
Informatica Economică vol. 23, no. 4/2019 5

DOI: 10.12948/issn14531305/23.4.2019.01

Identifying Software Complexity Topics with Latent Dirichlet Allocation on
Design Patterns

Sabina-Cristiana NECULA, Cătălin STRÎMBEI

Alexandru Ioan Cuza University of Iasi, Iasi, Romania;
sabina.necula@uaic.ro, linus@uaic.ro

The scientific literature has paid limited attention to studying software complexity subjects from
the design point of view. There is a significant number of papers that study software complexity
in relation with maintenance, refactoring, source code changes and that establish metrics for
measuring software complexity. This paper compares design patterns and software complexity
in order to identify trends of research in the software complexity area. For this purpose, we
assess the strengths and weaknesses of software complexity scientific articles through the lens
of design patterns. We have reviewed 1068 papers via latent Dirichlet allocation technique
(LDA) for our work. We found that existing software complexity paths disproportionate empha-
sis in how software complexity could benefit from design patterns instead on how contributions
to design patterns can benefit from software complexity.
Keywords: latent Dirichlet allocation, design patterns, software complexity, software complex-
ity topic modelling

Introduction
Software complexity is a key property in

software engineering and developing applica-
tions. The subject relates to refactoring, reus-
ability, reducing software management pro-
ject costs, and large infrastructures at low
cost. Although there are many software met-
rics, the scientists still consider there are sub-
jects to improve by scientific studies. Because
the modern software engineering relates to ob-
ject oriented field when designing applica-
tions and because of the wide area, that soft-
ware complexity supposes, we decided to
study the subject of software complexity by
approaching the field of design patterns, hop-
ping to identify the main topics to study and
future trends in research.
Various topics on object oriented design have
been proposed over the years. Design patterns
are a subject of interest because they offer so-
lutions for the coupling and cohesion between
different layers of an application. The prob-
lems due to of a design with high coupling are:
changes in related classes force local changes;
harder to understand in isolation; harder to re-
use because it requires additional presence of
other classes. The problems due to a design
with low cohesion are: hard to understand;
hard to reuse or to maintain. High cohesion
means that a class has moderate responsibility

in one functional area and it collaborates with
other classes to fulfill a task. Software com-
plexity can be reduced by designing systems
with the weakest possible coupling between
modules [1].
Historically, complexity in programs arising
because of the number of conditional and iter-
ative statements has been measured using the
cyclomatic complexity metric [2]. Refactor-
ing code with design patterns reduces com-
plexity, although it increases the number of
classes [3]. The authors show that design pat-
terns do not always improve the quality of sys-
tems. Some patterns are reported to decrease
some quality attributes and to not necessarily
promote reusability, expandability, and under-
standability. Also, they bring further evidence
that design patterns should be used with cau-
tion during development because they may ac-
tually impede maintenance and evolution.
Their study also reveals that object-oriented
principles may not be so “good” as they may
not necessarily result in systems with good
quality.
However, we consider that the subject of stud-
ying the effect that design patterns might have
on software complexity is not very well repre-
sented. The scope of this paper is to identify
the main topics, the trends, and to test if there
is a correlation between the two subjects.

1

6 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.01

2 Materials and methods
In this section, we present the research goals
and questions to be answered, and we describe
the inclusion or selection criteria for the stud-
ies chosen to analyze and data collection.
The purpose of this article is to get a broad and
current overview of the two subjects consid-
ered in this paper: design patterns and soft-
ware complexity. The analysis was realized
on academic journal articles. The search for
papers was conducted in 2019 on Thomson

Reuters' Web of Science, which has a large in-
terdisciplinary database of academic texts,
and limited to peer reviewed articles and re-
views in English.
We realized two searches in the title, abstract,
and keywords of papers from ISI Clarivate:
• design patterns, which returned 2045 arti-

cles;
• “software complexity”, which returned

302 articles.
Data selection is presented in Figure 1.

Fig. 1. Papers dataset

In order to identify the topics from software
complexity subject area we applied LDA on
the corpus of articles belonging to the design
patterns subject. For the LDA analysis, we
used the abstracts of the selected papers. Fig-
ure 2 presents the approach of our study.

Fig. 2. LDA research approach

The abstracts are expected to give a sufficient
indication of what is the subject of the paper
and thus provide an overview of the topics dis-
cussed in the respective fields [4]. In natural
language processing, latent Dirichlet alloca-
tion (LDA) is a generative statistical model
that allows sets of observations to be ex-
plained by unobserved groups that explain
why some parts of the data are similar. LDA
is an example of a topic model. The method
for topic modelling employed in this paper,
Latent Dirichlet Allocation (LDA), has
greater flexibility using as input the whole ab-
stracts of the papers. LDA is a generative

Informatica Economică vol. 23, no. 4/2019 7

DOI: 10.12948/issn14531305/23.4.2019.01

probabilistic topic model proposed by [4],
which can be used for the unsupervised iden-
tification of underlying topics in a large cor-
pus of data without any prior knowledge of the
topics [5-6]. Although the documents, or ab-
stracts, are known and observed, the topics are
hidden or latent [7].
The total number of abstracts (papers) is noted
with N. For each abstract d belonging to N, we
extracted a vector of words Xd=[Xd1, Xd2,
…, XdWd] where Wd is the number of words
in abstract d. W is the number of unique words
in the dataset, and and V=[w1,w2,...,wn] is the
vocabulary of words. Rather than representing
a text T in its feature space as {Word_i:
count(Word_i, T) for Word_i in V}, we can
represent the text in its topic space as
{Topic_i: weight(Topic_i, T) for Topic_i in
Topics}. The LDA topic model algorithm re-
quires a document word matrix as the main in-
put, e.g. Document-Word Matrix (or Docu-
ment-Term Matrix). DWM[i][j] = The num-
ber of occurrences of word_j in document_i.
Topics are latent variables composed of word
distributions. Producing an interpretable solu-
tion is the beginning, not the end, of an analy-
sis. To draw adequate conclusions, the inter-
pretation of the latent variables must be sub-
stantially validated [8]. Several authors pro-
posed guidance for evaluation and validating
LDA models [9]. We studied the coherence

and perplexity of different LDA resulted mod-
els, choose the model that had the best coher-
ence value, filtered the articles written on soft-
ware complexity starting from design patterns
discovered topics and conducted the analysis
of resulted papers by reviewing their subject
and method of research. The LDA was carried
out in Python. We used LDAvis to visualize
and optimize the number of topics [10].
The selection criteria for our sample of studies
were based on the following considerations:
1) The scientific articles indicate the concerns
from the research field; 2) The scientific arti-
cles published in the main journals from the
ISI Web of Science database offer a broad
overview on the subject.
This work is based on the three goals with re-
lated motivations presented in Table 1.
• G1: to investigate the relation between de-

sign patterns subject and software com-
plexity by identifying the proportion be-
tween the articles written on the subject of
design patterns and software complexity
and test the correlation.

• G2: to investigate if the two subjects are
statistically different.

• G3: to investigate the topics on design pat-
terns from the software complexity sub-
ject.

Research questions were derived from each
goal, and testable hypotheses formulated, as
summarized in Table 1.

Table 1. Research goals and questions

Goal Research question Motivation Null Hypothesis H0
G1 Q1: Is there a directional relationship be-

tween the topics on the subject of design
patterns and the topics on the subject of soft-

ware complexity?

The subject of design
patterns and the subject
of software complexity
belong to the same field
of study, namely soft-

ware engineering

No linear relationship be-
tween the two subjects

G2 Q2: Are the two subjects of study different? While it has been identi-
fied that design patterns
are important for soft-

ware complexity, the top-
ics on the subject vary

and treat different aspects

The two subjects do not
differ

G3 Q3: What are the topics studied on the sub-
ject of design patterns from software com-

plexity “world”

The enunciated hypothesis that we established
in our study were:

8 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.01

H1: there is a linear relationship between the
subject of design patterns and the articles writ-
ten on the subject of software complexity
H2: there is a difference in the topics treated
by the articles belonging to these 2 subjects.
With respect to related work, our study in-
tends to be an attempt to evaluate the relation-
ship between the subject of design pattern and
software complexity. Also, it is the first work
that examines the topics from software com-
plexity field of research with techniques from
natural language processing.
Additionally, we outlined the steps performed
in the methodology: 1) identifying the articles
written on the two subjects, identifying the
topics in the field of design patterns by using

LDA; 2) identifying the proportion of articles
per each topic from design patterns and soft-
ware complexity subject; 3) testing the hy-
potheses. Establishing whether there is a rela-
tionship between the two subjects has several
applications in software engineering, includ-
ing: A1) Predictions of topics on the design
pattern subject; A2) Predictions of topics on
design pattern subject across software com-
plexity subject.

3 Results
The proportion over Web of science catego-
ries for the papers with the design patterns
subject is presented in Table 2.

Table 2. The number of articles from the design patterns subject on science categories (Top Ten)

Web of Science category
Number of ar-

ticles

% from Total
number of arti-

cles (2045)

Computer Science 1068 52.22%

Computer Science; Engineering 147 7.19%

Engineering 62 3.03%

Education & Educational Research 45 2.20%

Computer Science; Telecommunications 35 1.71%

Computer Science; Engineering; Telecommunications 24 1.17%

Science & Technology - Other Topics 22 1.08%

Engineering; Telecommunications 21 1.03%

Computer Science; Engineering; Operations Research & Manage-
ment Science 19

0.93%

Business & Economics 16 0.78%

We chose to identify the topics starting from
the Computer Science category because this
category is well represented by a high number
of articles. The software complexity subject is
represented by a number of 302 articles. The
distribution across different science categories
is presented in Table 3.
The first step in the pre-processing was to re-
move stop-words. The stop-words are words
such as ”the”, ”a”, ”I”, ”him”, etc. Next, we

created bi-grams and tri-grams. These terms
are new words that are combinations of words
that are commonly juxtaposed. Next, we lem-
matized the words. This involved removing
inflectional endings, thus returning it to its
base form. An example is changing the word
”Working” to ”Work”. This helps with topic
modeling and interpretation. We applied LDA
on the abstracts from the design patterns
(computer science) articles.

Informatica Economică vol. 23, no. 4/2019 9

DOI: 10.12948/issn14531305/23.4.2019.01

Table 3. The software complexity across science categories (Top Ten)

Science category
Number of ar-

ticles
% from Total num-
ber of articles (302)

Computer Science 146 48.34%

Computer Science; Engineering 42 13.91%

Engineering 19 6.29%

Engineering; Telecommunications 9 2.98%

Mathematics 6 1.99%

Computer Science; Engineering; Telecommunications 5 1.66%

Computer Science; Engineering; Operations Research & Manage-
ment Science 4

1.32%

Computer Science; Operations Research & Management Science 4 1.32%

Science & Technology - Other Topics 3 0.99%

Automation & Control Systems; Computer Science 3 0.99%

The topics, the first 30 terms and their graph-
ical visualization are presented in Fig. 3a and
Fig. 3b for the first and the second topic, re-
spectively. The topics are circles in the two-
dimensional plane whose centers are deter-
mined by computing the distance between
topics [11]. The overall topic prevalence is

represented by the areas of the circles, where
the topics are sorted in the decreasing order of
prevalence. In the right part of the figure, a
pair of overlaid bars represent both the cor-
pus-wide frequency of a given term as well as
the topic-specific frequency of the term, as in
[12].

Fig. 3a. Intertopic distance map via multidimensional scaling considering the marginal topic
distribution employing the first and second principal components - Topic 1(PC1 and PC2)

(LDAvis) - detailed further in Table 4

10 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.01

Fig. 3b. Intertopic distance map via multidimensional scaling considering the marginal topic
distribution employing the first and second principal components - Topic 2 (PC1 and PC2)

(LDAvis) - detailed further in Table 4

The top 30 most salient terms from the entire
dataset (when no topic is selected) are: pat-
tern, design, software, language, code, ontol-
ogy, object, class, aspect, method, application,
implementation, service, programming, archi-
tecture, framework, process, type, system, de-
velopment, program, problem, orient, perfor-
mance, web, quality, mechanism, cloud, struc-
ture, component.

We optimized the model by identifying the
number of topics that provide the best coher-
ence. It seems that the optimum number of
topics from the subject area of design patterns
is 8. The coherence measure is equal to
0.7612.
The resulted topics from the design patterns
subject of research and their words and prob-
ability to appear in relation with each other are
presented in Table 4.

Table 4. Topics on design patterns (computer science)- LDA

Topic Words/ Probability to appear in the same document

Model development framew' 0.042 component 0.034 applic' 0.022 reuse' 0.015
System model model' 0.061 specific' 0.016 composit' 0.011 role' 0.011

Analysis and program support' 0.027 Tool 0.026 model' 0.023 analysis' 0.018

Method implementation perform' 0.018 technique' 0.017 develop' 0.009 feature' 0.009
Software code code' 0.027 method' 0.021 qualiti' 0.016 software' 0.015

Software language implem' 0.023 languag' 0.050 program' 0.026 code' 0.016

System software softwar' 0.061 problem' 0.049 system' 0.015 develop’ 0.012

Application development system' 0.088 applic' 0.055 develop' 0.031 requir' 0.014

We extracted the papers belonging to design
patterns and software complexity on each
topic. The results are presented in Table 5.
The analyze revealed that there is an important
number of articles written on the subject of

software complexity that benefit from the
well-grounded subject of design patterns, but
the numbers of articles on design patterns that
benefit from software complexity research ar-
ticles is not that well represented.

Informatica Economică vol. 23, no. 4/2019 11

DOI: 10.12948/issn14531305/23.4.2019.01

Table 5. The statistical results
Topic Articles writ-

ten on the
subject of de-
sign patterns

(Total)

Articles written
on the subject

of software
complexity

Design patterns
as proportion

from total (1068
articles)

Software com-
plexity as pro-

portion from to-
tal (146 articles)

Software com-
plexity versus
design patterns

(as ratio)

Model develop-
ment

98 32 9.18% 21.77% 2.37

System model 101 36 9.46% 24.49% 2.59

Analysis and pro-
gram

22 19 2.06% 12.93% 6.27

Method imple-
mentation

31 6 2.90% 4.08% 1.41

Software code 65 38 6.09% 25.85% 4.25

Software language 51 17 4.78% 11.56% 2.42

System software 128 69 11.99% 46.94% 3.92

Application devel-
opment

119 22 11.14% 14.97% 1.34

Pearson correlation= 0.72 t-test=0.005, p value=0.01

We found that between design patterns subject
and software complexity subject there is a di-
rect and strong relationship (Pearson correla-
tion=0.72), so we reject the null hypothesis.
The t-test value was 0.005 for a p value of
0.01, so we were able to reject the null hypoth-
esis. Therefore, there is a significant differ-
ence in the way the two subjects are treated by
the authors of scientific articles from the
mainstream research. We continued our anal-
ysis towards identifying the specific topics on

design patterns from the software complexity
subject. We eliminated the common key-
words: design, system, complexity, software,
application, model, program. Therefore, we
were able to observe the topics that relate the
two subjects. We computed the most repre-
sentative article for each topic, both for design
patterns subject of research and for software
complexity subject of research. Table 6 pre-
sents the title of the papers per each topic.

Table 6. The articles that contributed most to topic identification

Topic Topic keywords Topic Contribu-
tion (percent-

age)

Title

1 object, language, orient, implementation,
programming, structure, type, class, java,

support, code

0.5542 Software complexity measure-
ment

2 framework, process, development, propose,
research, application, case, base, present,

develop, reuse, component

0.582 An architecture design process
using a supportable meta-archi-
tecture and round trip engineer-

ing

12 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.01

3 code, method, technique, result, set, source,
program, perform, feature

0.5975 Eliminating synchronization
faults in air traffic control soft-
ware via design for verification

with concurrency controllers

4 pattern, model, design, approach, describe,
tool, transformation, specification, apply,

define, composit

0.5743 Assessing maintainability change
over multiple software releases

5 pattern, design, problem, software, solution,
class, study, quality, reuse, experience,

code, method

0.6946 Empirical assessment of design
patterns' fault-proneness at dif-

ferent granularity levels

6 system, application, component, architec-
ture, performance, parallel, distribute, time,

base, develop, requir

0.5941 The design and performance of a
pluggable protocols framework
for real-time distributed object

computing middleware

7 design, pattern, software, system, approach,
base, analysis, propose, change, instance,

problem

0.5835 UML design pattern metamodel-
level constraints for the mainte-

nance of software evolution

8 datum, domain, ontology,tool, model, ser-
vice, application, web, knowledge, infor-

mation, user, specific, support

0.6193 The GeoVoCamp Workshop Ex-
perience and Ontology Design

Pattern Development

In general, the articles written on the subject
of software complexity address the main topic
of “metric”. LDA returned the word metric in
each identified topic. Usually, these metrics
are well established in theory and in practice.
We noticed one single paper, entitled How
changes affect software entropy: an empirical
study [13], in which the authors analyzed how
changes affect software entropy by: the pres-
ence of refactoring activities, the number of
developers working on a source code file, the

participation of classes in design patterns, and
the different kinds of changes occurring on the
system, classified in terms of their topics ex-
tracted from commit notes. The research sub-
ject of design patterns is represented by topics
like pattern development and pattern usage.
The distribution of papers per each subject,
namely design patterns and software com-
plexity, for each topic starting from topic
1(T1) till topic 8 (t8) is presented in Figure 5.

Fig. 5. The number of papers as proportion from total number for Design patterns (DP) and Software

Complexity (SC) respectively

We chose to analyze in the Discussion section
the first three topics belonging to software

Informatica Economică vol. 23, no. 4/2019 13

DOI: 10.12948/issn14531305/23.4.2019.01

complexity that have the biggest proportion
over design patterns subject: analyzing soft-
ware complexity, source code change, system
software complexity.

4. Discussions
Complexity is an important property to ana-
lyze when developing software. Software
measures are the way to quantify the structural
complexity of software. The analyzing soft-
ware complexity topic contains papers that
discuss developing tools and papers dedicated
to developing metrics.
The topic of code changes is analyzed inten-
sively by the scientific literature. The interests
are on sustainability [14], reusability, mainte-
nance, decreasing complexity. It is interesting
to observe that there is a significant number of
papers which approach the topic by using ma-
chine learning techniques. The main subject is
version to version code change. The topic of
source code change is approached empirical
through case studies or analysis on open
source projects. As software changes requires
some form of managing the changes, some au-
thors proposed the use of repositories. They
consider that the company must have a central
knowledge repository with software specifica-
tions [15-17], designs and code from previous
system developments. The central knowledge
base can be used through Case-Based Reason-
ing.
An important number of authors treat the
problem of maintenance. They hypothesize
that source code complexity exerts a causal in-
fluence on maintenance difficulty experienced
during the system test phase of the product
[18]. At least three components contribute to
the complexity of the software maintenance
effort: (1) the code and documentation being
produced, (2) the process used to manage the
maintenance, and (3) the maintenance and tar-
get computer system environments [19].
The authors that study on the topic of system
software complexity approach subjects like
software metrics or refactoring but in the con-
text of software engineering or re-engineering
and systems development. Also, the subject of
software architecture design process is ap-

proached in [20] where a supportable meta-ar-
chitecture (SMA) and roundtrip engineering is
proposed for large software projects.
There are authors who study requirements en-
gineering in relation to software complexity
[21]. They developed a quality-driven RE
framework and tool that applies knowledge
management techniques and quality ontolo-
gies to support RE activities. Software refac-
toring is an important subject to study when
designing systems. Alkhalid et.al [22] use
clustering as a pattern recognition technique
to assist in software refactoring activities at
the package level. The approach presents a
computer aided support for identifying ill-
structured packages and provides suggestions
for software designer to balance between in-
tra-package cohesion and inter-package cou-
pling. A comparative study is conducted ap-
plying three different clustering techniques on
different software systems. In addition, the ap-
plication of refactoring at the package level
using an adaptive k-nearest neighbor (A-
KNN) algorithm is introduced.
Artificial intelligence techniques are used in
detecting program modules having high risk
in the maintenance phase. There are authors
who developed a neural network model to
classify program modules as either high or
low risk based on multiple criterion variables.
The inputs to the model included a selection
of software complexity metrics collected from
a telecommunications system. Applications of
intelligent software systems are proliferating.
As these systems proliferate, understanding
and measuring their complexity becomes vi-
tal, especially in safety-critical environments.
The results suggest that users significantly
prefer simple decision support and user inter-
faces, even when sophisticated user interfaces
and complex decision support capabilities
have been embedded in the system [23].
Future trends or newcomers
Software complexity represents a large re-
search field that still searches its innovative
ideas. It seems that cognitive software com-
plexity topic is gaining success in the last
years, as is studying the software metrics in
real time, in the context of embedded systems.

14 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.01

Software entropy, maintenance, and refactor-
ing remain central preoccupations but their
analysis is approached lately with artificial in-
telligence techniques.
Among the papers written on the subject of
software complexity, we analyzed the papers

that were addressed with artificial intelligence
techniques. The subjects and the research
method used in the respective paper are pre-
sented in Table 7.

Table 7. Subjects from software complexity subject related to design patterns

Subject The research method used in the paper

cohesion, estimation clustering as pattern recognition method to assist in software refactoring

quality requirements engineering knowledge management techniques and quality ontologies to support Re-
quirements Engineering (RE) activities

software reusability case based reasoning

context IT, software maintenance the cognitive complexity metric as a measure of version to version
source code change.

software change prediction neural network based on software complexity measurements

software reusability WordNet (vocabulary) for case-based retrieval

software maintenance entropy semantically-based metric

According to the Forrester Research report on
AI's impact on software development [24], the
bulk of the interest in applying AI to software
development lies in automated testing and bug
detection tools. The article 6 ways AI trans-
forms how we develop software [25] dis-
cusses rapid prototyping, intelligent program-
ming assistants, automatic analytics & error
handling, automatic code refactoring, precise
estimates, and strategic decision-making. Our
results confirm this idea.

5 Conclusions
In reviewing the literature, no data was found
on the association between design patterns
and software complexity or in identifying
software complexity topics. The current study
found that although software complexity and
design patterns belong to the same subject
area, namely software engineering, the topics
vary. The most interesting finding was that
there is possible to identify topics on software
complexity by identifying topics on design
patterns. Another important finding was that
measuring software complexity and evaluat-

ing its effects on the developed systems is ap-
proached very often with artificial intelligence
techniques. This combination of findings pro-
vides some support for the conceptual premise
that design patterns might be studied from the
software complexity point of view.
In conclusion, in this study, the relations be-
tween software complexity associated metrics
and design patterns have been investigated.
Also, this study emphasizes the importance of
design patterns, the lack of standard metrics
for design patterns, and the lack of standard
ways for studying design patterns in relation
with software complexity. The LDA tech-
nique proved its reliability in studying topics
from the field of software complexity.

References
[1] B. Henderson-Sellers, A book of object-

oriented knowledge: an introduction to
object-oriented software engineering.
Prentice-Hall, Inc., 1996.

[2] A.H. Watson, D.R. Wallace, and T.J.
McCabe, Structured testing: A testing
methodology using the cyclomatic com-

Informatica Economică vol. 23, no. 4/2019 15

DOI: 10.12948/issn14531305/23.4.2019.01

plexity metric (Vol. 500, No. 235). US De-
partment of Commerce, Technology Ad-
ministration, National Institute of Stand-
ards and Technology, 1996.

[3] F. Khomh and Y.G. Gueheneuce, Do de-
sign patterns impact software quality pos-
itively?. In 2008 12th European Confer-
ence on Software Maintenance and Reen-
gineering (pp. 274-278), IEEE, 2008.

[4] D.M. Blei, T.L. Griffiths, and M.I. Jordan,
The nested chinese restaurant process and
bayesian nonparametric inference of topic
hierarchies. Journal of the ACM (JACM).
57(2), p.7, 2010.

[5] J. Guerreiro, J., P. Rita, and D. Trigueiros,
A text mining-based review of cause-re-
lated marketing literature, Journal of Busi-
ness Ethics, 2016, 139(1), pp.111-128.;

[6] C.R. Sugimoto et. al, The shifting sands of
disciplinary development: Analyzing
North American Library and Information
Science dissertations using latent Dirichlet
allocation. Journal of the American Soci-
ety for Information Science and Technol-
ogy, 2011, 62(1), pp.185-204.

[7] A. Piepenbrink and E. Nurmammadov,
Topics in the literature of transition econ-
omies and emerging markets, Scientomet-
rics, 2015, 102(3), pp.2107-2130.

[8] P. DiMaggio, M. Nag and D. Blei, Exploit-
ing affinities between topic modeling and
the sociological perspective on culture:
Application to newspaper coverage of US
government arts funding, Poetics, 2013,
41(6), pp.570-606.

[9] D. Maier et.al, Applying LDA topic mod-
eling in communication research: Toward
a valid and reliable methodology, Commu-
nication Methods and Measures, 2018,
12(2-3), pp.93-118.

[10] C. Sievert and K. Shirley, LDAvis: A
method for visualizing and interpreting
topics. In Proceedings of the workshop on
interactive language learning, visualiza-
tion, and interfaces, 2014, (pp. 63-70).

[11] J. Chuang, D. Ramage, C. Manning and
J. Heer, Interpretation and trust: Design-
ing model-driven visualizations for text
analysis. In Proceedings of the SIGCHI

Conference on Human Factors in Compu-
ting Systems, 2012, (pp. 443-452). ACM.

[12] J. Chuang, C.D. Manning and J. Heer,
Termite: Visualization techniques for as-
sessing textual topic models. In Proceed-
ings of the international working confer-
ence on advanced visual interfaces, 2012,
(pp. 74-77). ACM.

[13] G. Canfora, L. Cerulo, M. Cimitile and
M. Di Penta, How changes affect software
entropy: an empirical study, Empirical
Software Engineering, 2014, 19(1), pp.1-
38.

 [14] C.C. Venters et.al, Software sustainabil-
ity: Research and practice from a software
architecture viewpoint, Journal of Systems
and Software, 2018, 138, pp.174-188.

 [15] L. Hurbean and D. Fotache, The chal-
lenge of enterprise systems: harmoniza-
tion of ERP systems with business pro-
cesses. Scientific Annals of the'Alexandru
Ioan Cuza'University, Economic Sciences
Series, 2010.

[16] V.D. Păvăloaia, M.R. Georgescu, D.
Popescul, D. and L.D. Radu, ESD for pub-
lic administration: An essential challenge
for inventing the future of our society,
Sustainability, 2019, 11(3), p.880.

[17] F. Dumitriu, D. Oprea, G. Mesnita, N.
Gavriluta, R. Raducanu, and M. Iliescu,
Issues and strategy for agile global soft-
ware development adoption. In Proceed-
ing of the 3rd World Multiconference on
Applied Economics, Business and Devel-
opment, AEBD. (Vol. 11, pp. 1-3), 2011,
WSEAS Press.

 [18] D.L. Lanning and T.M. Khoshgoftaar,
Modeling the relationship between source
code complexity and maintenance diffi-
culty, Computer, 1994, 27(9), pp.35-40.

[19] G.E. Stark and P. Oman, A survey instru-
ment for understanding the complexity of
software maintenance. Journal of Soft-
ware Maintenance: Research and Practice,
1995, 7(6), pp.421-441.

 [20] H. Gümüşkaya, An architecture design
process using a supportable meta-architec-
ture and roundtrip engineering. In Interna-
tional Conference on Advances in Infor-
mation Systems, 2006, (pp. 324-333).

16 Informatica Economică vol. 23, no. 4/2019

DOI: 10.12948/issn14531305/23.4.2019.01

Springer, Berlin, Heidelberg.
[21] T.H. Al Balushi, P.R.F. Sampaio and P.

Loucopoulos, Eliciting and prioritizing
quality requirements supported by ontolo-
gies: a case study using the E licit O
framework and tool. Expert Systems,
2013, 30(2), pp.129-151.

[22] A. Alkhalid, M. Alshayeb and S.A.
Mahmoud, Software refactoring at the
package level using clustering techniques.
IET software, 2011, 5(3), pp.274-286.

 [23] E. Coskun and M. Grabowski, Software
complexity and its impacts in embedded
intelligent real-time systems, Journal of

Systems and Software, 2005, 78(2),
pp.128-145.

[24] D.L. Giudice, C. Mines, A. LeClair, R.
Curran, A. Homan, How AI Will Change
Software Development And Applications,
Forrester report 2016, available at
https://reprints.forrester.com/#/as-
sets/2/108/'RES121339'/reports

[25] M. Yao, 6 Ways AI Transforms How We
Develop Software, Forbes 2018, available
at https://www.forbes.com/sites/mari-
yayao/2018/04/18/6-ways-ai-transforms-
how-we-develop-software/

Sabina-Cristiana NECULA (b. July 27, 1979) received her PhD in Ac-
counting (Business In-formation Systems) (2007). She is currently a Scien-
tific Researcher at Alexandru Ioan Cuza University of Iasi, Faculty of Eco-
nomics and Business Administration. Her current research interests include
Semantic Web standards and technologies, Decision Support Systems, Busi-
ness Information Systems. She is the author of more than 30 scientific pa-
pers.

Cătălin STRÎMBEI has graduated the Faculty of Economics and Business
Administration of Alexandru Ioan Cuza University of Iaşi in 1997. He holds
a PhD diploma in Cybernetics, Statistics and Business Informatics from
2006 and he has joined the staff of the Faculty of Economics and Business
Administration as teaching assistant in 1998 and as associate professor in
2013. Currently he is teaching Object Oriented Programming, Multi-Tier
Software Application Development and Database Design and Administra-

tion within the Department of Business Information Systems, Faculty of Economics and
Business Administration, Alexandru Ioan Cuza University of Iaşi. He is the author and co-
author of four books and over 30 journal articles in the field of object oriented development
of business applications, databases and object oriented software engineering.

