-

evant, the advantages and disadvantages were

outlined in order to draw attention to the most

important ones.

Process

 After the selection of the articles that were

suitable, the advantages and disadvantages

discussed were extracted. The ones that were

most present through the studies are the ones

that will be present in the paper. They will be

analyzed after investigating some of the prob-

lems of the educational system to discover

how they can bring value to it.

Results

In Table 1 is presented an overview of the

findings. Every advantage and challenge is

shown in relation to the articles in which it

was mentioned. This way it is easier to under-

stand which the most relevant features on

CBSD are as they emerge through the special-

ized literature. For example, it is easier to see

that reusability is a key characteristic that was

mentioned in all the studies that were relevant

for the advantages.

Table 1. Results

Advantages/

Challenges

Category Description

Citation

Advantages

Reusability Reusability refers to being able to use one

component for different types of applica-

tions where it can solve different needs.

[8]; [9];

[10]; [11];

[12]; [13];

[14]; [15];

[16]; [17]

Reduce develop-

ment time

Giving the fact that sometimes the devel-

oper has to choose the component he wants

to use instead of building everything from

[8]; [9];

[10]; [11];

[12]; [13];

Informatica Economică vol. 24, no. 1/2020 79

scratch, lots of studies consider reduce de-

velopment an important advantage.

[14]; [15];

[16]; [17]

Reduce costs Building software from scratch can be re-

ally expensive, but building software from

components that already exist on the market

can sometimes be a cost-efficient solution.

[8]; [10];

[11]; [12];

[13]; [14];

[15]; [16];

[17]

Improve quality Components that are used in a variety of ap-

plications can improve the quality of the

software that uses them.

[8]; [9];

[10]; [11];

[12]; [13];

[14]; [16];

Increase produc-

tivity

Using components that have evolved

through time and different types of applica-

tions and testing can really help transmitting

expert knowledge throughout different sys-

tems.

[8]; [9];

[10]; [11];

[12]; [14];

[15];

Reduce complex-

ity

Having to build an application from smaller

part with simple functionality can transform

the nightmare of building a big application

into something simpler.

[8]; [14];

[15]; [16];

[17]

Maintainability Having to change some functionality in the

application can be easier when you only up-

date or replace certain parts of the applica-

tion and try to figure out how to include the

new needs in a big monolith.

[8]; [13];

[14]; [16]

Easier software

construction

In CBSD, software construction can be strip

down to choosing the right components for

you needs and combining them, like Lego

pieces, in building the solution.

[16]; [17]

Challenges

Finding suitable

components

Finding the right components for the needs

of certain application can be really a pain.

On the market there are lots of components

not well documented or having any en-

dorsement from other users. Sometimes the

developers have to choose a component that

does not completely cover the functionality

they desire. In this case they either complete

the functionality on their own; either they

rethink the functionalities of the software.

[8]; [9];

[11]; [13];

[14]; [15];

[18]

Maintenance Maintaining a component to the higher

standards can really be a challenge. Trying

to keep the component up with the newest

technologies and discoveries from the mar-

ket while keeping it standardize and general

as possible can require a lot of effort from

the development team.

[8]; [9];

[13]; [14];

[15]; [18]

Updates There are few companies that keep updating

components after their selling. In most

cases when a developer wants to update a

component by its own it has to either alter

[8]; [9];

[13]; [14];

[15]; [18]

Informatica Economică vol. 24, no. 1/2020 80

the code, in case it has access to it, either to

replace the component with one that is

more suitable.

Ambiguous Re-

quirements

When building a component, the developer

has to have in mind different restrictions

like: the component must be generic, with

few to none restrictions regarding architec-

ture or environment and has to solve a cer-

tain need that it can repeat itself in numer-

ous software.

[8]; [9];

[11]; [14];

[18]

Interoperability In cases where the component is developed

in a black box matter, where doesn’t have a

good documentation is hard to understand

everything will look in the great scheme of

things.

[8]; [14];

[15]; [18]

Testing Even though the components claim to be

tested as individual parts, testing them after

combined can be a really hard thing to do.

[8]; [11];

[13]; [18]

6 E-education Nowadays

To be able to correlate the gathering regarding

CBSD methodology with the educational sys-

tem, firstly it is needed to find more about it.

In recent years, an excitement around the way

technology can have a significant saying in

education system can be seen. Various coun-

tries are trying to concentrate their power in

this direction. Even throughout all of these ef-

forts there are still pupils that do not have ac-

cess to an internet connection at home and for

whom having a computer for solving home-

work is a faraway dream.

What is education lacking today?

In today’s society it is important to form indi-

viduals that are capable to use technology as a

helper in their day-to-day life. As the genera-

tions are evolving, more and more jobs require

these skills. Modern education requires devel-

oping the next civilization, a digital native

one. To be able to deliver solutions for it, so-

lutions that can emerge rapidly to be relevant

to current society and gain support worldwide

it is relevant knowing the obstacles and needs

of the system now. Even though from region

to region it may seem that there are differ-

ences, the problems different education sys-

tems face can be generalized to similar issues

throughout the globe.

As mentioned in [19] , [20] and [21] the diffi-

culties can be summarized as:

 lack of funds and other resources: intui-

tions worldwide are faced with restricted

budgets that limit their power in changing

the poor infrastructure and equipment and

with less human power than needed that

obstructs the time of innovation to doing

necessary things

 lack of executive power for the teachers:

important decisions regarding the educa-

tional systems changes are not in the

hands of the teachers. Furthermore, when

having innovative ideas teachers need to

go up against a barrier of paperwork and

administrative and management office to

explain the importance of that change

 lack of access to development: some-

times for using certain application the

teachers need trainings on how to use

them, or forming other skills to operate

them. Usually the access to this kind of

resources is hard get and the teachers are

discourage in using the technology in

their lectures

 lack of curricula updates: the curricula is

outdated, not focusing on the creative

thinking skills critical for the digital na-

tive generation, but on the ability to mem-

orize and stock information that it is not

such a critical feature for today’s society

 lack of personalized learning paths: each

individual in our society is different and

Informatica Economică vol. 24, no. 1/2020 81

these difference makes him special.

Therefore, the way he learns, discovers

and transforms the information he re-

ceives from outside is also unique. For

developing a great civilization of individ-

ual human beings that are at their best, the

educational system must be able to offer

personalized learning paths

The impact of technology in education

A recent study [1] has shown the ed-tech can

really go beyond the hype and the marketing

and can really improve the way pupils are

learning when applied correctly. Some of the

findings can be kept in mind when thinking

about building a library of components for de-

veloping more the educational systems.

Firstly, an important key result is the fact that

granting pupils access to computers and inter-

net alone do not improve their grade so this

imply the need to build and give access to ap-

plications specially developed for them. An-

other fact of interest for this research is the

idea that the students respond well to educa-

tional software developed for particular skills

at their own pace. And the most important

finding is that blended learning can work as

well as traditional classes. Moreover, students

in in-person-only courses tend to perform bet-

ter than the students in online classes only.

The ideal educational software

From these findings it can be draw the image

of an ideal education technological environ-

ment. A software that should be cost-efficient,

easy to use, modular per pupils needs, inter-

twined with the in-person assistance, quickly

to modified, little to none effort in updating it

and making it relevant, and that can share ex-

pert knowledge worldwide with ease.

7 CBSD suitable for Building Educational

Software

This paper proposes to analyze the advantages

and challenges that building a library of com-

ponents for educational system can bring on

the way. All of this will be reflected through

the findings discovered previously.

Benefits of CBSD

CBSD can bring lots of benefits when imple-

mented right. As shown in fig. 2 the most re-

iterated advantages through the selected arti-

cles are: reusability, reduction of time to mar-

ket, cost reduction, quality improvement.

Fig. 2. Benefits of CBSD

Increase in reusability

The concept of reusability in CBSD it the

most important characteristic of this method-

ology has. Different component can be assem-

bled and reassembled together to serve differ-

ent purposes. [9] Components are developed

to respond to particular needs, needs that can

repeat themselves throughout different sys-

tems. For example, a login component can be

used by a variety of software platforms. If in

some cases new requirements arise then the

component can be updated.

Reusability
18% Easier software

construction
4%

Increase productivity
13%

Reduce complexity
9%Reduce cost

16%

Reduce time
to market

18%

Maintanability
7%

Improve quality
15%

Benefits of CBSD

Informatica Economică vol. 24, no. 1/2020 82

In the perspective of building educational

software this concept can really be helpful.

Developing a library of components special-

ize on different topics related to education like

different types of exercises, different types of

learning methods, covering different needs of

education can create the basis of access to re-

sources in building the best e-educational sys-

tem for our children, a system that is able to

deliver personalized learning paths based on

pupil needs. These components can be availa-

ble to use worldwide, a fact that can lead to a

unified knowledge of education, with access

to different experts in this field. Every teacher

can access the resources that he thinks fits best

his pupils and can help them to assimilate

skills for life faster.

Reduction of development time

When building an application from assem-

bling components, where most of them al-

ready exist on the market it is clear that the

amount of time necessary during the develop-

ment phase it is less compering with building

a totally new application from scratch with all

the designing, coding and testing involved

into it. In addition, if the components already

exist in other systems and they had already

been validated as efficient, user-friendly, bug-

free it is easier to introduce the application to

public and it can be more positively received

and embraced.

In a continuously changing world, where peo-

ple need different skills from generation to

generation in order to improve quality of life,

it is important that ed-tech keeps up being rel-

evant. Being able to choose from different

components the ones that are relevant for the

current times and being able to be combined

for the wanted application it can really reduce

the time needed for bringing actualize educa-

tion content to the market.

Cost Reduction

Lots of the studies highlighted the fact that

CBSD has an impact on the budget needed for

development. Instead of building software

from zero, the development is based on inte-

grating pre-fabricated software components

[8]. This way less man-power and resources

are needed in developing software, things that

can lead to savings.

Bearing in mind that the main problem of ed-

ucation is the reduced budget, the advantage

that CBSD proposes can be a game changer in

making educational software accessible to

more institutions and pupils worldwide. Hav-

ing a library of components that can be devel-

oped in an open source manner can open the

door to building different types of apps with

reduced cost, applications that can diversify

the market for educational software and

maybe can resolve some certain scenarios of

utilization at a lower cost.

Improvement of quality

The quality of software in the case of CBSD

depends on the quality of its individual com-

ponents [22]. Considering that most of the

components are developed in different teams

and are used by different applications, the

quality of them it is assured and validated by

being on the market for a while and being

tested in different configurations.

An application that has a good quality, it is an

application that can easily gain reputation on

the market and can easily become popular to

the public. In the perspective of an “ed-app”

having a good quality means being renowned

and becoming more and more the first choice

of teachers and pupils. This way the relevant

resources can be easily visible, used world-

wide assuring the software received by the

market is a good one that can be reliable.

Challenges of CBSD

When talking about a solution it is always im-

portant to know from the start what challenges

it can bring along the way. As shown in fig. 3

the most reemerged challenges from the ana-

lyzed studied are regarding finding the right

components, updating and maintaining the

components, ambiguous requirements and

fixing problems.

Informatica Economică vol. 24, no. 1/2020 83

Fig. 3. Challenges of CBSD

Choice of components

When it comes to CBSD, the developer has

the difficult task to identify and choose the

proper components that can cover all the re-

quirements of the product. As the market is

limited, it is hard to find something that will

cover the needs one hundred percent. As [18]

mentioned before, this problem can be over-

powered by picking the right components

from the available pool of choices and trying

to cover most of the requirements that were

negotiated with the stakeholders.

It is clear that when it comes to component re-

usability, the generality, scalability and adapt-

ability are really important and therefore the

investment in it is more demanding.

In developing educational software, this chal-

lenge is even more overwhelming. The devel-

oper should have clearly in mind what he

wants to obtain, what he is ready to bargain

and what he can cover by his own. He also

should have a metric to evaluate the compo-

nents and choose the ones that can really bring

a benefit to ease the process of learning.

Updating & Maintenance

When thinking of CBSD one must have in

mind that while the overall maintenance costs

can be less than a totally new software, the in-

dividual component maintenance price can be

higher since the component must be ready to

face different needs, different environments

and even different types of customers with

different expectations towards quality and

support [14].

Moreover, when it comes to modifying the ap-

plication, the developer either has to update

the components to meet the new requirements;

either has to find replacements for the existing

parts, replacements that can fit the needed

modifications. Sometimes, the components

are developed by externals and the in-house

knowledge is little which can lead to lots of

problems. Also if the components are devel-

oped into a black-box method nothing can be

done to adapt them to the necessities of the ap-

plication.

Looking at this challenge from the perspective

of educational software it is clear that this

should be an important issue to watch out for

because the educational system has little re-

sources to deal with it and on the other side it

is important to keep up with changes to still be

relevant. This challenge can be overcome by

choosing the right components from the start.

 Ambiguous requirements

Managing, defining and refining requirements

are really important actions in every develop-

ment process and even more important in

CBSD methodology. The CBSD components

are developed with the purpose of reutiliza-

tion, which means that they have to be pack-

aged and reused in different types of applica-

tions. Therefore, after the requirements are

collected and analyzed, the best path to a gen-

eralized the component has to be chosen [14].

So to be able to build components for helping

Fixing problems
12%

Interoperability
12%

Finding suitable
components

22%
Ambiguos

Requirements
16%

Updating
19%

Maintenance
19%

Challenges of CBSD

Informatica Economică vol. 24, no. 1/2020 84

the educational software industry a good

amount of resources should be invested in re-

fining the needs and defining proper compo-

nents, components that are based on findings

like blended-learning is better than computer

only learning and how different methods and

paces can really help the learning process.

Fixing problems

When testing an application, the final aim is

to know that the customer needs are covered

without any problems and at an accepted level

of quality. The lack of detail regarding the

source code that appears in the case of exter-

nal components makes tracking errors an ac-

tual problem. Furthermore, if some bugs are

found in components with vendors unwilling

to deliver fixes, the developers have a difficult

time trying different workarounds to find fixes

and sometimes the only solution is to change

the entire component.

In the vision of developing an educational sys-

tem based on components having bugs that

cannot be fixes can really impact the public

eye in a bad way. This challenge can be also

overcome by choosing the right components,

components from trustworthy vendors, com-

ponents that are already used successfully and

components where the developer has access to

the code and can intervene in the case of an

issue.

8 Conclusion
Nowadays the systems that are the base of this

society like healthcare, legal, education, have

to improve and become more relevant in this

world that is in a continuous change, where

technology is evolving at an exponential rate

and where society is facing everyday new

problems.

This paper is trying to concentrate its attention

to the educational system and what problems

he faces today in introducing technology as a

primary aiding tool. The main focus is to cre-

ate a clear view on how the CBSD methodol-

ogy can be used and useful in helping the sys-

tem step up to the public expectations, while

also keeping an eye on the current problems

such as lack of funds and teacher empower-

ment, lack of access to resources, curricula

updates and personalized learning paths. Also,

the newer information on how technology can

be used in improving the students learning

process is kept in mind in this review. To find

out if the idea of having a library of compo-

nents specialized on the needs and require-

ments of the educational systems could be a

feasible solution different characteristic of

CBSD where analyzed. From reducing devel-

opment time to reducing costs, increasing

quality and even increasing reusability, the

advantages of CBSD cannot be overlooked

when it comes to building the future of e-edu-

cation. However, in this study challenges such

as choice of components, difficulty in updat-

ing, maintenance, testing and ambiguous re-

quirements are not omitted as they paint a

clear vision of the real life and the obstacles

that someone has to be considered when

choosing this solution.

This research has managed to lay out the most

important advantages that can be achieved by

overcoming the challenges that derive from

CBSD, both of which have been mentioned in

the specialized literature. Based on this study

one can conclude that CBSD is the right

choice to make in order to improve the devel-

opment of educational software considering

all the problems this system faces and build-

ing a library of educational components with

a strong community behind can be a suitable

solution.

Acknowledgements

Parts of this paper have been presented at the

18th International Conference on Informatics

in Economy (IE 2019), hosted by The Depart-

ment of Economic Informatics and Cybernet-

ics, Faculty of Cybernetics, Statistics and Eco-

nomic Informatics from the Bucharest Uni-

versity of Economic Studies with the Roma-

nian Association for Informatics in Economy

Training Promotion – INFOREC and the Ro-

manian Chapter of the Association for Infor-

mation Systems, Bucharest, 30-31 May, 2019.

This paper was co-financed from the Human

Capital Operational Program 2014-2020, pro-

ject number POCU / 380/6/13/125245 no.

36482 / 23.05.2019 "Excellence in interdisci-

plinary PhD and post-PhD research, career al-

ternatives through entrepreneurial initiative

Informatica Economică vol. 24, no. 1/2020 85

(EXCIA)", coordinator The Bucharest Uni-

versity of Economic Studies”.

References

[1] J.-P. N. America, "Education Technology

Evidence Review," [Online]. Available:

https://www.povertyac-

tionlab.org/sites/default/files/docu-

ments/education-technology-evidence-re-

view.pdf. [Accessed 29 August 2019].

[2] M. D. McIlroy, "Mass-produced software

components," in Software Engineering

Concepts and Techniques (1968 NATO

Conference on Software Engineering),

New York , Van Nostrand Reinhold, pp

138-155, 1976.

[3] C. Szyperski, Component Software: Be-

yond Object-Oriented Programming

(2nd), Boston, MA, USA: Addison-Wes-

ley Longman Publishing Co., 2002.

[4] M. Goulão, "CBSE: a Quantitative Ap-

proach," in PhD Workshop at ECOOP,

Darmstadt, Germany, July, 2003.

[5] H. Washizaki, H. Yamamoto and Y. Fuka-

zawa, "A Metrics Suite for Measuring Re-

usability of Software Components," in

Proceedings of the 9th International Sym-

posium on Software Metrics, Sydney,

Australia, September 2003 , pp 211-223.

[6] I. Sommerville, Software Engineering,

10th ed, Scotland: Pearson, 2016.

[7] N. S. Gill, "Reusability Issues in Compo-

nent-based Development," ACM SIG-

SOFT SEN, vol. 28, no. 6, p. 30.

[8] T. Vale, I. Crnkovic, E. S. d. N. Almeida,

P. A. d. M. Silveira, Y. C. Cavalcanti and

S. R. d. L. Meira, "Twenty-eight years of

component-based software engineering,"

Journal of Systems and Software, vol.

111, no. January 2016, pp. 128-148, 2016.

[9] A. I. Khan, N.-u.-. Qayyum and U. A.

Khan, "An Improved Model for Compo-

nent Based Software Development," Jour-

nal of Software Engineering, vol. 2, no. 4,

pp. 138-146, 2012.

[10] T. Wijayasiriwardhane, R. Lai and K.

Kang, " Effort estimation of component-

based software development–a survey,"

IET software, vol. 5, no. 2, p. 216–228,

2011.

[11] N. J. Basha and D. S. A. Moiz, "Com-

ponent Based Software Development: A

State of Art," in IEEE-International Con-

ference On Advances In Engineering, Sci-

ence And Management, 2012.

[12] D. N. A. Jawawi, S. Sabil, R. Mamat,

M. Z. M. Zaki, M. A. S. Talab, R. Mo-

hamad, N. M. Hamdan and K. Kamal, Mo-

bile Robots - Control Architectures, Bio-

Interfacing, Navigation, Multi Robot Mo-

tion Planning and Operator Training -

Chapter A Robotic Wheelchair Compo-

nent-Based, InTechOpen, 2011.

[13] F. L. F. Almeida and C. M. Calistru, "

Assessing Quality Issues in Component

Based Software Development," Interna-

tional Journal of Advanced Research in

Computer Science, vol. 2, no. 2, pp. 212-

218, 2011.

[14] S. Singh, A. Singh, Samson and S.

Singh, "Component Based Software Engi-

neering," International Research Journal

of Engineering and Technology, vol. 3,

no. 5, pp. 448-454, 2016.

[15] T.-T. Pham, X. Défago and Q.-T.

Huynh, "Reliability prediction for compo-

nent-based software systems: Dealing

with concurrent and propagating errors,"

Science of Computer Programming , vol.

97, p. 426–457, January 2015.

[16] P. RANA and R. SINGH, "COMPAR-

ATIVE ANALYSIS OF COHESION

METRICS FOR COMPONENT BASED

SOFTWARE SYSTEM," Journal of The-

oretical and Applied Information Technol-

ogy, vol. 96, no. 14, pp. 4369-4378, 2018.

[17] H. Yin and H. Hansson, "Fighting CPS

Complexity by Component-Based Devel-

opment of Multi-Mode Systems," Designs

, vol. 2, no. 39, pp. 1-22, 2018.

[18] A. I. Khan, M. M. Alam, Noor-ul-

Qayyum and U. A. Khan, "Empirical

Study of an Improved Component Based

Software Development Model using Ex-

pert Opinion Technique," International

Journal of Information Technology and

Computer Science, vol. 08, no. July 2013,

pp. 1-14, 2013.

[19] N. Onofrei, "The verdict of education

Informatica Economică vol. 24, no. 1/2020 86

experts on the Romanian education sys-

tem: nepotism, underfinancing, inade-

quacy," 21 June 2016. [Online]. Availa-

ble: https://adevarul.ro/educatie/sco-

ala/verdictul-expertilor-educatie-sis-

temul-romanesc-invatamant-nepotism-

subfinantare-inadecvare-

1_576955105ab6550cb8299d92/in-

dex.html. [Accessed 4 March 2019].

[20] P. Gupta, "Innovation in Teacher Edu-

cation," International Journal of Recent

Research Aspects, Special Issue Consci-

entious Computing Technologies, pp.

964-966, April 2018.

[21] K. T. Boyes, "Why our education sys-

tem needs to change," 4 September 2018.

[Online]. Available:

http://www.karentuiboyes.com/2018/09/

why-our-education-system-needs-to-

change/. [Accessed 4 March 2019].

[22] P. Banerjee and A. Sarkar, "Quality

Evaluation of Component-Based Soft-

ware: An Empirical Approach," I.J. Intel-

ligent Systems and Applications,, vol. 12,

no. December 2018, pp. 80-91, 2018.

Irina-Miruna RADU has graduated the Faculty of Cybernetics, Statistics and

Economics Informatics in 2018. She holds a bachelor and a master degree in

Economics Informatics and she is enrolled in PhD program. Currently she is

a Java Developer and an Innovation Team member at Metro Systems Roma-

nia. She is interested in JAVA Programming and Business Development.

