
Informatica Economică, vol. 22, no. 3/2018 23

DOI: 10.12948/issn14531305/22.3.2018.03

Automated Code Testing System for Bug Prevention in

Web-based User Interfaces

Dragoș SMADA, Carmen ROTUNĂ, Radu BONCEA, Ionuț PETRE

The National Institute for Research & Development in Informatics

dragos.smada@ici.ro, carmen.rotuna@rotld.ro, radu@rotld.ro, ionut.petre@ici.ro

Automation in testing user interfaces is a prerequisite for overcoming the major weaknesses of

manual testing, such as time consumption, not being able to reproduce the sequence that gen-

erates a bug or the tendency to repeat only the successful steps. Continuous testing represents

an important step in the agile software development cycle because any features and changes

added to the code need to be checked before their propagation to production environment.

Manually testing is a resource and time-consuming process thus the solution would be to make

the entire workflow from committing a change to publishing a new release completely auto-

mated. The solution proposed within this paper is a framework for automated code testing and

bug prevention that relies on Selenium, a framework supporting also headless testing, inte-

grated with a Continuous Integration (CI) server such as Jenkins.

Keywords: UI Testing, Web-Based Interface, Bug Prevention, Automated Testing, Bad Code

Denial, Agile, Continuous Integration, Headless Automated Testing

Introduction

At present, easy access to information and

communication technologies represents one

of the premises of good functioning in modern

society [7]. Software producers are frequently

working improving the applications in the at-

tempt to keep up with the pace imposed by the

modern society needs.

In recent years software development shifted

from the traditional style towards Agile devel-

opment mainly caused by the need to acceler-

ate the launch of software applications on the

market.

Traditional development style implies an ac-

curate but time costly planning, development

and major releases in terms of software prod-

ucts. With Agile development, the software is

produced in short cycles, and frequent re-

leases are preferred. No matter of the chosen

scenario, tests are required for ensuring a reli-

able release of the software that meets all the

envisioned business and technical require-

ments.

Validation is defined as: “Confirmation by ex-

amination and through provision of objective

evidence that the requirements for a specific

intended use or application have been fulfilled

[11].

Testing for Validation should confirm that the

software contains the feature set and operates

according to the requirements established be-

fore development began. In practice, the ac-

tual cost of software testing is determined by

how much it costs to reduce uncertainty of the

software quality to the appropriate amount for

that application [4].

Manual software testing obviously requires

human resources, interface analysis and eval-

uation. A thorough manual testing is usually

performed in long periods, but due to the in-

creased pressure from the management, the

testers are forced to release the applications

more quickly, a fact that often affects the qual-

ity of the application. Therefore, the producers

turned to solutions for performing automated

testing, which can be viewed as the automated

version of manual testing.

In practice there is still a lack of knowledge in

the subject of automated testing efforts and

pay-off. In a survey of over 700 test profes-

sionals, 70-percent of respondents stated they

believe that automation for software testing is

a high payoff endeavor; however, they were

not sure why that was or how automation fit

with their project [2]. This shows there is an

initial optimism approaching automated test-

ing but a lack of deeper understanding in order

to proceed in a certain business case.

1

24 Informatica Economică, vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.03

2 Continuous Software Delivery

Continuous software delivery is a software en-

gineering approach in which developer teams

produce software in short cycles, ensuring that

an application can be released safely at any

time. This approach describes different as-

pects of iterative software applications devel-

opment such as continuous integration, con-

tinuous delivery, continuous testing and con-

tinuous deployment [3]. It must be noted that

the concept of continuous delivery is not sim-

ilar with continuous deployment, concept

which implies that the updates are automati-

cally deployed to the production environment.

In continuous delivery the team takes the nec-

essary measures to ensure the updates can be

deployed to production but may choose not to

do it, usually due to business reasons. To im-

plement and work in continuous deployment,

one must be doing continuous delivery.

Continuous integration refers to the process of

permanently adding new commits to source

code. Each team member submits work as

soon as it's finished and in this way each de-

veloper knows immediately if their code will

meet minimum standards and they can imme-

diately fix bugs.

Continuous delivery is based on continuous

integration and each commit is automatically

tested at the time it is pushed. In addition to

the automation component and integration

testing, a continuous delivery system will in-

clude functional tests, regression tests, and

possibly other tests, such as pre-generated ac-

ceptance tests. After passing the automated

tests, the code changes are sent to a standby

environment.

Fig. 1. Test Driven Development

Continuous deployment adds more automa-

tion to the software development process. Af-

ter passing all the automated delivery tests,

each commit is deployed into production as

soon as it is available [8].

2.1 Agile development

Agile emerged in the 1990s from different

lightweight software approaches as a re-

sponse to some project managers’ dislike of

Informatica Economică, vol. 22, no. 3/2018 25

DOI: 10.12948/issn14531305/22.3.2018.03

the rigid, linear Waterfall methodology. It fo-

cuses on flexibility, continuous improve-

ment, and speed [15].

Through this approach, software is developed

in short cycles, thereby ensuring reliability for

timely releases. This results in building, test-

ing and releasing the software faster and more

frequently. The approach has proven to reduce

cost, time and the risk of delivering critical

changes to production, thereby allowing in-

cremental updates to the production system

[5].

Agile is an umbrella concept that includes

other methodologies such as Scrum, Extreme

Programming, Kanban, Crystal etc.

The main phases in the Agile development cy-

cle are Planning, Performing requirements

analysis, Product Design, Development and

Testing. The phases are not consecutive, they

are flexible and can be done in parallel as the

design and requirements often change during

product development and testing.

In Agile there is continuous feedback and

frequent face-to-face interactions, the project

team and stakeholders understand and priori-

tize the right requirements. Agile teams use

user-story backlogs to manage the require-

ments. Before starting an iteration, the team

agrees with the requirements they should

meet for the next delivery. This collaborative

approach ensures that the most important fea-

tures are prioritized. Requirements are con-

tinually updated throughout the project as

new information is presented.

2.2 Kanban

It is a visual frame used to implement Agile

that shows what it should produce, when to

produce it and how much it produces. This en-

courages small incremental changes to an ex-

isting system and does not require a specific

configuration or procedure. Kanban board is

used during development - which is a tool for

implementing the Kanban project method.

Traditionally, this tool was a physical plate,

with magnets, plastic chips, or notes on a

white board to represent work items, but now

more and more project management software

tools have created Kanban online panels.

2.3 SCRUM

Scrum is an agile methodology for managing

and planning software projects. A framework

within which people can address and solve

complex and adaptive problems [1]. The

Scrum team consists of a Product Owner, the

Development Team, and a Scrum Master.

Scrum Teams are self - organizing and cross-

functional. Self-organizing teams choose how

best to accomplish their work, rather than be-

ing directed by others outside the team [6].

The Development Team usually consists in

few members, yet not smaller than three peo-

ple.

The functionalities, bug-fixes and improve-

ments are defined and tracked in Product

Backlog. The development process occurs it-

eratively, each iteration is called Sprint and

has 2 to 4 weeks. At the beginning of each

Sprint, the team holds a meeting where the

items in the Backlog are organized and tasks

are allocated to developers. Usually team

members are requesting tasks by themselves,

based on their project experience and pro-

gramming knowledge. During the Sprint the

team meets for briefing sessions and tasks can

be re-allocated to ensure that Sprint can end

successfully.

At the end of the Sprint the team holds another

meeting, the review is performed on each as-

signment and any unfinished tasks are moved

in the next sprint.

2.4 eXtreme Programming - XP

eXtreme Programming is a type of software

development designed to improve the quality

and ability to respond to changing customer

requirements. There are systems whose func-

tionality is expected to change every few

months but in many software environments

dynamically changing requirements is the

only constant. In an XP team the developers,

the managers and customers as well, work all

together asking questions, negotiating scope

and schedules, and creating functional tests.

[http://www.extremeprogramming.org/]

The XP principles include feedback, assuming

simplicity and adopting change. XP iterations

last one or two weeks long compared to Scrum

teams which work in iterations lasting 2 to 4

26 Informatica Economică, vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.03

weeks. The XP teams are open to changing the

content of their iteration if the work hasn’t

started yet on a particular feature, thus a new

feature prioritized by the customer can be

added to the existing sprint and the team will

start working on it. XP recommends engineer-

ing practices, specifically techniques like test-

driven development, the focus on automated

testing, pair programming, simple design, re-

factoring, continuous integration and so on.

3 Automation of Software Testing

In the Continuous software development cy-

cle, testing is a prerequisite before propagat-

ing changes in the production environment.

Automation is required for overcoming the

major weaknesses of manual testing, such as

time consumption, not being able to reproduce

the sequence that generates an error, low cov-

erage caused by the tendency to repeat ac-

tions, etc. Automation process relies on strat-

egies, tools and artefacts that augment or re-

duce the need for manual or human involve-

ment or interaction in unskilled, repetitive or

redundant tasks [12]. The process of automat-

ing the software testing is similar to a software

development process. A big difference con-

sists in the test assertion document which

must be created before starting the develop-

ment. When it comes to a software there are

several types of tests that can be automated

[12]:

 Functional tests – checking the opera-

tions behavior

 Regression tests – checking the system

behavior

 Stress tests – simulating maximum loads

to determine the capability

 Performance tests – check if the system

is adequate and meets the expectations

 Loading tests - determining the points at

which the capacity and performance of

the system become degraded to the situ-

ation that hardware or software upgrades

would be required

In the automation process, one of the goals is

to run tests without user assistance.

Continuous testing does not eliminate manual

testing from the continuous delivery model.

Using continuous testing, the team will con-

stantly test the up-to-date version of the code

available. Continuous testing still involves

manual exploration tests and user acceptance

tests of the new modules before implementing

the corresponding automated tests. This test-

ing approach differs from traditional testing as

the software is expected to change over time,

regardless of a defined launch schedule.

4 Use case of automated testing for web

platform

The use case presented in the article repre-

sents the testing automation of a complex

web application used by the operators at the

ICI Bucharest - Romanian Top Level Domain

Registry. Operators’ authentication in the app

is performed by username and password,

with users’ roles and access levels being al-

ready defined.

The development team is composed of six

members working on Scrum methodology, in-

cluding the Scrum master. Every Sprint lasts

for 2 weeks. For development, organize and

discussions, the team uses Atlassian Stash, a

Git repository management solution for enter-

prise teams. It allows everyone to easily col-

laborate on Git repositories.

4.1 Application and environment

The system functions over a middleware ar-

chitecture, meaning that it provides means to

connect the various software blocks into an

application where these can exchange infor-

mation with relatively easy-to-use mecha-

nisms. Middleware deals with component

communication modes and can be used in a

wide range of domains. The middleware pro-

vides a set of commands through an API for

running specific tasks. The web applications

interact with middleware through API calls

and are widely used by operators and clients.

These applications are under continuous de-

velopment and integration, have a stable user

interface and initially were manually tested

before propagation to production environ-

ment. The manual testing process was ex-

tremely time consuming for developers and

operators, specifically before releases, there-

Informatica Economică, vol. 22, no. 3/2018 27

DOI: 10.12948/issn14531305/22.3.2018.03

for we started investigating planning and de-

veloping an automated testing solution.

The servers and the machines are monitored

with dedicated solutions, and the middleware

includes unit testing, thus it was as important

to design automated functional tests on the cli-

ent side to check that there are no errors in the

code, all elements are visible and operating

correctly, as this application is highly used,

with thousands of operations performed each

day.

According to OASIS Test Assertions Guide-

lines Version 1.0 [13], a document containing

assertion tests must be developed before im-

plementing actual tests. The document should

be updated whenever a change in the web-side

platform is required. Therefore, the starting

point consisted in the elaboration of the test

assertions document containing all the opera-

tions that the user can perform on the app.

This was a time-consuming process and in-

cludes all the inputs and outcomes of the user-

side operations. To decrease pressure on de-

velopers, the operators participated in the de-

scription of the tests.

4.2 Technologies for developing testing au-

tomation

One of most widely used tools for automated

code testing and bug prevention is Selenium,

a framework supporting also headless testing,

which can be integrated with a Continuous In-

tegration (CI) server such as Jenkins or Travis.

Selenium consists of a suite of tools for auto-

mating web browsers and provides a complex

set of testing functions for web all types of

web applications across multiple platforms, as

it runs in most browsers and operating sys-

tems. It is highly flexible because it allows

multiple options for locating and testing UI el-

ements with the goal of validating expected

test results against real-time application be-

havior.

Selenium provides interoperability with most

programming languages such as Python, C#,

Java, Ruby, thus it can easily be integrated in

testing frameworks. Selenium basically con-

sists of two main components the Selenium

Webdriver and Selenium IDE. Selenium

Webdriver is the core engine driving the

browser natively as a user either locally or on

a remote machine using the Selenium Server.

Selenium WebDriver accepts commands and

sends them to a browser through a browser-

specific browser driver, which sends com-

mands to a browser and retrieves results. Se-

lenium WebDriver does not need a special

server to execute tests. Instead, WebDriver di-

rectly starts a browser instance and controls it

[9].

Selenium IDE is a complete integrated devel-

opment environment (IDE) for Sele-

nium browser-based regression automation

suites and tests that enables fast development

of bug reproduction scrips. It facilitates re-

cording, playing, editing, and debugging tests.

Selenium IDE was initially implemented as

a Firefox Add-On and it is recently available

on Chrome also.

Phantom JS is a headless WebKit scriptable

with a JavaScript API for web page interac-

tion automation that enables navigation, tak-

ing screenshots and test assertions. All these

key features make it a common tool used to

run browser-based unit tests in a headless en-

vironment.

Being driven by the need for testing web ap-

plications headless on a CentOS distribution

we started analyzing the various options for

designing the architecture of a testing system

that could ensure flexible and accurate appli-

cation testing. As a first step there were ana-

lyzed several configurations but only two

were chosen for actual implementation and

capabilities testing: Selenium Webdriver with

Firefox browser used with Xvfb display server

and Selenium Webdriver with Phantom JS.

There were generated twenty test cases using

Selenium IDE, then were exported and run.

One of the tests performed to a form, consist-

ing in asserting true the presence of a text field

after clicking a “Submit” button failed on

PhantomJS although using Firefox the test re-

turned “ok". The functionality was then man-

ually tested and was working.

The conclusion was that even though Phan-

tomJS is a functional headless browser, it is

not a real browser that users actually use while

Firefox run with Xvfb provides much more

accurate tests, within current environment.

28 Informatica Economică, vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.03

Selenium is a powerful automation testing

tool as it is extremely flexible as it allows add-

ing new functionalities to both Selenium test

scripts and Selenium’s framework to custom-

ize test automation.

Jenkins, a Java-based open source solution is

a server used to deliver continuous build, is

the tool to complete this task. It has the capa-

bility to monitor any job defined as a cron,

SVN or GIT. A continuous integration server

is designed to automatically or manually trig-

ger complex workflows to build, test, and de-

ploy software components [10].

Although it is a platform focused on building

software systems, Jenkins-CI can easily be ex-

panded with over 800 extensions for complex

computational tasks. We can use Jenkins’s

powerful distributed model for CI to run our

Selenium tests in parallel on a Jenkins cluster.

For an Agile team, Jenkins provides every-

thing needed for a robust continuous build

system. Jenkins’ extensibility allows the sys-

tem to adapt to many different pre-existing en-

vironments. To ensure code stability, good

collaboration between developers and fast re-

lease cycles, Jenkins is set up to build sele-

nium tests automatically on every pull re-

quests made on the Stash Server.

The initial plan was to have a high degree of

granularity and to create tests for each ele-

ment. During the development phase it was

noted that this is time-costly as each test im-

plied authentication, form-completions proce-

dures, run middleware commands, test itself

and logout. As a result, the team changed the

approach to create larger tests, for example a

single test for an entire form instead creating

test for each field. This decreased the granu-

larity level but the time savings were a consid-

erable advantage.

4.3 Automated testing system

The environment presented above in Chapter

4.1 runs on Linux based servers. In this con-

text the main concern that arises when de-

signing the architecture of a system for func-

tional testing of web applications is that there

is no display output for the browser to launch

in. To overcome this issue the team config-

ured the tests to launch the browser virtually

using Xvfb virtual frame buffer server and

Firefox.

Detailed test cases were specified in the test

assertion documents and 119 tests were cre-

ated for covering them. The work procedure

was to develop each test in Selenium IDE, in-

stalled in Firefox installed on a machine with

display output. The tests included assertions

for checking the presence of elements on the

web page and continued with checking the

messages that were returned if one or more

fields were not filled in or filled in incorrectly.

After all these checks, the fields are filled with

valid data (e.g., valid email), the data is sent

and the confirmation / success message is rec-

orded. Programmers decided depending on

the case which is the best option to check the

presence of the elements - wait for, assert

presence, verify. Each of these procedures

have several options. From the Selenium IDE

short menu, one can manually select the re-

quired assertion command from a list of com-

mands provided in the Recording Addition.

Each Selenium test was recorded and exported

as Python2 unit test and included in a single

Test Suite.

The middleware API was often used to per-

form certain tasks in the background and de-

crease the time required by test run – instead

of using web forms to create data (registrant

details, domain information etc), API com-

mands were used for this tasks.

The figure bellow shows the workflow of the

testing system using Jenkins Continuous Inte-

gration Server:

Informatica Economică, vol. 22, no. 3/2018 29

DOI: 10.12948/issn14531305/22.3.2018.03

Fig 2. Workflow of the testing system

The software developer commits the code into

the local repository, then pushes the code onto

the stash server in its own repository. Once the

changes are pushed, here are reviewed by the

scrum master, then the stash server triggers a

webhook which notifies the Jenkins server -

the continuous integration server. Jenkins

pulls the code, then sets up the test environ-

ment and runs the selenium tests.

Then creates an email report for all the tests

and sends it to development team. If any of the

tests fail, the code is rejected and the devel-

oper must review it and correct it. If test suite

runs successfully the software is deployed into

the production environment.

The following figure is an Archimate diagram

showing the artefacts, functions and re-

sults(test reports) and relationships between

them in a continuous integration environment

using Jenkins:

 Fig. 3. Continuous integration workflow with Jenkins CI

30 Informatica Economică, vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.03

Impact evaluation

The period taken into consideration is six

months. During these time, the system was

triggered at each code submission and also run

manually by the Scrum Master to ensure reli-

ability.

Table 1 presents details of the automated test-

ing system runs.

Table 1. System runs

Code operations Details

Code submissions 174

Tests runs 206

Success 166

Failures 40

Average duration (minutes) 38

Updates in the testing system 22

Each failure was reported to the developer that

submitted broken code and to the specified re-

viewers. The code submission was automati-

cally denied from production environment.

The overall impact of the deployed system

was a decrease in time spent for testing and a

decrease in the number of bugs in the produc-

tion environment. Initially there were 5 devel-

opers and 3 operators testing the system man-

ually before each major release for approxi-

mately 1 week and after the automated testing

system implementation the number reduced to

2 developers and 1 operator performing man-

ual tests.

Disadvantages

The development and maintenance of an auto-

mated testing solution requires considerable

effort on the development team and costs on

the client when it comes to complex web ap-

plications, especially when the user interface

changes frequently. In these cases, it can

prove a hard task to create and maintain auto-

mated tests for dynamic contents.

The assertion document must be elaborated

considering all the aspects, including different

account types in case the displayed content or

the client interface is different. These situa-

tions require additional development effort.

5 Conclusions

Automated software testing primarily reduces

human errors, either in development or in

manual testing. Test results can be stored in a

database and advanced statistics can be devel-

oped. The decision on whether to perform au-

tomated tests varies from one organization to

another, but in times where Agile develop-

ment is spreading for faster software develop-

ment, the automation of tests becomes a re-

quirement for a successful implementation.

Testing automation on user interfaces is the

solution when the interface is stable and pro-

vides key elements that are rarely or never

changed. The alteration of the interface im-

plies the reconstruction of test-cases and an

analysis on costs-benefits must be done by the

client prior to the decision of developing au-

tomated tests.

By implementing automated testing, the soft-

ware producers gain significant cycle-time

and quality improvements. The time cycles

for software releases are shortened and the re-

liability of the UI is increased.

References

[1] Alexandros, N. K., Sakas, D. P., Vlachos,

D., and Dimitrios, N. K. (2017). Compar-

ing scrum and xp agile methodologies us-

ing dynamic simulation modeling. In Stra-

tegic Innovative Marketing, pages 391–

397. Springer

[2] Elfriede, D., Garrett, T., Gauf, B.. Imple-

menting automated software testing: How

to save time and lower costs while raising

quality. Pearson Education, 2009.

[3] Lianping, C. "Continuous Delivery: Over-

coming Adoption Obstacles", Continuous

Software Evolution and Delivery (CSED)

IEEE/ACM International Workshop on,

pp. 84-84 , 2016.

Informatica Economică, vol. 22, no. 3/2018 31

DOI: 10.12948/issn14531305/22.3.2018.03

[4] Pestak, T., Rowell W., Automated Soft-

ware Testing – Practices and Pitfalls,

2017, STAT COE-Report-02-2017

[5] Sitaraman, S., Bar, R., Test Automation

Strategies in a Continuous Delivery Eco-

system, Cognizant, 2016

[6] Schwaber, K. & Sutherland, J., The scrum

guide. 2016.

[7] Udroiu, M & Vevera, V. (2018). LIFE-

LONG LEARNING FOR RAISING CY-

BERSECURITY AWARENESS. 5381-

5387. 10.21125/inted.2018.1272.

[8] Continuous Software Development.

Available: https://searchsoftwarequal-

ity.techtarget.com/definition/Continuous-

Software-Development.

[9] Selenium HQ browser automation - docu-

mentation. Available: https://www.seleni-

umhq.org

[10] Jenkins - documentation. Available:

https://wiki.jenkins-ci.org

[11] Standard Glossary of Terms Used in

Software Engineering (2011). Available:

https://www.astqb.org/documents/Stand-

ard-glossary-of-terms-used-in-Software-

Engineering-1.0-IQBBA.pdf

[12] Automated Testing Advantages, Disad-

vantages and Guidelines. Available:

http://www.exforsys.com/tutorials/test-

ing/automated-testing-advantages-disad-

vantages-and-guidelines.html

[13] OASIS Test Assertions Guidelines Ver-

sion 1.0. Available: http://docs.oasis-

open.org/tag/guidelines/v1.0/testasser-

tionsguidelines.html

[14] Extreme Programming http://www.ex-

tremeprogramming.org/

[15] What's the Difference? Agile vs Scrum vs

Waterfall vs Kanban. Available:

https://www.smartsheet.com/agile-vs-

scrum-vs-waterfall-vs-kanban

Dragoș SMADA graduated the Faculty of Electronics, Telecommunications

and Information Technology in 2005. In 2012 he graduated the Documents

Information Management Master program organized by the University of Bu-

charest. Currently he works as a Senior Researcher at I.C.I Bucharest. His

main areas of interest are Big Data, Internet of Things, software engineering,

automated testing, information security, software architecture. He participated

in both national and international research projects in the IT&C. He published

as author and co-author of journal articles and scientific presentations at conferences.

Carmen ROTUNĂ has graduated the Faculty of Mathematics and Computer

Science, University of Bucharest Database and web technologies Master pro-

gram. Currently she works as a Scientific Researcher with expertise in Software

engineering, eHealth, eServices, eGovernment, IoT, Big data at the “National

Institute for Research & Development in Informatics”, Bucharest. She was a

team member in several international and Romanian research projects, three of

them in the eServices domain: “Simple Procedures Online for Cross-border

Services (SPOCS)“, Electronic Simple European Networked Services(e-SENS) and The once-

only principle project(TOOP), where she is currently the WP2 leading architect for the Roma-

nian team and piloting coordinator. She published several articles, co-authored project deliver-

ables and collaborates as a reviewer for scientific publication

Radu BONCEA is a Researcher at I.C.I. Bucharest. He has been involved in

several large European projects such SPOCS, eSENS, Cloud for Europe and

The Once Only Principle. As a Ph.D. student at Electronics, Telecommunica-

tions and Information Technology, he’s interested in IoT and Cloud Compu-

ting related technologies.

https://www.seleniumhq.org/docs/01_introducing_selenium.jsp
https://www.seleniumhq.org/docs/01_introducing_selenium.jsp
https://wiki.jenkins-ci.org/
https://www.astqb.org/documents/Standard-glossary-of-terms-used-in-Software-Engineering-1.0-IQBBA.pdf
https://www.astqb.org/documents/Standard-glossary-of-terms-used-in-Software-Engineering-1.0-IQBBA.pdf
https://www.astqb.org/documents/Standard-glossary-of-terms-used-in-Software-Engineering-1.0-IQBBA.pdf
http://www.exforsys.com/tutorials/testing/automated-testing-advantages-disadvantages-and-guidelines.html
http://www.exforsys.com/tutorials/testing/automated-testing-advantages-disadvantages-and-guidelines.html
http://www.exforsys.com/tutorials/testing/automated-testing-advantages-disadvantages-and-guidelines.html
http://docs.oasis-open.org/tag/guidelines/v1.0/testassertionsguidelines.html
http://docs.oasis-open.org/tag/guidelines/v1.0/testassertionsguidelines.html
http://docs.oasis-open.org/tag/guidelines/v1.0/testassertionsguidelines.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

32 Informatica Economică, vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.03

Ionuț PETRE graduated the Faculty of Electronics, Telecommunications and

Information Technology in 2005. He is a PhD student at University Lucian

Blaga from Sibiu, Faculty of Management. Currently he works as Researcher

at I.C.I Bucharest. His main areas of interest are Internet of Things, e-Govern-

ment, Big Data, software engineering, automated testing, digital libraries. He

is involved in research projects specific to the Information Society. His re-

search was published in journal articles and proceedings of conferences.

