
Informatica Economică vol. 23, no. 4/2019  51 

DOI: 10.12948/issn14531305/23.4.2019.05 

Screening the Candidates in IT Field Based on Semantic Web Technologies:  
Automatic Extraction of Technical Competencies from  

Unstructured Resumes 
 

Mihaela-Irina ENĂCHESCU  
Bucharest University of Economic Studies, Bucharest, Romania 

irina.enachescu@csie.ase.ro 
 

While trying to fill in empty positions in a short time frame, struggling to find the best candi-
dates while competing with other recruiters for them, nowadays, HR personnel need to consider 
innovative ways for reaching faster the IT professionals. Manually searching across profes-
sional networks is no longer an option. This study introduces the prototype of a system that 
automatically screens the candidates in the IT field. Its main goal is to provide a valuable sup-
port in the first stage of the personnel selection by decreasing the number of errors that can 
occur when thousands of CVs/profiles are manually filtered to pick candidates for an interview.  
Our proposed system consists in a mobile application that automatically selects online profiles 
from professional websites (like Indeed, LinkedIn, Monster) and ranks them, to finally display 
the eligible candidates for a particular open position to the recruiter. We developed an ontology 
to support the matching between the knowledge in the candidate’s resume and the requirements 
in the job description. While developing the ontology our primary focus was on the skills that 
are encompassed in a resume, as these are the key abilities when searching for the ideal can-
didate. The knowledge a job seeker should possess, respectively a job description requires, is 
divided in the following categories: programming languages, databases, frameworks, inte-
grated development environments, methodologies and operating systems. First part of the im-
plementation, automatically extracting the skills from unstructured resumes, was achieved us-
ing Apache Tika and GATE. 
Keywords: eRecruitment, Human Resource Ontology, Resume Screening, Semantic Web 
 

Introduction 
In an industry field where the demand has 

certainly surpassed the offer, like information 
technology (IT), recruiters need to use all the 
means to reach the candidates with high po-
tential. Wasting time to manually search 
across the candidates’ profiles in professional 
networks increases the risk of losing candi-
dates in behalf of companies that perform an 
automated screening. 
According to [1] the individuals are using 
nowadays the opportunities the internet pro-
vides to introduce themselves and their activ-
ities to a broad wide audience. Given the large 
variety of networking platforms, it is a com-
mon approach for people to share personal 
content on more than one platform, having 
thereby multiple profiles, and even connecting 
them via hyperlinks. 
While trying to fill in empty positions in a 
short time frame, it is clear that the manual 

screening of resumes in one or more profes-
sional websites (like LinkedIn, Indeed etc.) by 
the HR personnel can be considered an ineffi-
cient and prone to error practice. As stated in 
[2], the adoption of eRecruitment is about be-
ing able to attract the right candidate, while 
you are reducing both the hire costs and the 
average time to fill a vacancy. 
[3] suggests that when searching for the indi-
vidual that best fits a job ad, a recommender 
system should cover three different type of 
fits: person-job, person-team and person-or-
ganization. Usually only the first kind of 
matching is addressed through the available 
eRecruitment platforms, the other two being 
mostly evaluated in a face-to-face interview. 
However, while admitting the benefits 
brought by the recommender systems, we 
should bear in mind that we need to avoid 
what Eli Pariser is describing as The Filter 
Bubble [4], referring to how the personalized 

1 



52  Informatica Economică vol. 23, no. 3/2019 

DOI: 10.12948/issn14531305/23.4.2019.05 

search can narrow our worldview. He de-
scribes in [4] a Web based on the relevance 
idea, and draws attention to the fact that while 
we are enjoying an experience especially tai-
lored for us in the Internet, we are being 
shown what the web thinks we want to see, but 
which is not necessarily what we need. Con-
sidering this aspect, we want to propose a sys-
tem that helps the companies to reach as 
quickly as possible the candidates with high 
potential, supporting them to automate the 
screening phase of the selection process. Next 
steps of the selection (in detail review of the 
resume, interview and so on) are still per-
formed by the HR personnel, where they must 
ensure the candidate has the experience de-
scribed in his profile and is fitting into the 
company culture.  
The rest of the paper is organized as follows. 
The next section presents related work in the 
field of eRecruitment for resume screening. 
Section 3 introduces the architecture of a pro-
totype system used to automatically screen the 
candidates in IT, based on the use of Semantic 
Web technologies. In section 4 we describe a 
model for the ontology we developed to rep-
resent the skill-set of the candidate and the job 
offer requirements. Section 5 exposes the 
tools we used in order to automatically extract 
technical competencies from unstructured re-
sumes. Finally, section 6 presents the conclu-
sions of our research and suggest some future 
work steps. 
 
2. Related Work 
The rapid growth of the IT professionals mar-
ket face the recruiters with new challenges. 
They are under pressure to hire quickly quali-
fied candidates, while competing with other 
companies to reach first the skilled profes-
sionals. They cannot afford to miss eligible 
profiles and this is the main reason more and 
more research studies are focused on develop-
ing systems that help the HR employees to ef-
fectively screen across a significant amount of 
resumes. This section describes some of the 
systems that proven good results for shortlist-
ing candidates for an open position.  
In [5] the authors presented an intelligent tool 
for screening candidates’ resumes, named 

EXPERT, that it is based on ontology map-
ping. The proposed system consists of three 
phases: collecting resumes in various formats 
and representing them in ontology documents, 
constructing from the job opening a job crite-
ria ontology (with mandatory and optional re-
quirements) and, finally, performing the map-
ping between the two constructed ontologies 
and selecting the eligible candidates. A simi-
larity function was proposed to compute the 
matching and a threshold can be selected in 
order to adjust the minimum accepted compat-
ibility ratio. The system was tested with about 
500 CVs downloaded from different job por-
tals and obtained high precision and recall 
measures, showing a 90% accuracy. 
The authors of [6] explored a semantic ap-
proach to find and rank experts of research ar-
eas in computer science and engineering field, 
based on the information available about their 
work in web databases. Firstly, they designed 
an ontology and then constructed a knowledge 
base with the ontological representation of the 
academic information available about re-
searchers. Further they built an academic so-
cial network with all the publications related 
to a given topic and the author – co-author re-
lationships that exist for these publications. 
Finally, when searching for experts in a par-
ticular domain they retrieved a ranked list 
based on importance scores. In order to meas-
ure the score, they relied on the previous con-
structed network to determine how many sci-
entific papers the researchers have written as 
first author or co-author, how their contribu-
tions are related to the given topic, and rela-
tionships with other candidates in the net-
work. The authors evaluated the proposed 
model against human judgements and ob-
tained good results. 
Likewise, authors of [7] proposed an approach 
employing semantic technologies. They intro-
duced a levelized taxonomy of skills, follow-
ing an inheritance relationship. Researchers 
made the point that instead of requesting the 
user to provide the weights for the skills, these 
weights can be naturally derived based on the 
level in the hierarchy, if the taxonomy is con-
structed in such a way that each level of a con-
cept matches a level of competence. Their 



Informatica Economică vol. 23, no. 4/2019  53 

DOI: 10.12948/issn14531305/23.4.2019.05 

proposal is still in an early stage, planning to 
define first a methodology to design the lev-
elized taxonomies. 
In [8] is presented a decision support tool, 
named PROSPECT that helps to shortlist the 
qualified candidates for a job posting. The ar-
chitecture of PROSPECT comprises three 
main components: Batch Processor, Query 
Processor and Resume Matcher. The batch 
processor is in fact a nightly job that converts 
the resumes received over the day in plain 
text, extracts the information from them (edu-
cation, work experience and skills together 
with years of experience for each) and saves it 
in a DB2 database, detecting also the dupli-
cates. The query processor receives as input 
the search criteria introduced by the recruiter, 
parses it and translates it into the suitable for-
mat to apply it on the DB2 database. The re-
sults coming from the query processor are sent 
to the resume matcher component that ranks 
the candidates based on their similarity with 
the job description (TF-IDF scoring model in 
Lucene is employed). Pilot tests performed on 
the tool revealed a roughly sped up in the 
screening process up to 20 times, compared to 
the manual approach. 
On the other hand, the authors of [9] proposed 
a reciprocal recommendation algorithm for 
the recruitment field, claiming that both par-

ties of the process (job-seeker and the em-
ployer) should benefit. The paper distin-
guished between explicit preferences – con-
sisting in what it is mentioned in the candi-
dates’ profile and job offer, and implicit pref-
erence – derived based on the previous inter-
action history. Their model implemented next 
main steps: extracting the users’ preference 
from the resumes and job ad (implicit and ex-
plicit preference), calculate the comprehen-
sive similarity between the candidate’s profile 
and the job description and, finally, generate a 
reciprocal top-n recommendation. Evaluation 
of the algorithm showed improved accuracy 
of the recommendation, compared to other ex-
isting reciprocal algorithms. 
 
3. The Prototype for an Automatic Resume 
Screening System 
Unlike traditional recommendation systems, 
such as recommending movies, books or 
products to the users, job recommendation 
problem is slightly different. The main differ-
ence is that for a job posting we usually want 
to find few candidates to proceed with the in-
terview phase, whereas the same movie, book, 
product can be suggested to many users [10]. 
When a candidate is selected for a particular 
job, then he becomes ineligible for other job 
postings.  

 

 
Fig. 1. The architecture of the proposed resume screening system 

 
In order to help recruiters, reach candidates 
faster, and gain a competitive advantage, we 
designed a system meant to automate the 

screening phase of the human resources selec-
tion process. Its goal is to provide a valuable 
support in the first stage of the selection by 



54  Informatica Economică vol. 23, no. 3/2019 

DOI: 10.12948/issn14531305/23.4.2019.05 

decreasing the number of errors that can occur 
when thousands of CVs are manually filtered 
to enter in a detailed analysis or an interview. 
The architecture of the resume screening sys-
tem is presented in Figure 1. 
The screening system is working in the below 
described manner: 

1) We update on a daily basis a resume repos-
itory, extracting data from professional 
websites (like Indeed, LinkedIn, Monster 
etc.). The goal is to have an up-to-date pool 
with candidates, from where we can pick 
the best ranked for each available job. The 
repository should be a triple-store as it is 
meant to store semantic data represented as 
RDF. Based on the comparative analysis 
performed in [11] we can choose one of the 
following considered top triple-stores: Al-
legroGraph RDF Store, GraphDB (former 
OWLIM), MarkLogic, Mulgara, Profium 
Sense, RDF4 (former Sesame), Stardog, 
Apache Jena–TDB or Oracle Database 
12c. 

2) Resumes are collected using a crawler that 
will scan the professional websites in 
searching of candidates’ profiles from the 
IT market. 

3) The information presented in the resumes 
is extracted and transformed using the key 
feature extractor component. This compo-
nent is based on the ontology model (as de-
tailed in Section 4) and creates a RDF from 
the resume, to be stored in the repository. 

4) Companies can upload a job description in 
the mobile application, in any desired for-
mat (.pdf, .txt etc.). 

5) Further, the job offer is passed through a 
text converter that will extract the content 
from the uploaded file. 

6) Then, the job posted by the employers is 
correspondingly represented as a RDF us-
ing the same ontology model. The key fea-
ture extractor is responsible to do mapping 
from the received job info to the RDF rep-
resentation. 

7) A matching query is computed between the 
resumes in the repository and the job offer 
posted by the company, to determine the 
overall similarity and pick the top best can-
didates for the job. 

8) The list with the best ranked candidates 
whose profiles are matching the require-
ments is sent to the mobile application that 
will display to the recruiter the results (link 
to candidates’ profiles in one of the profes-
sional job sites). 

In can be noticed that the designed prototype 
is not providing a bi-directional matching, ra-
ther it is focused merely on helping the com-
panies to quickly reach the candidates. The 
reason behind this choice is the fact that in the 
IT field, due to the significant increase in the 
demand compared to the offer, the companies 
are the ones that are hunting down the candi-
dates. Nowadays, the IT professionals are just 
updating their profiles in the professional net-
works and are passive seekers. They expect to 
be contacted for opportunities suitable for 
their experience, rather than actively search-
ing for a new job. 
 
4 Building the eRecruitment Ontology for 
Computer Science Field 
In order to link the job ads together with the 
job seekers’ profiles we need to ensure that 
they have a uniform representation, to support 
the matching. To achieve this goal we de-
signed an ontology that encloses the main as-
pects when talking about the profile of an IT 
specialist or about a job description targeting 
an IT professional.  
Ontologies allow users to organize the infor-
mation in taxonomies of concepts, together 
with their attributes, and to describe the rela-
tionship between these concepts [6]. The au-
thors of [12] highlight two main reasons for 
using ontologies:  
• to share common understanding of the 

structure of information among people 
and/or software agents. 

• to enable reuse of domain knowledge after 
it exists. 

In the creation of our ontology we started from 
the model proposed in [13] and extended it, 
especially focusing on the skills, as these are 
the key abilities when searching for the ideal 
candidate. The visual representation of the 
proposed ontology is depicted in Figure 2.



Informatica Economică vol. 23, no. 4/2019  55 

DOI: 10.12948/issn14531305/23.4.2019.05 

 
 

 
Fig. 2. The classes’ hierarchy of the proposed ontology (displayed in OWLViz) 

 
The ontology is composed of the following 
entities: Person with subclass Employee, 
Company with subclass Employer, Education, 
Language, WorkExperience, Knowledge and 
JobOffer. Each of these entities has its own 
properties (datatype and object properties). 
Further we will detail the Knowledge entity, 
that consists of technical skills or specific 
competencies a candidate has or a particular 
job offer requires.  
The datatype properties of Knowledge are: 
name and experience (expressed in years). We 
divided the knowledge in the following cate-
gories: ProgrammingLanguage, Integrat-
edDevelopmentEnvironment, OperatingSys-
tem, Framework, Database and Methodology. 
For programming languages we decided to de-
fine the next hierarchy: scripting (like Bash, 
Perl), procedural (like C, Pascal), object ori-
ented (like Java, Kotlin, C++, C#, ObjectiveC 
etc.), and functional (like Scala). For method-
ology we distinguish between waterfall and 
agile. Databases are divided into relational 
and non-relational. For each of these classes 
we defined individuals, in order to enclose all 
the key terms that model the recruitment in the 
computer science field.   
All the entities and their properties, presented 
as a part of the designed ontology, are used to 
represent the data about the candidates, the 

employers and job offers in a RDF format, in 
order to enable searching based on the seman-
tics of their underlying content. 
 
5. Extracting Skills from the Candidate’s 
Resume 
5.1 Technology stack used: GATE, ANNIE, 
JAPE and Apache Tika 
GATE – General Architecture for Text Engi-
neering [14], represents an infrastructure that 
provides necessary tools for developing and 
delivering of software components that pro-
cess human language. GATE was developed 
using Java programming language, starting 
from 1995, by a group of researchers from the 
Department of Computer Science of Sheffield 
University in UK.  
GATE excels in text analysis, regardless of 
the text format and size. From all similar sys-
tems, GATE has by far the biggest and diverse 
users’ community across the globe. GATE is 
open-source and distributed under LGPL li-
cence (Lesser General Public License). 
General understanding regarding GATE can 
refer to one of the following: 
• GATE Developer – an integrated develop-

ment environment for human language 
processing components, together with an 
information extraction system and a com-
prehensive set of plugins   



56  Informatica Economică vol. 23, no. 3/2019 

DOI: 10.12948/issn14531305/23.4.2019.05 

• GATE Cloud – a cloud computing solution 
for hosting large scale text processing ap-
plications 

• GATE Teamware – a web application for 
collaborative annotations, which enables 
users to develop projects that create anno-
tations for a collection of documents, 
providing also facilities even for not 
trained users that can perform the activity 
directly from a web browser  

• GATE Mimir – a search repository used 
for text indexing and retrieval, annota-
tions, ontologies or semantic meta-data 

• GATE Embedded – a framework, an opti-
mised library in order to be included into 
applications, thus giving users access to 
all services provided by GATE Developer 

• an architecture – a high level overview 
about how to build software for language 
processing 

• a process – in order to create robust and 
maintainable services.  

The main objective of GATE is to annotate 
documents with semantics. This process relies 
on a set of concepts, defined below: 
• the document – that will be annotated  
• corpus – is a collection of documents, 

grouped together in order to execute the 
same process across all of them  

• the annotations – created over the docu-
ment 

• annotation types – like “People”, “Loca-
tion”  

• annotation sets – containing groups of an-
notations 

• processing resources – used for docu-
ments manipulation and annotations crea-
tion 

• applications – comprising a flow of pro-
cessing resources, which can be applied 
over a document or corpus. 

GATE can process documents in various for-
mats: TXT, HTML, XML, PDF, Word, etc. 

After processing these documents can be ex-
ported in different formats or stored in a data 
warehouse for further processing. There are 
two types of data warehouses: serial (which 
stores data directly into a directory) or Lucene 
repositories that allow searching applying Lu-
cene indexing algorithm.  
GATE currently supports text analysis in the 
following languages: English, Spanish, Chi-
nese, Arabic, Bulgarian, French, German, 
Hindi, Italian, Romanian, Cebuano, Russian 
and Danish. 
GATE is currently used for numerous text 
processing applications, in areas such as: 
voice of the customer (sentiment analysis 
from written reviews or verbal expressed 
feedback), cancer research, pharmaceutical 
research, decision support systems, recruit-
ment, exploitation of data present on the web, 
information extraction, semantic annotations, 
etc. Among the clients that use GATE we enu-
merate: The UK National Archives, well 
known television company – BBC, Inno-
vantage – the global provider of data analysis 
for the labour market, etc. 
Advantages of a solution for text analysis, de-
veloped using GATE, are1: comprehensive-
ness, scalability, openness, extensibility and 
reusability, transparency, robustness and sus-
tainable efficiency. 
ANNIE – a Nearly-New Information Extrac-
tion System 
GATE is delivered together with an infor-
mation extraction system, called ANNIE. AN-
NIE is a collection of predefined algorithms 
and is used to create RDF or OWL represen-
tations from unstructured content, through the 
medium of semantic annotations. It is referred 
to as a nearly new system because it was built 
upon a pre-existing one, known as LaSIE. The 
latter was rebuilt and also renamed, preferring 
this time a human’s name as against a dog 
name, as the team itself points out: “we de-
cided that people are better than dogs at IE” 
[15].

 

                                                
1 https://gate.ac.uk/biz/usps.html 



Informatica Economică vol. 23, no. 4/2019  57 

DOI: 10.12948/issn14531305/23.4.2019.05 

 
Fig. 3. Processing resources that are part of ANNIE 

 
ANNIE is composed of a set of processing re-
sources that build together a pipeline. The re-
sult of one resource is considered input for the 
next resource in the chain. These resources are 
represented in Fig. 3. and are detailed below: 
1. Document Reset – clears pre-existent an-

notations, if the document was previously 
annotated. This step is always applied first 
in order to avoid duplicated annotations if 
the same application is executed multiple 
times on the same document. It can be 
configured to keep certain annotations sets 
or to remove only selected types.  

2. Tokenizer – it divides the text into small 
parts, such as numbers, punctuation marks 
or words of different types. It distinguish 
between words starting with capital letter 
or lowercase and also retains the length of 
each word.  

3. Gazetteer – aims to identify entities in the 
text based on predefined lists. These lists 
are text files with one record per line, each 
list representing a set of names: for exam-
ple, a list for cities, a list for organizations, 
a list for the days of the week, and so on. 
All these lists are accessed through an in-
dex file called lists.def, and for each word 
that is found in the text, contained in one 
of these lists, an annotation of type 
Lookup is created. 

4. Sentence Splitter – defines the beginning 
and end of each sentence based on the 
punctuation marks identified by the To-
kenizer. To achieve this, a Gazetteer list 
with abbreviations and a set of rules are 
applied, which make the difference be-
tween punctuation marks that determine 

the end of a sentence and those that can 
appear inside. 

5. POS Tagger – is a Java implementation of 
the Brill method, adapted, to associate a 
tag to each word that characterizes it as 
part of speech in one of the following cat-
egories: adjective, preposition, noun, verb, 
article, pronoun, adverb, interjection, con-
junction etc. The process is also known as 
grammatical labelling. It uses an implicit 
lexicon and set of rules and has been 
trained on a comprehensive set of docu-
ments in the Wall Street Journal. Follow-
ing the execution, a feature called cate-
gory is added to each annotation produced 
by Tokenizer. 

6.  NE Transducer – uses the JAPE language 
and contains rules based on the annota-
tions created in previous steps to build 
new annotations. Its role is to eliminate the 
ambiguity, allowing the combination of 
several annotations, for example: a date is 
composed of a day annotation + a month 
annotation + a number. More details about 
the JAPE language will be presented in the 
next subsection. 

7. OrthoMatcher – this module works with 
entities classified as unknown. Different 
expressions may refer to the same entity, 
for example DB or Deutsche Bank. The 
objective of the module is to identify rela-
tionships between previously discovered 
entities and their variants, classified as un-
known, and to perform co-referrals. In 
other words, it will not associate an anno-
tation with an entity that already has one, 
but starting from the latter it can modify 



58  Informatica Economică vol. 23, no. 3/2019 

DOI: 10.12948/issn14531305/23.4.2019.05 

the unknown tags with an annotation al-
ready created in the previous stages. This 
component is particularly useful in the 
case of abbreviations or to identify a fam-
ily name as being the same as the full 
name. 

After all the annotations were added on a 
given document, we need to establish their 
correctness. In the information extracting field 
the created annotations are classified in one of 
the next four categories: 
• correct – properly annotated words, for 

example Bucharest as a location 
• missing – words that are not annotated alt-

hough they should, for example Irina 
Enăchescu is not marked as a person 

• false positives – words that are wrongly 
annotated, for example Irina Enăchescu as 
a location 

• partially correct – when the type of the 
chosen annotation is correct, but the se-
lected entity is not complete, for example 
only annotating Irina as a person, or more 

than it should has been selected. 
In order to automate the evaluation process, 
GATE includes the AnnotationDiff instru-
ment that performs a graphical comparison 
between two sets of annotations. At one point 
in time, one or two documents and a single 
type of annotation are compared. The purpose 
is to make a comparison either between a doc-
ument annotated via GATE and one manually 
annotated, or to compare the same annotated 
document in different versions of the applica-
tion or through different applications. 
Following the comparison, the number of rec-
ords in each of the four categories is presented 
to the user and, at the same time, three perfor-
mance measurement indicators are calculated: 
precision (accuracy), recall (completeness) 
and F measure - harmonic mean between the 
first two indicators.  
The precision indicator answers the question: 
how many of the annotations defined through 
the application are correct, and is calculated 
according to the following formula:

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =	
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 

 
The recall indicator provides an answer for the 
next questions: how many annotations that 
should have been created were identified 

through the application, and is determined by 
the following formula: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑖𝑠𝑠𝑖𝑛𝑔	𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 

 
Depending on how partially correct annota-
tions are taken into account, the Annota-
tionDiff tool allows us to calculate the three 
indicators in three distinct variants: 
• medium – for partially correct annota-

tions, only half the score is received. This 
is the most commonly used method. 

• strict – only complete annotations are con-
sidered correct.  

• tolerant – partially correct annotations are 
counted as correct, in which case the per-
formance results also appear to be better. 

 
JAPE – Java Annotation Patterns Engine 
JAPE is a language for patterns recognition, 
specially developed for GATE that works 

with the concept of grammar. A grammar de-
fined in JAPE language consists in a set of 
phases, each of them comprising rules of type 
pattern-action. A grammar has two parts: left-
hand-side and right-hand-side. Left-hand-side 
(LHS) refers to the pattern and contains oper-
ators for regular expressions. A label is usu-
ally associated to its result. Right-hand-side 
points to the action that needs to be taken on 
the recognized pattern, referred through the 
label, and that action evolves in the form of an 
annotation that is created.  
GATE provides the possibility to chain multi-
ple JAPE grammars, so that a grammar can 
rely on the annotations created by a previous 



Informatica Economică vol. 23, no. 4/2019  59 

DOI: 10.12948/issn14531305/23.4.2019.05 

one, thus allowing the creation of more com-
plex annotations. Next we will present an ex-
ample of a JAPE grammar and we will detail 
the elements that are used in order to compose 
it. Starting with the next two sentences: 
“Player Gheorghe Hagi had 125 games for the 

national team” and “Model player Gheorghe 
Hagi was 65 times captain of the national 
team”, we want to create a rule that will link a 
player annotation with Gheorghe Hagi. The 
code of this rule can be checked in Figure 4.

  

 
Fig. 4. JAPE grammar example 

 
The rule is explained as follows:  

Line 1: Includes the name of the phase. The 
phase name is unique and does not necessarily 
has to be the same as the name of the .jape file 
in which the grammar resides.  

Line 2: Refers to the input annotations that 
will be used by the rule. In this particular case 
we have two input sources for the annotations: 
Lookup (obtained after applying Gazetteer re-
source from ANNIE) and Token (obtained af-
ter applying Tokenizer resource, as part of 
ANNIE). 

Line 3: Defines an option called grammar 
control that can have one of the following val-
ues: appelt, brill, once, first and all. In order to 
understand how they work we will explain 
them based on an example. Considering the 
text “Irina Mihaela Enăchescu” and the pat-
tern {Name}+, based on the selected matching 
style we will obtain the next results as de-
picted in Table 1.

  
Table 1. Matching styles in JAPE (adapted after [16]) 

Appelt (the longest pattern) Irina Mihaela Enăchescu 
Brill (all the combinations starting from the 
beginning) 

Irina, Irina Mihaela, Irina Mihaela Enăchescu 

Once (only the first match, then stop) Irina 
First (first match) Irina, Mihaela, Enăchescu 
All (all the matching patterns) Irina, Irina Mihaela, Irina Mihaela Enăchescu, 

Mihaela, Mihaela Enăchescu, Enăchescu 
 

Line 5: Declares the name of the rule.  
Line 7: Checks if the word contains the text 

“Player”. 
Line 8: Points to the fact that after the text 

“Player” can be present, but is not mandatory, 

another word. This behaviour is obtained 
though the usage of “?” operator. Beside this 
operator there are also another ones that can 



60  Informatica Economică vol. 23, no. 3/2019 

DOI: 10.12948/issn14531305/23.4.2019.05 

be used, like: “*” – marking zero or more oc-
currences or “+” – suggesting one or more oc-
currences. 

Line 10: Establishes a label for the pattern 
that was used in order to identify the text 
“Player” which can be followed, but not nec-
essarily, by another word.  

Line 12: Uses the annotations gathered 
through Gazetteer and checks if after applying 
the predefined lists of words a person is iden-
tified.   

Line 13: Includes the | (or) operator that 
links two conditions. 

Lines 15 and 16: Introduce a pattern to 
identify two words, nouns in the singular, 
each starting with a capital letter. They repre-
sent the last name and the first name of a per-
son.  

Line 19: Defines a label for the pattern used 
to recognize a person by his/her name.  

Line 20: Splits the left-hand-side of the 
grammar, placed above the arrow, from the 
right-hand-side, located below.  

Line 21: It uses the label defined to the left 
of the rule to build the Player annotation, 
providing information that was created by the 
"player" rule. 

 
Apache Tika consists in a toolkit for extract-
ing content and metadata from different docu-
ment types, like HTML, XML, documents 
created using Microsoft Office suite (Word, 
Excel, PowerPoint), PDF, RTF and even mul-
timedia files, like JPEG, MP4 etc. [17]. All 
these document types are handled using a sin-
gle common interface, called Parser. This fea-
ture turns Tika into a powerful and versatile 
instrument for text analysis. Apache Tika 
proves itself useful for content analysis, trans-
lations, indexing for search engines etc. De-
velopment of this instrument started in 2004, 
under Apache Nutch project, so that 6 years 
later, in 2010, to become one of the top pro-
jects of Apache. Apache Tika can automati-
cally determine the type of a document and 
also the language it was written in. When de-
termining the document’s type, not only the 
extension is used, but also the extracted 

                                                
2 https://gate.ac.uk/download/ 

metadata, together with the analysis of the oc-
tets from the beginning of the file, known as 
magic octets.  
Apache Tika is reusing existing libraries that 
proven good results for content extraction 
from various file types, like ApachePOI (used 
for Microsoft Office documents) or PDFBox 
(for documents in pdf format). This instru-
ment is permanently updated, during one year 
being released multiple improved versions. 
 
5.2 Implementation and Results 
First step in doing an automatic filtering of the 
candidate’s CVs for a job opening in the IT 
field is to extract the knowledge they possess 
that is encompassed in their resumes. After 
this stage the selected information will be 
used to create a structured RDF document, 
which in turn will be stored into a triple-store 
that will be queried for each job offer. We 
have to keep in mind that, most of the times, 
the CVs can be found in different formats 
(.doc, .docx, .pdf etc.), unstructured, and they 
are written in human language, intelligible to 
people, but harder to interpret by computers. 
In order to implement the knowledge extrac-
tion from the resumes we used GATE, de-
scribed earlier. We installed GATE Devel-
oper, version 8.4.12, available since 9 June 
2017. To configure GATE so as to identify the 
knowledge present in a CV, a series of steps 
were required, detailed below: 
1. a KnowledgeSchema.xml file was cre-

ated and saved in the next location: 
GATE_Developer_8.4.1\plugins\AN-
NIE\resources\schema 

2. the previous created file was added as a 
new entry in: GATE_Devel-
oper_8.4.1\plugins\ANNIE\re-
sources\schema\ANNIE-Schemas.xml 

3. a knowledge.lst file was built and saved 
in GATE_Developer_8.4.1\plugins\AN-
NIE\resources\gazetteer. Here is defined 
a list of words that represent knowledge 
for a candidate profile in the IT field, such 
as programming languages, operating 
systems, databases, development envi-
ronments, etc. 



Informatica Economică vol. 23, no. 4/2019  61 

DOI: 10.12948/issn14531305/23.4.2019.05 

4. the file created in step 3 was added in: 
GATE_Developer_8.4.1\plugins\AN-
NIE\resources\gazetteer\lists.def 

5.  several rules were created in .jape files 
and stored in: GATE_Devel-
oper_8.4.1\plugins\ANNIE\re-
sources\NE 

6. all the rules filenames created at step 5 
were added in: GATE_Devel-
oper_8.4.1\plugins\ANNIE\re-
sources\NE\main.jape 

An example of one of the defined rules can be 
seen in Fig. 5. This rule specifies that if after 
the search process (identifying the words in 
the list defined in knowledge.lst) a word was 
marked as representing a skill, and it is fol-
lowed by a comma, then the next word after 
the comma must be marked also as 
knowlegde, even if it is not in the defined list.

 

 
Fig. 5. Rule example for knowledge identification in a CV 

 
Once the new annotation (knowledge) was de-
fined, the list of words to be marked as part of 
this category and the rules to help identify as 
many competencies as possible in the content 
of a CV were created, the next step was to val-
idate these steps. 
In the Language Resources section we added 
a new GATE document, in which a CV was 
uploaded. Then we created, in the same sec-
tion, a GATE corpus, a collection of docu-
ments, in which the newly defined document 

was included. Subsequently, from the top left 
menu we loaded the ANNIE system, with de-
fault parameter settings. Finally we selected 
the document collection and executed ANNIE 
over them. In Figure 6. is depicted the appli-
cation after all the previous described stages 
were correctly executed, and in Figure 7 it is 
shown how the CV looks after it was anno-
tated with the identified competencies, either 
from the defined list or based on the imple-
mented rules.

 



62  Informatica Economică vol. 23, no. 3/2019 

DOI: 10.12948/issn14531305/23.4.2019.05 

 
Fig. 6. Executing ANNIE information extracting system over a CV 

 
Fig. 7. Annotated CV content after applying ANNIE 

 
After we proved the CV was correctly anno-
tated using GATE Developer, we continued 
next with implementing a Java application, 
which having as input data the path to a direc-
tory where multiple CVs are stored, in various 

formats (.doc, .docx, .pdf), generates for each 
CV a list with all the extracted competencies. 
Source code of the application can be exam-
ined in Listing 1.

 
Listing 1 – Source code for extracting the competencies from a collection of CVs 
public class ResumeKnowledgeExtractorApp { 
    private static final Logger LOGGER = LoggerFactory.getLogger(ResumeKnowledg-
eExtractorApp.class); 
    private static final String RESUMES_FOLDER = "E:\\CVs"; 
    public static void main(String[] args) { 
        LOGGER.info("Starting extracting the knowledge/skills from resumes saved 
in {} folder ...", RESUMES_FOLDER); 
        File resumesFolder = new File(RESUMES_FOLDER); 
        if (resumesFolder.isDirectory() == true) { 
            List<File> resumes = Arrays.asList(resumesFolder.listFiles()); 



Informatica Economică vol. 23, no. 4/2019  63 

DOI: 10.12948/issn14531305/23.4.2019.05 

            try { 
                ResumeGate resumeGate = new ResumeGate(); 
                resumeGate.init(); 
                resumeGate.initAnnie(); 
                Corpus corpus = Factory.newCorpus("Resumes_Corpus"); 
                //add all resumes in corpus 
                resumes.stream().forEach(r -> { 
                    try { 
                        Document document = Factory.newDocument(new FileCon-
tentExtractor(r.getPath()).extract()); 
                        document.setName(r.getName()); 
                        corpus.add(document); 
                    } catch (ResourceInstantiationException | IOException | 
TikaException | SAXException e) { 
                        LOGGER.error("An error occurred", e); 
                        throw new RuntimeException(e); 
                    } 
                }); 
                resumeGate.setCorpus(corpus); 
                resumeGate.execute(); 
                Iterator iterator = corpus.iterator(); 
                while (iterator.hasNext()) { 
                    Document doc = (Document) iterator.next(); 
                    Set<String> skills = doc.getAnnotations().get(new 
HashSet<>(Arrays.asList("Knowledge"))) 
                            .stream() 
                            .map(annotation -> Utils.stringFor(doc, annotation)) 
                            .collect(Collectors.toSet()); 
                    LOGGER.info("For document {} we detected the following 
skills: {} ", doc.getName(), skills); 
                } 
                resumeGate.cleanUp(); 
            } catch (GateException | IOException e) { 
                LOGGER.error("An error occurred", e); 
                throw new RuntimeException(e); 
            } 
        } else { 
            LOGGER.warn("Please provide a folder with CVs as input."); 
        } 
        LOGGER.info("Knowledge extracting completed."); 
    } 
} 

 
Two main classes enclose the application 
logic:  FileContentExtractor and ResumeGate. 
First of them, receives at defining point, in the 
constructor, the path to a file, and has an exe-
cute() method that is responsible to return the 
content of the file as a String. For the purpose 
of content extraction Apache Tika framework 
was employed. The ResumeGate class pro-
vides the necessary methods to interact with 
the API provided by GATE. It contains the 
methods: init() - which initializes in the Java 

application the embedded version of GATE, 
initAnnie() - which loads the ANNIE system 
with implicit parameters, setCorpus() - which 
associates a collection of documents to the ap-
plication, execute() – for running the applica-
tion and cleanUp() - which ensures the release 
of the resources used, to avoid generating 
memory leaks. 
The result for a CV, as extracted from the con-
sole logging, is presented below, in Listing 2:

 
Listing 2 – Application result after testing it with a CV 
 
15:16:57.687 [main] INFO com.ase.irina.enachescu.resume.screener.parser.Re-
sumeKnowledgeExtractorApp - For document CV_Europass.doc we detected the follow-
ing skills: [C#, Maven, C, RxJava, HPSM, SAS, Eclipse, HTML, Groovy, Java 8, Ja-
vaScript, Agile, Apache Camel, Control-M, Java, C++, Hibernate, CSS, Jboss tools 
extensions, JSP, SCRUM, Spring, SQL, RMI, excel, Jenkins, jQuery, Git, Spring 
Framework, HPQC, PL, Servlets, Intellij IDEA] 



64  Informatica Economică vol. 23, no. 3/2019 

DOI: 10.12948/issn14531305/23.4.2019.05 

 
The functionality of this application will be 
exposed through a REST service that receiv-
ing as input a list of CVs will determine for 
each of them what the relevant competencies 
are.  
 
6 Conclusions and future work 
In order to help the HR personnel to reach the 
candidates in the IT field faster, and gain 
therefore competitive advantage, we proposed 
a system meant to automate the CVs screening 
phase of the candidates’ selection process. In 
order to link the job ads together with the job 
seekers’ profiles we need to ensure that they 
have a uniform representation, and for this 
purpose we designed an ontology that en-
closes the main aspects that need to be consid-
ered when doing recruitment in the computer 
science field. We also proposed the architec-
ture of a system that using this ontology can 
be developed as a tool to enhance the effi-
ciency of recruiters.  
Second part of this paper focuses on the im-
plementation of an application that extracts 
the competencies from the candidates' CVs. 
This application represents one of the key 
modules from the proposed prototype. We in-
troduce the used tools and libraries, like 
GATE – an infrastructure that provides neces-
sary tools for developing and delivering of 
software components that process human lan-
guage – and Apache Tika – for documents 
content extraction. In the end, we describe in 
detail the developed application, written in 
Java, which having as input data the path to a 
directory where multiple CVs are stored, in 
various formats (.doc, .docx, .pdf), generates 
for each CV a list with all the extracted com-
petencies. 
As a next step in this research, we intend to 
continue the development of the candidates’ 
screening platform and test it using real-world 
data sets. Directions for future research in-
clude also the extension and refinement of the 
proposed ontology, because the robustness 
and completeness of the modelled ontology is 
directly impacting the accuracy of the system 
that uses it. 

A different approach that is it also worth to 
consider is the new LinkedIn search para-
digm, called Search by Ideal Candidates, pro-
posed by [18]. This implies to select a small 
set of ideal candidates (from one to three) for 
a position, instead of providing a job descrip-
tion. The ideal candidates can be from the 
ones already working on a similar position in 
the company. The system then builds a query 
automatically composed from the key infor-
mation in the profiles of the input candidates 
and searches for suitable candidates who are 
similar to them. This approach is known as 
item to item recommendation. 
 
Acknowledgment  
Parts of this research have been published in 
the Proceedings of the 17th International Con-
ference on Informatics in Economy, IE 2018 
[19]. 
 
References 
[1] H. Bukvova, "A holistic approach to the 

analysis of online profiles", Internet Re-
search, vol. 22, no. 3, pp. 340-360, 2012. 

[2] S. Pande, "E-recruitment creates order out 
of chaos at SAT Telecom", Human Re-
source Management International Digest, 
vol. 19, no. 3, pp. 21-23, 2011. 

[3] S. T. Al-Otaibi and M. Ykhlef, "A survey 
of job recommender systems", Interna-
tional Journal of the Physical Sciences, 
vol. 7, no. 29, pp. 5127-5142, 2012. 

[4] E. Pariser, "Beware online "filter bub-
bles"", Ted.com, 2011. [Online]. Avai-
lable: https://www.ted.com/talks/eli_pari-
ser_beware_online_filter_bubbles. [Ac-
cessed: 02- Jun- 2019]. 

[5] V. Kumaran and A. Sankar, "Towards an 
automated system for intelligent screening 
of candidates for recruitment using ontol-
ogy mapping (EXPERT)", International 
Journal of Metadata, Semantics and On-
tologies, vol. 8, no. 1, pp. 56-64, 2013. 

[6] M. Uddin, T. Duong, K. Oh, J. Jung and 
G. Jo, "Experts search and rank with social 
network: An ontology-based approach", 
International Journal of Software Engi-
neering and Knowledge Engineering, vol. 



Informatica Economică vol. 23, no. 4/2019  65 

DOI: 10.12948/issn14531305/23.4.2019.05 

23, no. 01, pp. 31-50, 2013. 
[7] M. Guedj, "Levelized Taxonomy Ap-

proach for the Job Seeking/Recruitment 
Problem," 2016 IEEE Intl Conference on 
Computational Science and Engineering 
(CSE) and IEEE Intl Conference on Em-
bedded and Ubiquitous Computing (EUC) 
and 15th Intl Symposium on Distributed 
Computing and Applications for Business 
Engineering (DCABES), Paris, 2016, pp. 
448-451. 

[8] A. Singh, C. Rose, K. Visweswariah, V. 
Chenthamarakshan and N. Kambhatla, 
"PROSPECT: a system for screening can-
didates for recruitment", in Proceedings of 
19th ACM International Conference on 
Information and Knowledge Management 
(CIKM'10), Toronto, Ontario, Canada, 
2010, pp. 659-668. 

[9] H. Yu, C. Liu, F. Zhang, "Reciprocal Rec-
ommendation Algorithm for the Field of 
Recruitment", Journal of Information & 
Computational Science, vol. 8, no. 16, pp. 
4061-4068, 2011. 

[10] K. Kenthapadi, B. Le and G. Venkata-
raman, "Personalized Job Recommenda-
tion System at LinkedIn: Practical Chal-
lenges and Lessons Learned", in RecSys 
'17 Proceedings of the Eleventh ACM 
Conference on Recommender Systems, 
Como, Italy, 2017, pp. 346-347. 

[11] B. Iancu and T. Georgescu, "Saving 
Large Semantic Data in Cloud: A Survey 
of the Main DBaaS Solutions", Informat-
ica Economica, vol. 22, no. 1/2018, pp. 5-
16, 2018. 

[12] I. Abuhassan and A. AlMashaykhi, "Do-
main Ontology for Programming Lan-
guages", Journal of Computations & Mod-
elling, vol. 2, no. 4, pp. 75-91, 2012. 

[13] M. I. Enachescu, "A Prototype for an e-

Recruitment Platform using Semantic 
Web Technologies", Informatica Eco-
nomica, vol. 20, no. 4/2016, pp. 62-75, 
2016. 

[14] Cunningham, et al. Developing Lan-
guage Processing Components with 
GATE Version 8. University of Sheffield 
Department of Computer Science. 17 No-
vember 2014. [Online]. Available: 
https://gate.ac.uk/sale/tao/ 

[15] "Module 2: Introduction to IE and AN-
NIE", Gate.ac.uk. [Online]. Available: 
https://gate.ac.uk/sale/talks/gate-course-
may10/track-1/module-2-ie/module-2-
ie.ppt. [Accessed: 02- Jun- 2019] 

[16] "Module 3: Introduction to JAPE", 
Gate.ac.uk. [Online]. Available: 
https://gate.ac.uk/sale/talks/gate-course-
aug10/track-1/module-3-jape/module-3-
jape.pdf. [Accessed: 02- Jun- 2019] 

[17] N. Thai, "Content Analysis with Apache 
Tika | Baeldung", Baeldung, 2019. 
[Online]. Available: 
http://www.baeldung.com/apache-tika. 
[Accessed: 02- Jun- 2019] 

[18] V. Ha-Thuc, Y. Xu, S. Pradeep Kanduri, 
X. Wu, V. Dialani, Y. Yan, A. Gupta and 
S. Sinha, "Search by Ideal Candidates: 
Next Generation of Talent Search at 
LinkedIn", in WWW '16 Companion Pro-
ceedings of the 25th International Confer-
ence Companion on World Wide Web, 
Montréal, Québec, Canada, 2016, pp. 195-
198. 

[19] M.I. Enăchescu, "Screening candidates in 
IT field using an ontology based ap-
proach", in Proceedings of the 17th Inter-
national Conference on Informatics in 
Economy (IE 2018), Iași, Romania, 2018, 
pp. 303-308

 
Mihaela-Irina ENĂCHESCU has graduated the Faculty of Cybernetics, Sta-
tistics and Economic Informatics in 2014. In 2016 she has graduated the Eco-
nomic Informatics Master program and she currently pursues a PhD research 
in Economic Informatics at the Bucharest University of Economic Studies. She 
is working as a Java Software Developer and is also a teaching assistant in the 
Department of Economic Informatics and Cybernetics. Her research interests 
are: Ontologies, Semantic Web and Data Mining. 


