
46 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

IoT Security Approaches in Oil & Gas Solution Industry 4.0

Cristian TOMA, Marius POPA
Bucharest University of Economic Studies

cristian.toma@ie.ase.ro, marius.popa@ie.ase.ro

Oil and Gas Industry is a very complex one where very specialized equipment, tools and assets

are used. The last years, the trend within that industry is to integrate digital technologies in the

oil and gas extraction processes as ICT performance has increased and the price has declined.

As effect, the productivity of the industry has increased by using digital technologies as IoT,

cloud computing, industrial internet, artificial intelligence, block-chain etc. This paper

highlights IoT approaches and solutions that could be applied in the oil and gas industry in

creating new value in information generated by IoT infrastructures by integration the sensor

data, communication channels and data analytics. Large variety of IoT deployments and

protocols raises the IoT security assurance way. In this sense, the paper provides security

solutions and examples.

Keywords: IoT, IoT Cloud Service, HTTP-REST API, Cyber Security, Cryptographic Security

Introduction
Industry 4.0 and Internet of Things – IoT

are new terms on hype these days and in the

market more solutions appear in the field of

these buzzing words. According with

Wikipedia [9], “Industry 4.0 is a name for the

current trend of automation and data exchange

in manufacturing technologies. It includes

cyber-physical systems, the Internet of things,

cloud computing and cognitive computing.

Industry 4.0 is commonly referred to as the

fourth industrial revolution.”

Fig. 1. Industry 4.0 Phases [9]

The Industry 4.0 revolution applied into Oil

and Gas field, involves the improvement of

the existing SCADA systems and specific

filed bus communications protocols (e.g.

OPC) with Internet of Things and Cloud

computing technologies, in order to provide

1

Informatica Economică vol. 22, no. 3/2018 47

DOI: 10.12948/issn14531305/22.3.2018.05

predictive analytics. The predictive analytics

help the IoT solution to detect potential

downtimes and to operate fixes within the

productions systems with zero-down-time

approach. In Oil and Gas filed specific

equipment and protocols are deployed and the

cyber security level should be high in order to

use the produced data in cloud computing

context. Therefore, for the Oil & Gas Industry

4.0 solution, the following diagram shows the

potential Sensors/Actuators Applications

[10]:

Fig. 2. – Oil and Gas Field Extraction diagram – Copyright [10]

Wide array of sensors (e.g. gas pressure

sensors, gas pressure switches and level

sensors) to detect pressure, level, and flow in

a variety of Oil & Gas sensor applications

such as:

 Wellhead Automation (Plunger Lift,

Main Line Valve Control, etc.)

 Storage Tank Level Monitoring

 Temperature, Humidity, etc. of the

equipment and the environment

 Chemical Injection

 Hydraulic and Lubricating Oil

Reservoirs

 Fracturing Truck Monitoring

 Drilling Fluid (“Mud”) Tank

Monitoring

 Tote Level Monitoring

 Spark Protection in Diesel Fuel

Distribution

 CNG (Compressed Natural Gas)

Vehicle Conversion

Next section presents the proposed IoT

Solution for Oil & Gas Industry use case.

2. IoT Solution for Oil & Gas Industry 4.0
Figure 3 present the system architecture and

the overview of the components interaction of

the Oracle IoT Cloud with the

Matrikon/Honeywell Data-Logger Gateway

and the Enterprise Dashboard:

48 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

Fig. 3. System Architecture of the prototype for Matrikon/Honeywell Data Logger Gateway

integration with Oracle IoT CS

According to the Figure 3, there are the

following components:

C1) Distillation Tower Simulator (DTSIM)
simulates the behavior of a crude distillation

unit, including Temperature and output

(Barrels per Hour - BPH) data as it would be

captured by sensors on the distillation site –

simulator 1.

C2) Oracle IoT Cloud Simulator for

generating data into the IoT CS Cloud, in

order to have different and various patterns

into the tower pressure – simulator 2.

C3) IoT Gateway device which have the

following characteristics: OPC, OPC UA,

architecture integration. The simulator sends

data to an OPC server running on Data-

Logger. That data is then sent to Oracle IoT

CS via the OPC UA client, also running on the

Data-Logger gateway – ot could be a

Matrikon/Honeywell Data Logger Gateway.

C4) Oracle Internet of Things Cloud

Service (version 16.4) is the key component

used for storing the data from the industrial

sensors into NoSQL data structures and to

interact with different Enterprise applications

and/or Mobile/Web dashboards. Also, it is

able to process and run SAX and analytics

algorithms in a scalable distributed manner

within PaaS – Platform as a Service Cloud, but

it is able to highlight also the sensors/actuators

status within Asset Monitoring Application in

terms of SaaS – Software as a Service Cloud,

figures 4 (IoT CS PaaS), 5 (IoT CS SaaS AM

– Asset Monitoring Application) and 6 (IoT

CS PaaS Analytics SPARK Processors).

C5) Mobile Technician Application is

displaying to the Service Technicians the

emergency notification and the service data.

Through this application they can also notify

when a repair is complete as figure 7

highlights.

C6) Analytics Web Dashboard is used for

having predictive maintenance.

Components Overview and Data Flow

The first two components from the

architecture (C1 and C3) are property of

Matrikon/Honeywell and the company

allowed Oracle to use them into this

prototype. The other components (from C2,

C4, C5 and C6 inclusive) are property of the

Oracle company and the components have

been developed within Oracle IoT Cloud

organization.

The data collected from the sensors is sent via

OPC to an OPC Sever, which is running into

a Virtual Machine from the IaaS –

Infrastructure as a Service Cloud. The OPC

UA Server is running into the

Matrikon/Honeywell Data-Logger Gateway

as well as the OPC UA Client which has been

developed by Oracle with Matrikon OPC UA

SDK. The OPC UA client gather the sensors

data from the OPC UA Server within the

gateway and the gateway, also is running the

Oracle IoT CS Client Software – C Windows

Informatica Economică vol. 22, no. 3/2018 49

DOI: 10.12948/issn14531305/22.3.2018.05

Library [11] for pushing sensors data into the

Oracle IoT CS.

Both Oracle IoT Simulator (the virtual

devices) and Matrikon/Honeywell Data-

Logger are sending data into Oracle IoT CS

PaaS Cloud for storing the sensors messages,

with a sample rate of 1 message per second,

Figure 4.

Fig. 4. Oracle IoT CS Platform – SaaS & PaaS Cloud

Oracle IoT CS PaaS si sharing the incoming

messages with the Asset Monitoring

application from the IoT CS SaaS Cloud in

order to have the ability of real time sensors

assets supervision and incidents rules

configuration:

Fig. 5. Oracle IoT CS SaaS AM – Asset Monitoring Application

Once the sensors data are in the cloud, the

analytics Apache SPARK processors from

Oracle IoT CS PaaS should be developed,

configured and parametrized:

50 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

Fig. 6. Oracle IoT CS PaaS Analytics SPARK Processors

This IoT CS cooperates with the Enterprise

applications such as C5 and C6, via IoT

Enterprise REST API and it can be integrated

with different other Clouds such as Oracle

MCS – Mobile Cloud Service and BICS –

Business Intelligence Cloud Service. The

incidents and the key metrics for each

distillation tower unit are presented by the

Mobile Technician Application:

Fig. 7. Oracle Android Mobile Technician App – Monitoring Screen

Once the analytics processors are running

within IoT CS, the sixth component Analytics

Web Dashboard can bidirectional

communicate with the IoT Cloud and display

the similarity search for the seal rupture.

3. Security Improvements for the IoT

REST APIs

REpresentational State Transfer (REST)

facilitates communication between computer

systems on the web. Implementation of REST

is made by using the next elements [12]:

Informatica Economică vol. 22, no. 3/2018 51

DOI: 10.12948/issn14531305/22.3.2018.05

 Resources provided by directory

structure URIs.

 Structured files (e.g. JSON, XML) as

representation of the objects and

attributes.

 HTTP methods to send messages across

web.

 Session state hold only by the clients.

According to TechTarget, “A RESTful API is

an application program interface (API) that

uses HTTP requests to GET, PUT, POST and

DELETE data”. RESTful API provides high

flexibility to software developers to design,

implement and maintain applications thanks

to stateless and modularity principles of the

REST. RESTful APIs are appropriate for web

applications, but they are also successfully

used in cloud computing and microservice

implementations.

Because REST services are used over the web,

security must be the main concern and

challenge for RESTful API implementers and

integrators. According to [14], [16], following

technologies and security measures can be

used when RESTful APIs are implemented for

IoT cloud computing solutions:

 HTTPS – it is mandatory because

RESTful API transmits over the web

sensitive information related to

passwords, API keys, JSON Web Tokens

(JWT) etc. in order to make the

authentication of the edge devices or IoT

gateways to the cloud infrastructure. This

information must be protected by

encryption on transport layer of the

computer network infrastructure. HTTPS

must be implemented both by client IoT

devices and cloud servers.

 Access control – it is implemented for

each REST endpoint and it is related to

authentication and authorization. For

effectiveness reasons the access control

decisions are taken locally by the REST

endpoint and the access tokens are issued

by a centralized Identity Provider server.

There are different protocols to be used in

order to manage the access control to the

cloud infrastructure.

 JSON Web Tokens (JWT) – represents

JSON data structures used by RESTful

API for access control. JWT must be

protected by encryption or message

authentication code (MAC) to avoid lack

of integrity. JWT is RFC document

describing the requirements, constraints

and security considerations, and

providing examples on those [15]. JWT

must be validated against its integrity and

contained claims.

 API Keys – they are used by the endpoint

to create HTTP requests to server. API

keys are unique byte streams and usually

they are included into the HTTP request

header or in the URI itself. Still, the

second approach will expose the key

within the browser history and API logs

at server level. API keys represent a

security REST implementation for the

public cloud infrastructure where there is

no a strict access control to it. Hence,

endpoint accesses are limited for those

having API keys. Also, some access

filters are applied depending on client

endpoint category.

 Restrict HTTP methods – not all

endpoints have access to all RESTful

services provided by the cloud

infrastructure. This is implemented by

restricting some HTTP REST methods or

creating endpoint blacklists.

 Input validation – it should be always

implemented by a RESTful service and a

validation response is sent back to the

client endpoint. Validation is

implemented by checking different

characteristics of the request data: length,

range, format and type, using of strong

data types, strings created by regular

expressions, unexpected or illegal

content, HTTP request size, number of

failed input validations per unit time,

considering security issues of the parser

used for incoming requests.

 Validate content types – the REST

message types are provided by the HTTP

request header. The message content

must match the type provided by the

request header. Hence, following security

measures must be implemented by the

RESTful API for both request and

52 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

response messages: rejecting the request

where the content type is missing or

unexpected, not exposing unintended

content type, not included into the

response the content type of the request,

matching the right content type according

to the response body.

 Management endpoints – they must use

stronger authentication mechanisms to

avoid their exposure to uncontrolled

access via Internet. Also, other security

measures to do that include use of

firewalls, appropriate computer network

setup, access control lists. It is preferable

to avoid management endpoints via

Internet.

 Error handling – it is implemented

inappropriately it could be a source of

relevant information about RESTful

service. Therefore, the RESTful API has

not to reveal details by responding with

generic message errors. Also, technical

details have not to be passed back to the

client.

 Audit logs – they could be a security

measure to avoid possible attacks by

logging the token validation errors. Also,

audit logs must be sanitized by audit log

injection attacks.

 Security headers – they contain the right

information about the content type to be

correctly interpreted by the browser.

Such kind of headers are X-Content-

Type-Options and X-Frame-

Options.

 Sensitive information in the HTTP

headers – RESTful API operates with

sensitive information over the Internet

(passwords, JWTs, API keys). Therefore,

it has to prevent credential leakage

because the sensitive information

becomes available over web (browser

history, web server logs etc.) where the

RESTful API operates. Sensitive data are

placed within the request body or request

header.

 HTTP return code – the RESTful API

must return the correct code for the

available HTTP response code list.

A RESTful API must consider all security

issues related to computer network

communication via web and it has to

implement the appropriate security measures

to protect sensitive data and to avoid attacks

over the clients and cloud infrastructure by

using information exchanged between them

via REST requests and response.

Examples of IoT cloud infrastructures within

the current IoT industry to be considered are

Amazon Web Services (AWS) IoT and Oracle

Internet of Things Cloud Service.

AWS IoT is an infrastructure that provides bi-

directional communication between IoT

devices and AWS Cloud. Collected data are

used to monitor and control various IoT

devices by implementing services,

applications and interfaces between IoT data

repository and different tools running on

different components within the AWS cloud

infrastructure [18].

From the security point of view, AWS IoT

shares responsibility between the IoT clients

and IoT Cloud by provisioning the device

with secure items like certificates to

authenticate it and secure the data sent to the

AWS Cloud. By other hand, the AWS Cloud

implements security policies to send data to

the devices or other AWS services.

Interactions with the IoT clients is customized

by using some AWS IoT interfaces as follows

[18].

 AWS Command Line Interface (AWS

CLI) – set of commands for different

platforms (Windows, macOS, Linux)

allowing creation and management of

different items within AWS IoT

infrastructure.

 AWS IoT API – allows building of IoT

applications using HTTP/HTTPS

requests. These IoT applications are built

programmatically.

 AWS SDKs – wraps AWS IoT API to

allow cross-platform IoT application

development.

 AWS IoT Device SDKs – allow IoT

application development running on IoT

devices.

In order to enable the bi-directional

communication and AWS IoT cloud services,

Informatica Economică vol. 22, no. 3/2018 53

DOI: 10.12948/issn14531305/22.3.2018.05

the AWS IoT clients must be authenticated

within the cloud and they have to encrypt the

all traffic to AWS IoT infrastructure over the

Transport Layer Security (TLS). TLS ensures

confidentiality of the application protocols

(MQTT, HTTP) supported by the AWS IoT

[18].

Depending of what kind of AWS IoT interface

is used to interact with the AWS IoT cloud

services, the available IoT authentication

schemes are [18]:

 X.509 certificates – authentication

scheme used by IoT devices.

 IAM users, groups, and roles – used by

AWS CLI and web and desktop IoT

applications.

 Amazon Cognito identities – used by the

IoT mobile applications.

 Federated identities – used by web and

desktop IoT applications.

AWS IoT devices use X.509 certificates

issued by a Certification Authority (CA) to be

trusted. The certificates allow usage of

asymmetric cryptography with benefits

regarding the storage of the private key within

the IoT device. The private key does not leave

the IoT device therefore that is a stronger

authentication scheme over client credentials

or bearer token usages. For an IoT device, its

certificate could be revoked and replaced by

other new certificate. That implies a

management of the certificates within entire

IoT device infrastructure. AWS IoT

infrastructure provides the services and tools

to do the following operations [18]:

 Create and register an AWS IoT

certificate.

 Register a CA certificate.

 Register a device certificate.

 Activate or deactivate a device certificate.

 Revoke a device certificate.

 Transfer a device certificate to another

AWS account.

 List all CA certificates registered to your

AWS account.

 List all device certificates registered to

your AWS account.

Two kinds of certificates are creating within

AWS IoT [18]:

 AWS IoT device certificate – created by

the AWS IoT services and tools as AWS

IoT console (options available in

graphical user interface) and AWS IoT

CLI (commands to create X.509

certificate from issued public key or

certificate signing request).

 AWS IoT user certificate – a CA

certificate must be registered with AWS

IoT in order to sign device certificates.

The CA certificate could be created by

using OpenSSL tool. In order to use

users’ certificates, the following stages

must be followed [18]

1. Creating CA certificate – two steps to

be accomplished [18]:

1.1 Generate a key pair by using

OpenSSL tool

openssl genrsa -out rootCA.key 2048

1.2 Generate CA certificate using the private key from the keypair:

openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out

rootCA.pem

2. Registering the CA certificate –

accomplished by following the steps

[18]:

2.1 Get a registration code from

AWS IoT to be used as Common

Name of the private key

verification certificate:

aws iot get-registration-code

2.2 Generate a key pair for the private key verification certificate:

54 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

openssl genrsa -out verificationCert.key 2048

2.3 Create a Certificate Signing Request (CSR) for the private key verification

certificate. The registration code is used for the Common Name field:

As result, some additional information is asked from the user side in the command

prompt:

2.4 Use the CSR to create a private key verification certificate:

2.5 Register the CA certificate with AWS IoT:

2.6 Activate the CA certificate:

3. Creating IoT device certificate – according to [18], the following steps must be

accomplished:

3.1 Generate a key pair:

3.2 Create a CSR for the device certificate:

As result, the following information is asked at command prompt:

openssl req -new -key verificationCert.key –out

verificationCert.csr

Country Name (2 letter code) [AU]:

State or Province Name (full name) []:

Locality Name (for example, city) []:

Organization Name (for example, company) []:

Organizational Unit Name (for example, section) []:

Common Name (e.g. server FQDN or YOUR name)

[]:XXXXXXXXXXXXMYREGISTRATIONCODEXXXXXX

Email Address []:

openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey

rootCA.key -CAcreateserial -out verificationCert.pem -days 500 -sha256

aws iot register-ca-certificate --ca-certificate

file://rootCA.pem --verification-cert

file://verificationCert.pem

aws iot update-ca-certificate --certificate-id xxxxxxxxxxx

--new-status ACTIVE

openssl genrsa -out deviceCert.key 2048

openssl req -new -key deviceCert.key -out deviceCert.csr

Country Name (2 letter code) [AU]:

State or Province Name (full name) []:

Locality Name (for example, city) []:

Informatica Economică vol. 22, no. 3/2018 55

DOI: 10.12948/issn14531305/22.3.2018.05

3.3 Create a device certificate from the CSR:

3.4 Register an IoT device certificate:

3.5 Activate the IoT device certificate:

4. Registering IoT device certificate – a

CA certificate must be used to sign

IoT device certificate. If there are

more CA certificate, the AWS IoT

user has to specify the right CA

certificate to be used in order to sign

the IoT device certificate. There are

two approaches of registering ioT

device certificates [18]:

4.1 Registering the IoT device

certificate manually – following

AWS CLI statement is used to do

that:

4.2 Registering the IoT device

certificate when a first connect

attempt occurs – following

operations must be performed for

automatic registrations:

4.2.1 Set automatic registration

status flag of the CA

certificate when
update-ca-

certificate API is

used:

4.2.2 Alternatively, set automatic registration for register-ca-

certificate API use:

Organization Name (for example, company) []:

Organizational Unit Name (for example, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -

CAcreateserial -out deviceCert.pem -days 500

-sha256

aws iot register-certificate --certificate-pem

file://deviceCert.pem --ca-certificate-pem

file://rootCA.pem

aws iot update-certificate --certificate-id xxxxxxxxxxx

--new-status ACTIVE

aws iot register-certificate --certificate-pem

file://deviceCert.crt --ca-certificate-pem

file://caCert.crt

aws iot update-ca-certificate --cert-id caCertificateId

--new-auto-registration-status ENABLE

aws iot register-ca-certificate --ca-certificate

file://rootCA.pem --verification-cert

file://privateKeyVerificationCert.crt

--allow-auto-registration

file://///rootCA.pem

56 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

The MQTT topic is used for a message publishing when an automatic

registration of an IoT device certificate is done or an IoT device certificate

status is PENDING_ACTIVATION. That MQTT topic is:

caCertificateID is the ID of the CA certificate used to issue the IoT

device certificate.

5. Deactivating CA certificate – useful operation to prevent issuing of IoT device

certificates by using a compromised CA certificate. Deactivation is made by the

following command [18]:

6. Revoking IoT device certificate – useful operation for a compromised IoT device

certificate. update-certificate API is used to do that [18]:

Having an active IoT device certificate within

the AWS IoT infrastructure, the AWS IoT

user can attach IoT devices (called things in

AWS) to that certificate. IoT devices are

registered using the AWS IoT console where

the graphical user interface of that tool

provide management and monitoring options

for IoT devices, certificates and policies.

Also, all above operations regarding the CA

and IoT device certificates can be

implemented by using the same AWS IoT

console tool.

The second example aiming IoT REST API

implementation is Oracle Internet of Things

(IoT) Cloud Service REST APIs by enabling

execution of functions and services by

sending REST calls to Oracle IoT Cloud

Service [17]. In order to enable execution of

functions and services provided by Oracle IoT

Cloud Service, following operations must be

accomplished [17]:

 Device model definition in Oracle IoT

Cloud Service.

 Device registration.

 Device activation.

 Message sending from device to Oracle

IoT Cloud Service.

 Message processing from Oracle IoT

Cloud Service.

Connections between devices (Oracle IoT

Cloud Service clients) and Oracle IoT Cloud

Service are securely established by using

Verisign certificates.

Oracle IoT Cloud Service users must be

registered into accounts and their credentials

are used to establish the privilege layer of the

user. Users use the Certificate Authority

certificate to make the authentication. Once

authentication being done, OAuth2 access

tokens are used to authorize the user to

execute operations over IoT resources

according to its privilege layer. Oracle IoT

Cloud Service users obtain OAuth2 access

token by using Oracle IoT Cloud Service

REST API after their authentication. The

REST scheme to get the access token is [17]:

Method: POST

Server Path: /iot/api/v2/oauth2/token

aws/events/certificates/registered/caCertificateID

aws iot update-ca-certificate --cert-id certificateId

--new-status INACTIVE

aws iot update-certificate --cert-id certificateId

--new-status REVOKED

Informatica Economică vol. 22, no. 3/2018 57

DOI: 10.12948/issn14531305/22.3.2018.05

OAuth2 is an authorization framework

through a limited access is provided to the

user account over HTTP. Requests for

OAuth2 access token use the scope attributes

with following values [17]:

 oracle/iot/activation – it is used when the

activation IoT REST API is called.

 Empty scope – it is used for non-

activation IoT REST API calls.

Oracle IoT Cloud Service REST API uses

JWT as authentication mechanism, containing

the signature generated by specific

cryptographic operations to prove the private

key holding. OAuth2 tokens are included into

JWT to be securely exchanged between IoT

clients and IoT Cloud Service infrastructure.

The JWT structure consists of [17]:

 Header – it is composed by two items:

type of token (JWT) and hashing

algorithm (HS256, RS256).

 Payload – it contains claims for

authorization:

- iss – the issuer (Device Activation

ID, Device Endpoint ID).

- exp – expirations time (in seconds).

- aud – audience

(oracle/iot/oauth2/token).

 Signature – it is generated by considering

the items: the encoded header, the

encoded payload, a key, the algorithm

specified in the header and the signature

generation pattern as:

Algorithm(base64UrlEncode(header) + "." + base64UrlEncode(payload), key)

In [17], some examples to get the activation

token and message token are provided to

guide the Oracle IoT Cloud Service REST

API user how to create requests for such kind

of tokens. The requests are sent by using

cURL utility tool in the command line and the

server response is provided also in the

command line.

The cURL command for getting the activation

token looks like [17]:

curl -X POST

 -H 'Accept:application/json'

 -H 'Content-Type: application/x-www-form-urlencoded'

 --data "grant_type=client_credentials&

client_assertion_type=urn:ietf:params:oauth:client-

assertion-type:jwt-bearer&

client_assertion=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc

3MiOiIwLVlRRlEiLCJleHAiOjE0Njc3NjYyNjMsImF1ZCI6Im9yYWNsZ

S9pb3Qvb2F1dGgyL3Rva2VuIn0.AU9eYChN9EOupzyLoWf0AMZ0QiK4d

nmpA1n5tb_kSSw&

scope=oracle/iot/activation"
http://instance-identitydomain.iot.us.oraclecloud.com

/iot/api/v2/oauth2/token

Considerations regarding the previous cURL

example:

 X – It indicates the REST method used

(POST).

 H – It considers the next parameter as

part of the header request.

 data – Content to be sent as part of the

request.

 Last parameter considers the Oracle IoT

Cloud Service instance together with the

REST path

(iot/api/v2/oauth2/token).

Therefore, the following structures are

considered to send an activation token request

[17]:

 Request Header:

Content-Type: application/x-www-form-urlencoded

Accept: application/json

58 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

 Request Form Parameters:

grant_type=client_credentials

client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-

bearer

client_assertion=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiIwLVlRRlE

iLCJleHAiOjE0Njc3NjYyNjMsImF1ZCI6Im9yYWNsZS9pb3Qvb2F1dGgyL3Rva2VuIn0.A

U9eYChN9EOupzyLoWf0AMZ0QiK4dnmpA1n5tb_kSSw

scope=oracle/iot/activation

The client_assertion parameter is built on the following JWT information [17]:

Header: {

 "typ": "JWT",

 "alg": "HS256"

}

Payload: {

 "iss": "6e5e3e593bcf-1c79",

 "exp": 1467751899,

 "aud": "oracle/iot/oauth2/token"

}

The server response for the above request looks like [17]:

Response Header
HTTP/1.1 200 OK

Content-Type: application/json

Response Body
{

 "expires_in":3600000,

 "token_type":"Bearer",

 "access_token":"677b4afa55236110825ae0a3d38275ad"

}

The cURL command for getting the message token looks like [17]:

curl -X POST

-H 'Accept:application/json'

-H 'Content-Type: application/x-www-form-urlencoded'

--data "grant_type=client_credentials&

client_assertion_type=urn:ietf:params:oauth:client-

assertion-type:jwt-bearer&

client_assertion=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3

MiOiJBQUFBQUFRMEZSMEEtQ0UiLCJhdWQiOiJvcmFjbGUvaW90L29hd

XRoMi90b2tlbiIsImV4cCI6MTQ2OTQ3NDE5M30.oDiGi13Xw1ZJJ3iM

DOSpZLN1NNfTVF8wJuWy2sMzcKKVIUbULeFCUoyd8SZiJBXMQDd4n_d

RtF5vq7or3kGGiKOiWkS3V-r1qqqL0-

o02Hh2tQ4AOHvwMRbEQOGE3lA7doNRd9sr7BR5zQGu4yahCh5581Q_4

B5gV-ZN65gbdt4&

scope="

http://instance-identitydomain.iot.us.oraclecloud.com

/iot/api/v2/oauth2/token

The previous cURL components are [17]:

 Request Header:

Content-Type: application/x-www-form-urlencoded

Informatica Economică vol. 22, no. 3/2018 59

DOI: 10.12948/issn14531305/22.3.2018.05

Accept: application/json

 Request Form Parameters:

grant_type=client_credentials

client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-

bearer

client_assertion=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJBQUFBQUF

RMEZSMEEtQ0UiLCJhdWQiOiJvcmFjbGUvaW90L29hdXRoMi90b2tlbiIsImV4cCI6MTQ2O

TQ3NDE5M30.oDiGi13Xw1ZJJ3iMDOSpZLN1NNfTVF8wJuWy2sMzcKKVIUbULeFCUoyd8SZ

iJBXMQDd4n_dRtF5vq7or3kGGiKOiWkS3V-r1qqqL0-

o02Hh2tQ4AOHvwMRbEQOGE3lA7doNRd9sr7BR5zQGu4yahCh5581Q_4B5gV-ZN65gbdt4

scope=

The client_assertion parameter is built on the following JWT information [17]:

Header: {

 "typ": "JWT",

 "alg": "RS256"

}

Payload: {

 "iss": "0-AECA",

 "exp": 1469474193,

 "aud": "oracle/iot/oauth2/token"

}

The private key of the device is obtained during the activation procedure and it has the

following content [17]:

MIICWwIBAAKBgQDdlatRjRjogo3WojgGHFHYLugdUWAY9iR3fy4arWNA1KoS8kVw33cJibXr8

bvwUAUparCwlvdbH6dvEOfou0/gCFQsHUfQrSDv+MuSUMAe8jzKE4qW+jK+xQU9a03GUnKHkk

le+Q0pX/g6jXZ7r1/xAK5Do2kQ+X5xK9cipRgEKwIDAQABAoGAD+onAtVye4ic7VR7V50DF9b

OnwRwNXrARcDhq9LWNRrRGElESYYTQ6EbatXS3MCyjjX2eMhu/aF5YhXBwkppwxg+EOmXeh+M

zL7Zh284OuPbkglAaGhV9bb6/5CpuGb1esyPbYW+Ty2PC0GSZfIXkXs76jXAu9TOBvD0ybc2Y

lkCQQDywg2R/7t3Q2OE2+yo382CLJdrlSLVROWKwb4tb2PjhY4XAwV8d1vy0RenxTB+K5Mu57

uVSTHtrMK0GAtFr833AkEA6avx20OHo61Yela/4k5kQDtjEf1N0LfI+BcWZtxsS3jDM3i1Hp0

KSu5rsCPb8acJo5RO26gGVrfAsDcIXKC+bQJAZZ2XIpsitLyPpuiMOvBbzPavd4gY6Z8KWrfY

zJoI/Q9FuBo6rKwl4BFoToD7WIUS+hpkagwWiz+6zLoX1dbOZwJACmH5fSSjAkLRi54PKJ8TF

UeOP15h9sQzydI8zJU+upvDEKZsZc/UhT/SySDOxQ4G/523Y0sz/OZtSWcol/UMgQJALesy++

GdvoIDLfJX5GBQpuFgFenRiRDabxrE9MNUZ2aPFaFp+DyAe+b4nDwuJaW2LURbr8AEZga7oQj

0uYxcYw==

The signature is generated by applying the algorithm SHA256withRSA for the payload

of the header.

The server response for the message token request looks like [17]:

Response Header
HTTP/1.1 200 OK

Content-Type: application/json

Response Body
{

 "expires_in":3600000,

 "token_type":"Bearer",

 "access_token":" 6074b571c671fe3cd548a8e668042187"
}

60 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.05

Such kind of previous REST APIs for IoT

have been developed for various

technological frameworks and platforms and

the process is ongoing to spread the

applicability and usability of the IoT.

4. Conclusions

IoT covers a huge range of industries and use

cases by implementing a huge number of

devices and network communication

protocols. Hence, applying security best

practices during IoT deployments has become

a critical requirement of IoT environments

and infrastructures. The challenge is to

synchronize the multitude of protocols used

by IoT deployments related to infrastructure,

device discovery and management, data

protocols and semantic representations,

communication / transport layer,

infrastructure and data security.

Possible solutions to achieve secure IoT

deployments include JavaCard technology

and investigations on those are part of future

researches. One reason to choose JavaCard is

its maturity to support security requirements

within IoT and Industry 4.0 field.

Acknowledgement

This paper presents results obtained within the

PN-III-P1-1.2-PCCDI-2017-0272 ATLAS

project ("Hub inovativ pentru tehnologii

avansate de securitate cibernetică / Innovative

Hub for Advanced Cyber Security

Technologies "), financed by UEFISCDI

through the PN III – "Dezvoltarea sistemului

national de cercetare-dezvoltare", PN-III-P1-

1.2-PCCDI-2017-1 program.

Parts of this paper were communicated and

presented within “The 17th International

Conference on Informatics in Economy” IE

2018, Section “Mobile-Embedded and

Multimedia Solutions”, May 17 – 20, 2018,

“Alexandru Ioan Cuza” University, Iaşi,

Romania.

References
[1] A. Al-Fuqaha, M. Guizani, M.

Mohammadi, M. Aledhari, and M.

Ayyash, “Internet of Things: A survey on

enabling technologies protocols and

applications”, Proc. IEEE Commun.

Surveys Tuts., vol. 17, no. 4, pp. 2347 –

2376, 4th Quart. 2015,

https://ieeexplore.ieee.org/document/712

3563/

[2] I. Andrea, C. Chrysostomou, and G.

Hadjichristofi, "Internet of Things:

Security vulnerabilities and

challenges", Proc. IEEE Symp. Comput.

Commun. (ISCC), Jul. 2015, pp. 180-187

[3] M. Doinea, C. Boja, L. Batagan, C. Toma,

and M. Popa, “Internet of Things Based

Systems for Food Safety Management”,

Informatica Economică, vol. 19, no. 1,

2015, pp. 87-97

[4] D. Hanes, G. Salgueiro, P. Grossetete, R.

Barton, J. Henry, IoT Fundamentals:

Networking Technologies, Protocols, and

Use Cases for the Internet of Things,

Cisco Press, 2017,

http://www.ciscopress.com

[5] A. Minteer, Analytics for the Internet of

Things (IoT): Intelligent analytics for your

intelligent devices, Packt Publishing,

2017, http://www.packtpub.com

[6] M. Popa, C. Toma, C. Boja, and A.

Zamfiroiu, “Privacy and Security in

Connected Vehicles Ecosystems”,

Informatica Economică, vol. 21, no. 4,

2017, pp. 29-40

[7] B. Russell, and D. van Duren, Practical

Internet of Things Security, Packt

Publishing, 2016,

http://www.packtpub.com

[8] D. Slama, F. Puhlmann, J. Morrish and R.

M. Bhatnagar. Enterprise IoT, O’Reilly

Inc. Publishing House, 2016

[9] Wikipedia Industry 4.0:

https://en.wikipedia.org/wiki/Industry_4.

0

[10] Gems Sensors & Controls – Oil and Gas

Applications:

http://www.gemssensors.com/

Markets/Oil-and-Gas

[11] Oracle IoT CS

libraries: http://www.oracle.com/technet

work/indexes/downloads/iot-client-

libraries-2705514.html

[12] Understanding REST from Spring:

https://spring.io/understanding/REST

Informatica Economică vol. 22, no. 3/2018 61

DOI: 10.12948/issn14531305/22.3.2018.05

[13] RESTful API and Taxonomy:

http://searchmicroservices.techtarget.com

/definition /RESTful-API

[14] OWASP Security Cheat Sheet:

https://www.owasp.org/index.php/

REST_Security_Cheat_Sheet

[15] JSON Web Token (JWT) RFC:

https://tools.ietf.org/html/rfc7519

[16] RESTful API Security:

https://dzone.com/articles/restful-api-

security

[17] Oracle IoT Cloud:

https://docs.oracle.com/en/cloud/paas/iot-

cloud/iotrq

[18] Amazon AWS IoT Developer Guide:

https://docs.aws.amazon.com/iot/latest/

developerguide

[19] MatrikonOPC Data Connectivity

Devices:

https://www.matrikonopc.com/data-

connectivity-devices/

Cristian TOMA has graduated from the Faculty of Cybernetics, Statistics and

Economic Informatics, Economic Informatics specialization, within Bucharest

University of Economic Studies in 2003. He has graduated from the BRIE

master program in 2005 and PhD stage in 2008. In present, he is associate

professor at Economic Informatics and Cybernetics Department and he is

member in research structures such as ECO-INFOSOC. Since the beginning -

2005 - he is scientific secretary of IT&C Security Master Program from

Bucharest University of Economic Studies and since 2006, he is in the editorial board of the

SECITC – The Inter-national Conference on Security for Information Technology and

Communications and JMEDS – Journal of Mobile, Embedded and Distributed Systems. His

research areas are in: distributed and parallel computing, mobile applications, smart card

programming, e-business and e-payment systems, network security, computer anti-viruses and

viruses, secure web technologies and computational cryptography. He is teaching in

Department of Economic Informatics and Cybernetics, and IT&C Security Master program. He

has published 3 books and over 50 papers in indexed reviews and conferences proceedings.

Marius POPA has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 2002. He holds a PhD diploma in Economic

Cybernetics and Statistics. He joined the staff of Bucharest University of

Economic Studies, teaching assistant in 2002. Currently, he is Associate

Professor in Economic Informatics field and branches within Department of

Economic Informatics and Cybernetics at Faculty of Economic Cybernetics,

Statistics and Informatics from Bucharest University of Economic Studies. He

is the author and co-author of 9 books and over 140 articles in journals and proceedings of

national and international conferences, symposiums, workshops in the fields of data quality,

software quality, informatics security, collaborative information systems, IT project

management, software engineering.

