
Informatica Economică vol. 23, no. 4/2019 17

DOI: 10.12948/issn14531305/23.4.2019.02

Physical Integration of Heterogeneous Web Based Data

Octavian DOSPINESCU, Sergiu CHIUCHIU
Alexandru Ioan Cuza University, Iasi, Romania
doctav@uaic.ro, sergiu.chiuchiu@gmail.com

With the ever-growing quantity of data available on the Internet and the development of new
techniques to gain novel insights on the web of data, more attention must be given to the
integration methods used. While the data extraction techniques have developed considerably
with the rise of new automation tools that can be used even by persons without a software
engineering background, the problem arises on integrating this data required for the analysis.
In order to be able to gain valuable knowledge not only from a local perspective, but also from
a global, enterprise-wide point of view and even from outside the borders of the organization,
this data must first be integrated to a common storage capability of the business. The problem
arises from the way most of the database management systems are designed, which in the early
days of their development, it wasn’t anticipated such an explosion of information from so many
heterogeneous data sources. Moreover, there is an ongoing race on tapping into new
information in places unexplored before, thus gaining valuable competitive advantage over
other businesses. The problem of data integration is even more challenging in the case of web-
based data sources due to the high frequency of changes that occur, meaning that solutions
which works today are not guaranteed to work properly tomorrow.
Keywords: Physical Data Integration, ETL systems, Data Collection Automation, Web of Data

Introduction
Nowadays it is generally accepted that the

main source of information is on the Internet.
The problem is that while the quantity of data
is ever increasing, the means of exploring this
data has not developed at the same pace.
According to [1], the percentage of data
analyzed worldwide is less than 1% out of the
total amount of data existent. All this while the
quantity of data is increasing multiple times
every few years according to [2], [3] and [4].
Since databases are not designed to work with
heterogeneous data, as [5] mentions, an extra
step is needed commonly known as data
integration layer, in order to prepare the
information for the analysis. This step can be
implemented traditionally either by building a
virtual mapping of the data sources that would
offer the data on demand as a view [6], or
through some means of physically integrating
the heterogeneous data sources as described
by [7] which would then be used to supply the
decision support system with the required
content. The advantage of the former method
is that there is no need to store the actual
integrated data separately, offering real-time
perspective on the gathered information.

Even if data virtualization offers considerable
benefits, the problem is that it cannot be used
in every situation. This is the case for data
gathered from the Internet, using different
ways of collecting the information usually
through some custom made web crawlers or
by using automation tools that provides pre-
defined procedures which help in speeding up
the development process, while also reducing
the number of error occurrences.
The reason why data virtualization is not a
feasible solution for this case is because of
several web specific factors. First of all, the
data to be extracted is not stored in any
database, rather most of the times we are
dealing with semi-structured or even
unstructured data which must be gathered
from multiple web pages requiring
considerable amount of time. This can also
include images, videos or other large size
documents that will impact data collection
speed. Another factor refers to the problem of
identifying and removing the duplicate
records that might be present in multiple data
sources, which will also impact the data
retrieval speed thus making it unfeasible for
virtualization.

1

18 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.02

2 Data Integration Techniques
As stated by [8] there are multiple data
integration techniques that can be used to
obtain a centralized view on the required
information. The most common integration
techniques are: manual integration,
middleware solutions, data virtualization and
physical data integration/data warehousing.
2.1 The manual approach involves the user
to collect the data and apply the validation and
cleansing standards of the organization,
followed by its loading into the database. It is
only recommended for small datasets, or for
handling exceptional cases which the
integration software fails to treat. The
drawbacks are the slower speed and the high
costs per record, making it an unfeasible
solution for large datasets.
2.2 Middleware solutions acts like a bridge
between multiple data sources which allows
both ways communication with the involved
systems. By facilitating this communication it
also implements data conversion, mapping
and cleaning techniques. Middleware is
highly recommended in case of large
enterprises with multiple data source systems,
where a central view is necessary for the
monitoring of different business wide
indicators which provides knowledge for the
higher management. A well implemented
middleware system can provide real-time
information on the organization status and
often represent a valuable comparative
advantage over competition.
In contrast, it comes at a high cost and because
of its inherent complexity it requires a lot of
time to be implemented [9] resulting in a high
chance that the project will end up in a failure.

2.3 Data virtualization represents an
alternative to ETL systems that is continuing
to grow in popularity, which unlike data
warehouses it can provide real time
information about the underlying systems.
Furthermore, another big advantage of this
technique is that data does not need to be
copied in one single place like it is the case for
physical data integration. This means that the
required data remains in place and it is only
accessed on demand. The scalability of a

virtualization system which fairly easy allows
the integration of numerous data sources is
also an important benefit.
However, the main drawback of this method
is that it consumes the resources that would
otherwise be used to process operational
changes, potentially negatively impacting
them. For complex analysis that spans over
long periods of time there is still the need for
a data warehouse that offers superior
performance for this type of operations as also
emphasized by [10]. Moreover, another
disadvantage is that not all software providers
offer support for virtualization. Even if this
technology in not a new one, this usually is the
case for legacy systems found in large
enterprise projects.

Fig. 1. Data virtualization architecture [11]

2.4 Physical data integration’s main goal is
to ensure a system that aggregates the
information from all the other data sources
inside or outside the organization in order to
obtain a unified view, known as the “single
version of truth”. Data is not just retrieved as
a view from the other systems, but it is copied
into a separate database after a series of
processing steps such as, cleaning, mapping,
refactoring of data as also noted by [12]. Even
if it is not designed to provide real time
information over the integrated system, the
advantage is that once the ETL process is
completed, the user can rapidly and easily
perform analyses and obtain reports for the
decision makers even for large amounts of
data. Another less noticed benefit is the
possibility to version the data, which can be
used for advanced analysis patterns or keep

Informatica Economică vol. 23, no. 4/2019 19

DOI: 10.12948/issn14531305/23.4.2019.02

track of data evolution across time. There are
2 main physical data integration techniques:
ETL (Extract, transform, load) and ELT
(extract, load, transform).
ETL systems, are the most commonly used
solutions of the two. Its main feature is the use
of a separate intermediary environment before
persisting everything into the database.
According to [13], this system is responsible
for the ETL processing and preparing the
content to be persisted into a data warehouses.
This supplementary step brings overhead time
in the duration of the whole integration
process since it is necessary to load data twice.
Also, in case of complex transformations on a
large amount of records the time needed
increases as well.

Fig. 2. Extract, Transform, Load process [14]

On the other hand, as also noticed by [15], the
ELT system is designed specially to solve the
problems raised from using an intermediary
ETL environment, by directly loading
everything into the data warehouse after the
extraction phase. Then the data can be
transformed straight from the data warehouse
without the need of an intermediary system.
Apart from speed, ELT additionally brings the
advantage of flexibility by allowing the data
to be persisted in the database in a rather
unstructured format. This enables fast and
easy use of data mining techniques that does
not require structured data to work with.
However, this technology is still evolving,
meaning that the options for this kind of tools
is limited and comes at high costs.
Furthermore, since it uses the data warehouse
resources for the transformation stage, it
means that for large sets of records it will
impact other users using the same machine,
possibly slowing down other processes. In

general, ELT is a better approach when speed
is of outmost importance and when the data
does not need to be immediately transformed
into a structured schema, or the complexity
level of the computation needed is reduced.

Fig. 3. Extract, Load and Transform process

[14]

Physical data integration is generally the
recommended option when there is a need for
complex and time consuming analyses that
requires data from heterogeneous sources,
such that the operational systems are not
impacted by conducting the analysis.

3 Physical Data Integration Application
Model for Heterogeneous Web Data
Since the Internet has become one of the
biggest sources of information nowadays,
companies started to turn their attention, not
only to the knowledge that can be derived
from inside the organization, but also from
outside of it. Taking this into consideration,
the application model aims to illustrate how
unstructured or semi-structured data from the
internet can be extracted, processed and then
loaded into a relational database management
system. All of this without the need of human
intervention in any of the stages.
The first part in the process involves
collecting the data from the desired sources.
This can be achieved either by developing
from scratch of a custom solution or by using
a specialized automation tool. In this case
UiPath Studio automation tool was used,
which has Visual Basic .NET as the
underlying programming language. The
reason for this choice is because it provides
pre-built activities that allow us to easily
collect the desired data from a web page, be it

20 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.02

visible on the web page or not. Another reason
for choosing this tool is the ability to create a
software robot that can keep supplying the
same results even in a dynamic environment
that is continuously changing.
The data collection robot has been designed to
gather specific information on various
classified ads pages. As shown in figure 4,
what the application does is to first go through
the search results list of advertisements in
order to get the URL of each page and then
save them in a CSV file. Using the URLs
provided in this file each page will then be
accessed sequentially.
The second part of the process opens a new
browser instance, builds an in-memory data
table and then collects the required data from
each page in order to populate the data table.

Fig. 4. Web crawler logical structure

For downloading the images, a different
approach had to be taken. First the URLs of
the images are gathered from the page and
then various GET request parameters are
modified in order to receive the images from
the server at their original size. After the URL
has been properly formatted, a HTTP GET
request can be initialized in order to receive
the image. In the database, only the image file
name will be persisted. After all the data is
extracted from the page the record is saved
into a CSV file.
A commonly occurring problem when
designing such a program workflow is
forgetting to make the application, exception
recoverable. Because it is common to expect
that in some cases, part of the data that needs
to be collected from the page, is missing. In
order to prevent such exceptions from
terminating the entire application, these type
of activities must be enclosed in a try-catch
block and to prevent slowing down the entire
process the default timeout should be reduced
to 3 seconds. Moreover, the amount of data
processing in this step must be kept to a
minimum in order to maximize the
performance.
After the desired data has been successfully
collected from the web, the ETL process can
begin. For this part, a custom Java application
has been developed. The database chosen for
the persistence layer is PostgreSQL 10, since
it is a lighter solution in comparison to other
alternatives such as Oracle database, yet it
offers competitive performance and similar
functionalities.
To ensure a faster and less error prone
application development a few additional
dependencies have been added to the project.

• Spring Boot framework, in order to
use the dependency injection
mechanism provided

• Spring Repository, in order to use the
already implemented repository
pattern for database manipulation

• Project Lombok which generates the
Java beans getters, setters and
constructors at compile time, without
being necessary to explicitly declare
them in the classes. It was also used to

Informatica Economică vol. 23, no. 4/2019 21

DOI: 10.12948/issn14531305/23.4.2019.02

implement the Builder pattern such
that new instances can easily be
created with the desired values.

• Open CSV used to iterate through the
CSV records and extract the data from
this type of files.

• Model mapper that is useful when
mapping already existing records from
the database with the updated
information

3.1 Extraction phase:
The first feature that must be implemented in
the application is the data extraction process.
Since the data is provided in a format that is

following the CSV specifications, we will use
Open CSV library which is already added as a
Maven dependency into the project. This
library helps us to create a CSV reader that is
used to iterate through the lines of the file
being read. First of all an input stream is
opened towards the file to be read using an
instance of BufferedReader class, which is
then passed to the integration service. Since
the application is designed to deal with
multiple data sources, depending on which
type of data source the application is
initialized with, it will choose the right
integration service at runtime as it can also be
seen in figure 5.

Fig. 5. Opening a file input stream and passing it to the integration service

3.2 Transformation and Loading Phase
The integration service structure was designed
taking into consideration code reusability,
avoiding duplicate code as much as possible.
Because of this, the service methods are
exposed via an interface, which is

implemented by an abstract class that holds
the methods that offer common behavior.
Further on, the abstract class is extended by
concrete classes that holds the specific
implementation for each data source type, as
it can be seen in Figure 6.

public void execute() {
 BufferedReader br;
 File dataFileCSV;
 try {
 switch (dataSource) {
 case Constants.DATA_SOURCE_M:
 dataFileCSV = new File("myData.csv");
 br = new BufferedReader(new FileReader(dataFileCSV));
 integrationServiceM.mapStreamToEntities(br);
 break;
 case Constants.DATA_SOURCE_T:
 dataFileCSV = new File("myDataSt.csv");
 br = new BufferedReader(new FileReader(dataFileCSV));
 integrationServiceT.mapStreamToEntities(br);
 break;
 default:
 LOG.error("Unknown data source type. Cannot continue the " +
 "integration. Process aborted...");
 break;
 }
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
}

22 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.02

Fig. 6. Integration service hierarchy diagram

The first method from the integration service
that must be called is mapStreamToEntities.
This method’s role is to iterate through each
CSV line and for each of the lines it will
further pass the responsibility to
transformation and validation methods. By
doing the processing line by line rather than in
batches, it allows to easily scale the
integration effort in the future by running
parallel threads that reads and process
multiple data rows at the same time.
After the CSV line is read from the input
stream, the raw data fields are mapped to an
intermediary transformer entity using
mapItemToTransformer method. During the
mapping process, the data is also transformed,
cleared of unnecessary content, converted
from String to the appropriate data type and

mapped to the corresponding entity field.
When this process is finished, a populated
AdvertisementPageTransformer instance is
obtained depending on the data source used,
whose fields are then compared with the
records already persisted in the database. The
first validation that it passes through checks
whether or not the new record pageId already
exists in the database. If it is already existent,
then it is verified if the record represents a
more recent update than the one already
existent in the database. When this is the case,
then the transformer instance is converted into
a new instance of AdvertisementPage bean.
Next, the record to be updated is loaded from
the database into the application, then using
Model Mapper the fields are automatically
updated.

Informatica Economică vol. 23, no. 4/2019 23

DOI: 10.12948/issn14531305/23.4.2019.02

Fig. 7. Validation method

When there is no similar pageId found in the
database then it will proceed with a more fine-
grained duplicate validation. This will
compare the most relevant fields of the newly
obtained entity with the corresponding values
of the records already existent in the database.
In order to achieve this functionality a
comparator class has been developed. This
class contains special methods for each type
of field in order to check for equality and save
the answer in a Map variable. After the
comparison is performed and the answers are
saved in the HashMap instance, a duplication
percentage score is calculated based on how
relevant is each of the fields found to be equal.
An attribute that it is known to naturally hold
only a few elements in its possible values
range, will have a smaller impact on the
duplicate score, in comparison to an attribute
that usually holds distinct values.
The way the duplicate percentage score works
is by creating a weighted sum according to
each field relevance, from all the compared

attributes that are found to be equal. This sum
is then divided to the total potential score, that
is, the sum obtained if every field compared
would turn out to be equal.
After the percentage score is obtained, it is
compared to a pre-established threshold. If the
percentage value is below that threshold then
the new record is not considered a duplicate
and is persisted into the database. Otherwise,
the new record can automatically be discarded
without being persisted into the database.
Another option for this case that was also
implemented in the application is to prompt
the user on the console that one of the new
records is similar with another one already
existent into the database. It then shows the
duplication percentage, instance variable
values for both objects and prompts the user
to decide whether or not the new data should
be saved. After these actions are performed
the application moves on to a new CSV line
and repeats the process until all input is
finished.

<E extends AdvertisementPageTransformer> void validateTransformerAndPersist(E
transformer) {
 Boolean isDuplicateWithin = checkForDuplicatesWithin(transformer);
 if (isDuplicateWithin) {
 Boolean isModifiedRecord = checkForRecordUpdate(transformer);
 if (isModifiedRecord) {
 AdvertisementPage updatedAp = transformer.mapTransformerToEntity();
 AdvertisementPage ap =
advertisementPageRepository.findByPageId(updatedAp.getPageId());
 modelMapper.map(updatedAp, ap);
 advertisementPageRepository.save(ap);
 }
 } else {
 AdvertisementPage ap = transformer.mapTransformerToEntity();
 Boolean shouldSave = checkForDuplicatesBetween(ap);
 if (shouldSave) {
 advertisementPageRepository.save(ap);
 }
 }
}

24 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.02

Fig. 8. CalculateDuplicateScore method

4 Conclusions and future directions
As it was emphasized throughout the paper,
the importance of unstructured and semi-
structured data collection from the internet
is becoming increasingly important for
businesses to keep their competitive
advantage. Due to this, the application
represents a realistic sample of what could
be turned into a large scale custom
developed integration tool that would meet
all the necessities of a business.
The application contains a series of benefits
since it has been designed to easily plug in
the integration logic for additional data
sources. Furthermore, by opting for a line
by line reading and processing rather than
executing these operations in batch, it
allows the application to be easily scaled up
for processing larger amounts of data by
using multiple threads. In addition, it
represents a viable solution that offers
speed and flexibility in development by
implementing appropriate architectural
designs using the latest technologies and
tools available.
In the future versions of the application a
format agnostic data input reader can be
implemented, which will be able to accept
as input at runtime multiple file types.
Moreover, a user interface could be
developed that would offer the user the
possibility to customize different aspects
such as having the possibility to decide

which fields to persist in case of duplicate
records or perform batch operations on the
duplicates found. Another useful feature
that could be included in the project is the
ability to compare and find near duplicate
images using machine learning algorithms.

Acknowledgments: The authors intend to
include the results of this research paper in
a master thesis that will be presented at
Software Development and Business
Information Systems master’s final exam in
July, 2020.

References
[1] J. Gantz, D. Reinsel, “The Digital

Universe In 2020: Big Data, Bigger
Digital Shadows, and Biggest Growth
in the Far East”, IDC's Digital
Universe Study, IDC 1414_v3, pp 2-3,
December 2012

[2] T. Barnett, Jr. et al., “Cisco Visual
Networking Index: Complete Forecast
Update, 2017–2022”, pp. 67-79,
December 2018

[3] D. Reinsel, J. Gantz, J. Rydning, “The
Digitization of the World From Edge to
Core”, IDC White Paper – Doc#
US44413318, pp. 6-11, November 2018

[4] H. Guo, Lizhe Wang, Fang Chen, Dong
Liang, “Scientific big data and Digital
Earth”, Chinese Journal, DOI
10.1007/s11434-014-0645-3, pp. 5066-

private Double calculateDuplicateScore(Map<String, Boolean> duplicateFields) {
 Double score = 0.0;
 Double maxScore = 0.0;
 Map<String[], Double> categoryScore = new HashMap<>();
 categoryScore.put(highScore, FIFTEEN);
 categoryScore.put(mediumScore, TEN);
 categoryScore.put(lowScore, FIVE_AND_HALF);
 for (String[] category : categoryScore.keySet()) {
 for (String field : category) {
 if (duplicateFields.get(field)) {
 score += categoryScore.get(category);
 }
 }
 maxScore += categoryScore.get(category) * category.length;
 }
 return score / maxScore;
}

Informatica Economică vol. 23, no. 4/2019 25

DOI: 10.12948/issn14531305/23.4.2019.02

5069, 2014
[5] M. Jarke, M. Lenzerini, Y. Vassiliou, P.

Vassiliadis, ”Fundamentals of Data
Warehouses”, Springer-Verlag, 2000

[6] D. J. Ullman, “Information Integration
Using Logical Views”, InProc.
ICDT97, pages 18–36, 1997

[7] P. Ponniah, “Data Warehousing
Fundamentals for it Professionals,
Second Edition”, John Wiley & Sons,
Inc., Hoboken, New Jersey,
DOI:10.1002/9780470604137, 2010

[8] A. Reeve, “Managing Data in Motion”,
Elsevier, pp. 15-17, 2013

[9] S. Krakowiak, “Middleware
Architecture with Patterns and
Frameworks”, pp. 8-35, 2009

[10] L.J. Pullokkaran, “Analysis of Data
Virtualization & Enterprise Data
Standardization in Business
Intelligence”, Massachusetts Institute

of Technology, pp. 55-58, May 2013
[11] M. Selvage, ”Design a Resilient Data

Virtualization Architecture”, July 2016
[12] P. Ziegler, K. R. Dittrich, „ Data

Integration — Problems, Approaches,
and Perspectives “, University of
Zurich, pp. 5-7

[13] Q. Liu, “A Design of ETL for the
Construction of Traffic Network Based
on Big Data”, CET VOL. 51, pp. 451-
453, 2016

[14] I. A. Alvi, “ETL vs. ELT: Transform
First or Transform Later?”, 2018,
Available:
https://datawarehouseinfo.com/etl-vs-
elt-transform-first-or-transform-later

[15] R. J. Davenport, “ETL vs ELT, A
Subjective View”, Commercial Aspects
of BI discussion papers, pp. 9-10, June
2008

Octavian DOSPINESCU graduated the Faculty of Economics and Business
Administration in 2000 and the Faculty of Informatics in 2001. He achieved
the PhD in 2009 and he has published as author or co-author over 30 articles.
He is author and co-author of 10 books and teaches as an associate professor
in the Department of Information Systems of the Faculty of Economics and
Business Administration, University Alexandru Ioan Cuza, Iasi. Since 2010 he
has been a Microsoft Certified Professional, Dynamics Navision,

Trade&Inventory Module. In 2014 he successfully completed the course “Programming Mobile
Applications for Android Handheld Systems” authorized by Maryland University. He is
interested in mobile devices software, computer programming and decision support systems.

Sergiu-Georgian CHIUCHIU is a student attending the Master of Software
Development and Business Information Systems at the Faculty of Economics
and Business Administration, within Alexandru Ioan Cuza University of Iasi.
During the years 2016-2017 he also participated in an Erasmus exchange
project where he studied for one year at University of Freiburg. He is also
working as a software developer in various projects for multinational
companies. His interests include web applications development, machine

learning and robotic process automation.

