
Informatica Economica vol. 22, no. 2/2018  81 

DOI: 10.12948/issn14531305/22.2.2018.08 

Generating Antivirus Evasive Executables Using Code Mutation 

 

Stefan Sabin NICULA 

The Bucharest University of Economic Studies, Romania 

niculastefan21@gmail.com 

 

The paper is focus around developing a utility tool based on a python component and a C++ 

stub in order to compile executable Windows files that are capable of staying undetected to 

Antivirus solutions. The research process was focused around Antivirus software's ability to 

detect a malicious file and methods of bypassing the identified techniques. Dependencies and 

auxiliary links of the project are defined as inputs from the user as well as support software 

and frameworks designed to provide malicious payload with listeners and handlers for the 

generated shellcode. Overall, the utility tool is able to receive shellcode and one encryption 

key as input and generate malware in the shape of a Windows executable file that is able to 

successfully run and bypass Antivirus detection. 

Keywords:  Antivirus bypass, Antivirus evasion, Executable malware, Shellcode execution, 

Undetected virus, Obfuscation techniques 

 

Introduction 

The Windows operating system is heavily 

based on Portable Executable file format also 

known as PE files. This specific file format 

defines the encapsulation structure of the data 

for executable files, object code and dynamic 

link-libraries. This paper will focus on 

compile-time mutations for executables in the 

form of .exe file which are an extension of the 

PE format. Other extensions of the PE file 

format are .dll, .sys, .ocx, .efi, .scr. 

The most common executable file .exe is also 

the most used one for creating and executing 

malware or malicious code. For the purpose of 

controlling the execution of such files or other 

corrupted files, antivirus solutions were 

developed. These solutions are specifically 

built in order to identify not only PE corrupted 

or compromised files but also other infected 

types of files from the system as well. 

Even though these solution were created, the 

area of cover for trying to control all the 

possibilities for malicious or infected files has 

almost infinite proportions. However, there 

are certain patterns and templates, behaviors 

and actions that an antivirus solution can look 

for in order to try and fingerprint a specific 

files as bad intended or not. 

Regarding the intentions of the files, the 

antivirus solution should also focus on trying 

not to interfere with the normal flow of the 

system, specifically with the normal files of 

the system. We can define a normal file, a file 

that has not been created or modified to cause 

harm, data loss or to have any negative impact 

over the system and its data. This knowledge, 

however, can actually be used and is actively 

used by attackers in order to forge malwares 

that are behaving like a normal legit 

executable but actually have malicious 

purposes and cause damage to the system. 

When speaking of attackers, they can be 

defined as malicious actors from outside the 

target that are interfering with the system in an 

unauthorized manner or entities and people 

that are specifically employed or contracted in 

order to simulate or replicate these kind of 

malicious activities with corresponding 

authorization letter. Certain projects are 

specially designed in order to test the 

mentioned antivirus solutions and create real 

malware attack simulations in the means to 

improve future protection mechanism and 

asses the overall strength of the entity’s 

protection and prevention actions against 

these types of attacks. 

These types of projects have many different 

forms and names and can be part of a bigger 

activity that challenges the organization’s 

overall protection methods and effectiveness. 

They can be found as Purple Teaming, 

phishing attacks, Red Team engagement or 

most commonly known as Penetration Testing 

project. A Penetration Testing engagement, 

1 



82  Informatica Economica vol. 22, no. 2/2018 

 

DOI: 10.12948/issn14531305/22.2.2018.08 

from the attacker’s perspective in terms of 

hacking context, is defined as a group or a 

team of white hat hackers that are attacking 

the organization’s informatics systems and 

whole infrastructure in terms of simulating a 

full fledge cyber-security attack. From these 

simulations and attacks, we can note the 

activities and efforts in trying to successfully 

evade any antivirus solution that the 

organization may be placed for its systems. 

 

2 Problem Formulation 

There is a big percentage of situations when 

the team members who are executing a 

Penetration Testing engagement are faced 

with the challenge of successfully bypassing 

an antivirus protection held in-place. These 

situations can vary from social engineering 

efforts, fake web-pages and phishing 

campaigns to planted USB sticks with PE 

executables or other kind of malicious files.  

Most of the time, the malicious files and mail 

attachments can be in the form of macro-

enabled documents designed for exploiting 

the macro functionalities of the Office suite or 

.hta files that are executed by the browser. 

However, there are specific situations when 

there is a need for a PE executable to be 

delivered for the target in scope. In this case, 

certain steps may be required in order to 

successfully try and evade an antivirus 

protection. There are certain unwritten rules 

that an attacker must follow in order to try and 

evade multiple detection and prevention 

mechanism that an antivirus solution is 

presenting. These rules are strongly related to 

the defense mechanism that an antivirus 

solution is using in order to successfully 

identify and remove any potential threat. 

 

2.1 Detection techniques 

Among the most common used techniques, 

we can note two different approaches in which 

they are grouped by: static analysis and 

behavior or dynamic analysis. 

The main difference between these two 

groups is that the static analysis is usually 

made by the antivirus solution on a suspicious 

file by scanning the file with no actual 

execution or before the execution takes place. 

This includes hashing and fingerprinting the 

potential malware, detecting the obfuscation 

of packing level a conducting analysis of the 

portable executable structure owned by the 

program. Further analysis can take place in the 

form of analyzing against strings, dynamically 

linked libraries and functions as well as other 

disassembler actions. 

On the other hand, the behavior analysis takes 

place when the file is being executed. In that 

time, the antivirus uses hook functions in 

order to link with the malware and hijack its 

execution flow. Among other techniques, the 

scanning process is observing the outbound 

and inbound network traffic, any suspicious of 

powerful Windows API function invoke or 

other dangerous actions and activities that the 

executable may imply. 

While trying to successfully bypass an 

antivirus protection with a specially forged 

malware, an attacker should bear in mind 

these two defined main techniques when 

developing his solution. From different 

experiences, it is fair to say that a lot more 

effort requires and should be placed in trying 

to evade dynamic analysis as this type of 

technique is a more powerful one in terms of 

detection. [7] 

 

2.2 Evasion techniques 

From an attacker’s perspective, with all the in 

mind, a crafted malicious PE file should not 

only be statically unique every compile time 

but it should also be able to modify its 

behavior affectively in order to bypass the 

dynamic and static scanning of the antivirus 

solution all together. 

Regarding the static analysis, the hash of the 

executable should always be different from 

another former version of itself, even if the 

inputs are the same. In this way, the most 

common fingerprint technique can be 

avoided. One thing to look closely when 

trying to avoid static detection is making a 

stub being undetected in empty mode. We can 

define the stub as a program or a sequence of 

code that processes and finally executes an 

arbitrary given payload or shellcode. We refer 

as the empty mode to the state of the stub not 

being initialized with the future shellcode.  



Informatica Economica vol. 22, no. 2/2018  83 

DOI: 10.12948/issn14531305/22.2.2018.08 

If the stub is not being detected then further 

actions should be taken in order to keep the 

malware undetected. Before inserting the 

shellcode inside the stub, a proper encryption 

and obfuscation technique should be made for 

the payload. This will greatly help in keeping 

the stub and the whole program under the 

radar. 

On the other side, against the behavior 

analysis, it is always a good choice to encrypt 

the outbound connections if the malware is 

focused on executing a reverse shell. Most 

antivirus solutions have started to fingerprint 

different common RAT utilities by 

fingerprinting the transport layer starting 

sequence. For example, Windows Defender 

can successfully identify the Metasploit 

meterpreter RAT by looking into the first 

sequence of the transport layer and certificate 

negotiation. To avoid getting the reverse shell 

interrupted, another step should be made in 

terms of configuring the encryption method, 

more specifically enabling the certificate 

usage.  

Regarding the certificates, another common 

detection technique is based on fingerprinting 

the default certificates for common RAT 

utilities [1]. This can be easily turned in the 

attacker’s favor by changing the certificate 

with a custom one. 

 

3   Problem Solution 

For the implementation of the defined 

concepts, I used a combination of two 

programming languages packed in two 

different components and further combined 

with one another. The first main component is 

a python-based script that is taking care of the 

file manipulation processes along with 

shellcode injection, manipulation and stub 

compilation. 

For the stub template, I used a C++ program 

defined as the second part of the utility tool. 

The stub main purpose is to host and execute 

the given payload further defined as a 

sequence of obfuscated shellcode.  

The choice for a python main script, among 

others, was the modularity and portability of 

the language. The usability of the 

programming language makes it a good 

choice for working with cross-compilation, 

payload preparation and other mechanisms 

used for the proof of concept project. 

On the other hand, the C++ part is great for 

low level programming, more specifically for 

having access to memory allocation function, 

working directly with pointers and overall 

having a deeper access to Windows API 

functions. 

In order to link both components of the tool, I 

used a Linux based system that is capable of 

cross-compiling the C++ stub. For the cross-

compiling function, a good choice is mingw64 

program. The main difference between 

compiling from Linux and compiling directly 

from Windows host is the code weight and 

dependencies that Windows is adding to the 

stub compilation. Of course, the mingw 

program can also be ported to Windows 

system as well but if Visual Studio is used, for 

example, it will compile the C++ source code 

with more dynamic libraries added and thus 

will make the overall executable more heavy 

weighted in terms of dependencies and size. 

 

3.1 Stub obfuscation 

The first action that should be taken for the 

goal of the project is to make a strong stub that 

is capable of staying undetected with or 

without the payload. This is, in fact, the 

definition of the malware executable that will 

be ultimately compiled and executed on the 

antivirus protected host. First off, the C++ 

template should contain functions that are DE 

obfuscating the shellcode, loading the 

shellcode in-memory and finally executing it. 

These functions and methods should have a 

layer of obfuscation. This action can be 

implemented in different ways. For example, 

there can be dummy functions that are calling 

other dummy functions and in the end, will 

call one of the main functionalities of the stub. 

Or the obfuscation techniques could allow 

partial functionalities to be completed and 

later in another method continued with the 

execution flow.  

Another ground rule that must be taken is to 

run and load everything related to shellcode in 

memory. Even if the antivirus solution does 

have higher local privileges on the machine in 



84  Informatica Economica vol. 22, no. 2/2018 

 

DOI: 10.12948/issn14531305/22.2.2018.08 

order to make Windows API hooks, it does not 

have the necessary rights to bypass kernel 

protection against reading and modifying 

another process’s memory. If the shellcode or 

malicious code is touching the disk by any 

means, it will endanger the potential 

execution of the program and has a very high 

chance of detection. 

 Another step to further obfuscate the C++ 

source code is to implement encryption and 

decryption mechanisms for packing and 

unpacking the shellcode received as input. 

Finally, the stub should delay the shellcode 

execution as much as it can, given a relatively 

decent time. This can be achieved by either 

adding extra dummy code that is loading 

random bytes in memory, making dummy 

operations with files, decrypting and 

encrypting arbitrary chosen data and other 

techniques that are trying to mimic the true 

behavior of the program without actually 

affecting other processes and make external 

contact. All of these operations must be 

chosen carefully in order not to tamper with 

the actual execution flow of the program and 

to prevent the original shellcode alteration. 

 

3.2 Python program functionality 

As the main utility program of the set-tool, the 

python acts like a controller. The main 

responsibility is to obtain the shellcode, 

encrypt it, pass it to the stub and finally 

compile the template into an executable file. 

For this matter, the python script can be made 

simple and clean and no further obfuscation 

action should be undertaken. However, the 

script must contain a strong algorithm that 

will obtain the shellcode and properly encrypt 

it. By the time it reaches the stub, the payload 

should be encrypted and not decipherable. 

This action will greatly increase in protecting 

the executable against static analysis. 

Another important task is compiling the whole 

stub with the payload injected into an 

executable file. This can be achieved by 

directly calling the mingw64 program [2] with 

the help of system commands. The python 

program is receiving as input from the user the 

file where the shellcode is placed and the 

encryption key (currently defined as one 

length key) that will be used for encrypting the 

shellcode inside the python program and later 

injected inside the C++ stub. 

 

3.3 Shellcode generation and listener 

The main input received from the user of the 

evasion utility tool is the shellcode that will be 

primarily used to execute the user’s 

intentions. The second part of the input is 

defined as a custom encryption key currently 

measuring just one key length. The length of 

the key was chosen in order to provide little 

encryption effort and actually highlight the 

overall mechanisms of evasion and not the 

effort placed in them. 

There are a couple of open-source solutions 

for shellcode generation and some of them 

even come with a listener that will catch the 

probably upcoming reverse shell. These 

solutions can be found in many shapes and 

sizes. Some of the most popular ones and two 

of the favorites are the Metasploit framework 

[3] along with its msfvenom shellcode 

generation tool and the pupy framework [4] 

which is actually python based unlike the first 

example which has ruby as main 

programming language. 

If the user does not want to specifically use 

any of these open-source tools, he can opt for 

a custom made implementation of the 

shellcode generator and handler or use other 

common tools. For example, there are 

publicly known websites that are hosting and 

actively creating shellcodes (for example, 

exploit-db [5]) and the user’s task remains to 

locally run a custom handler by using, for 

example, the ncat binary. [6] 

 

4   Conclusion and future work 

As it can be noticed, the efforts for 

obfuscating the payload and patching the 

overall malware process and executable are 

not that high. The project’s purpose is to also 

reveal that with a minimal effort and by 

respecting some key aspects of the evasion 

process, a decent undetected executable can 

be forged. 

In other words, the project was focused in 

trying to highlight key aspects and techniques 

for successfully making code mutations and 



Informatica Economica vol. 22, no. 2/2018  85 

DOI: 10.12948/issn14531305/22.2.2018.08 

processes in order to bypass certain antivirus 

protections. Indeed, there are a lot of 

improvements that can be added to the 

developed utility tool, however, its whole 

purpose is to intentionally use little effort but 

smart and calculated choices in order to create 

undetectable malicious executable. 

For future improvements, the overall python 

code and C++ can be greatly enhanced. First, 

a quick and valuable improvement can be 

made in the encryption mechanism of the 

shellcode received as input. Currently, the 

algorithm used is a simple exclusive or (xor) 

function that is made via a relatively simple 

key. The encryption key has a very low 

entropy and offers very little entropy on the 

overall executable file however, it resulted 

that it is a decent choice in matter of hiding the 

payload. Nonetheless, a good encryption 

algorithm with a strong key can be used in 

further encrypting the payload. 

Regarding the payload delivery, the 

obfuscation and junk code can be added for 

extra behavior analysis protection. Junk code 

can be created dynamically and decryption 

methods can be implemented between the 

dummy codes inserted. In this way, the 

process of decryption will be less linear and 

thus results in a lower suspicious rate. 

Acknowledgment: 

This work is based on my dissertation thesis 

from Bucharest University Economic Studies, 

IT&C Security Master program, which has 

not been traditionally published. 

 

References 

[1] Remote access Trojan. Available at: 

https://en.wikipedia.org/wiki/Remote_access

_trojan (Accessed: 21 December 2016).  

[2] MinGW Wikipedia page. Available at: 

https://en.wikipedia.org/wiki/MinGW 

(Accessed: 4 January 2017). 

[3] Metasploit framework. Available at: 

https://metasploit.help.rapid7.com/docs/msf-

overview (Accessed: 17 May 2017). 

[4] pupy framework. Available at: 

https://github.com/n1nj4sec/pupy (Accessed: 

10 February 2018). 

[5] exploit-db website. Available at: 

https://www.exploit-db.com/shellcode/ 

(Accessed: 17 May 2017). 

[6] ncat binary. Available at: 

https://nmap.org/ncat/ (Accessed: 3 October 

2016). 

[7] Elias Bachaalany and Joxean Koret, The 

Antivirus Hacker’s Handbook, Wiley, 2015 

 

  

https://en.wikipedia.org/wiki/Remote_access_trojan
https://en.wikipedia.org/wiki/Remote_access_trojan
https://en.wikipedia.org/wiki/MinGW
https://metasploit.help.rapid7.com/docs/msf-overview
https://metasploit.help.rapid7.com/docs/msf-overview
https://github.com/n1nj4sec/pupy
https://www.exploit-db.com/shellcode/
https://nmap.org/ncat/


86  Informatica Economica vol. 22, no. 2/2018 

 

DOI: 10.12948/issn14531305/22.2.2018.08 

 

 Stefan Sabin NICULA has graduated the Faculty of Economic Cybernetics, 

Statistics  and Informatics in 2016. He holds a master's degree in Information 

Security  from 2018 obtained at the IT&C Security master program. Passionate 

about mobile application security, binary exploitation, IoT and web 

application security, presented at the international security conference 

Defcamp 2017 held in Romania. His research work focuses on the analysis of 

kernel exploitation techniques, binary analysis and reverse engineering. Other 

research efforts he made targeted Wireless attacking techniques combined with hardware 

engineering and malware development process in Red Team engagements. 

 


