
Informatica Economică vol. 22, no. 1/2018 39

DOI: 10.12948/issn14531305/22.1.2018.04

Student eXchange Process Modelling and Implementation
by Using an Integrated BMP-SOA Approach

Octavian DOSPINESCU, Cătălin STRÎMBEI, Roxana-Marina STRAINU,

Alexandra NISTOR
Faculty of Economics and Business Administration, AL.I.Cuza University, Iasi

doctav@uaic.ro, linus@uaic.ro, roxana.strainu@gmail.com,
alexandra.anichitoaei@yahoo.com

One of the key processes of an open University Information System concerns managing the
student exchange activities. In this paper we will try to address the challenges regarding
modelling and implementation when integrating such a process by crossing different
information systems. Our approach will leverage SOA architecture by using BPM in order to
structure and build the service orchestration level.
Keywords: BPM, SOA, JAX-RS, Service Oriented Architecture, RESTful Web Services

BMP-SOA Integrated Approach
In a previous paper [1] we proposed an

integrating methodology, briefly exposed in
figure 1, starting from some specific
methodologies that aim to bring in the same

context the SOA architecture and BMP
methodologies (or reverse BMP
methodologies in the context of the SOA
architectures) like SOAML [2], SOMF [2] or
SOMA [3].

Fig. 1. BPM-SOA Proposal workflow

According to [4], [5], there are many ways to
integrate different systems. Our approach tries
to gradually transform BPM specifications in
RESTfull specifications in order to be
implemented using some common SOA
frameworks like Java’s JAX-RS, going
through a set of distinct stages:
1. Setting the Business Process (BP) Model

where each BP Action should be described
using design specifications that will cover:
the action identifier, action type (UIX,
Atomic Processing, Synchronous,
Timing), action data inputs and action data
output.

2. Setting the HTTP API from BP Action
Specifications where each BP Action will

1. Setting the
Business

Process Model

2. Setting the
HTTP API from

BP Actions

3. Setting
RESTFull

Resources

4. Setting
RESTFull
Services

5. Implement
RESTFull
Services

6. Service Unit
Testing

7. BPM Service
Integration

1

40 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

result into a HTTP Action that will be
fully specified through: HTTP Action
identifier: URI (from a base URL), HTTP
Action Type (CRUD, RPC, UI/UX, Event
based Asynchronous Acknowledgement)
and HTTP Predicate, HTTP Action Input
(meaning Input URL Parameters, Input
Request headers, Request Body format:
XML or JSON), HTTP Action Output
(meaning Output Header: key-value result
set, Response Body format, Response
Code).

3. Setting RESTFull Resources as a model of
business entities that will make the
transition from process actions to an
actually business data model by using
HTTP CRUD Action types and
identifying the underlying RESTfull
resources.

4. Setting RESTFull Services to provide
RESTfull resources (or business entities-
based model) aiming to produce the
modularization perspective to be used by
the implementation of the underlying
software components exposed as
RESTfull services.

5. Implementation of RESTFull Services,
using platforms like JAX-RS, Spring
MVC, etc.

6. Service Unit Testing (service-level
testing) where each RESTFull Service has
to be deployed and “to live” into an

autonomous executable context/runtime
that will allow its validation by some
modular and unit tests.

7. BPM Service Integration and Testing
where service components will be
integrated and orchestrated within a BP
Platform Runtime (like jBPM, Bonita or
Activity platforms) from where the initial
Business Process could be executed and
validated by integration tests.

2. Context of Student eXchange Process
In the following pages we will try to validate
our BMP-to-SOA approach by implementing
the above mapping guidelines into the
practical context of the specific business
process, targeting the integration of university
information systems to support student
exchange programs. This business process we
have previously investigated in the larger
context of University Information Systems
[6].
We also take in consideration that according
to [7], the educational offers must face the
new challenges that require flexibility,
rapidity, complexity and provide students
both with specific habits and efficient work
tools. In order to define a concrete context for
our business process, we will describe the
BMP entities or actors responsible for the BP
actions to be mapped by using HTTP services.

BPM Entities/Actors

Table 1. Main actors from integrated systems
System SubSystem/Service URL

Partner University SRMP ./part.univ/SRMP
./part.univ/SRMP/students
./part.univ/SRMP/grades

Origin University SRMP ./origin.univ/SRMP
./origin.univ/SRMP/students
./origin.univ/SRMP/grades

Partner University SPC ./part.univ/SPC
./part.univ/SPC/spec/disciplines

Origin University SPC ./origin.univ/SPC

Informatica Economică vol. 22, no. 1/2018 41

DOI: 10.12948/issn14531305/22.1.2018.04

./origin.univ/SPC/spec/disciplines

Exchange Program
(Erasmus)

SRC ./exchange/curriculum
./exchange/curriculum/equivalence

Exchange Program
(Erasmus)

SRMP ./exchange/students
./exchange/grades/equivalence

Partner University DOCX

The definitions for the proposed terms are as
following:
• SRMP means Student RoadMaP:

Professor, curriculum, study programs,
modules, timetable;

• SPC means Study Programs &
Curriculum: Student, grades, disciplines,
tests, location, time;

• DOCX refers to Students, professors,
secretary, documents and
announcements.

BPM Activities
Our simplified BP model proposed for student
exchange programs is described in figure 2.

Fig. 2. BP Model and actions [1]

One could easily see that the BP model for
student exchange programs tries to cover
those activities related not only to student
registration to another university information
system, but also with importing student
scholar data back to original university. This
cross information cycle involves in fact a
challenge regarding information integration.
This challenge proved to be a complex issue
for any university that accesses student-

exchange academic programs.

3. Modelling Student eXchange Process
with BMP and implementation in SOA
context
Starting from the ideas described by the
specialized literature [8], [9], [10], [11], in the
following sections we propose a set of
referential specifications that anyone could
use as a reusable template easily adaptable in

Check study
program for

student

Get

details
about

Get

details
about

 Compare
curricula

Establish
equivale
nt study

Evaluate

the
student

 Publish
grades

Access
data
from

Grades

conversio
n

 Insert grades
in SRMP

42 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

order to produce a fully operational service
architecture in the domain of student
exchange program management.

3.1 BPM Action Specification
We start by formalizing those specific
business process action features that will

determine the actual service boundaries and
parameters.
First actions concern basic READ operations
to get necessary information about study
programs and course details from the partner
university to establish equivalences.

Table 2. Action 1: <With an identification number of the student, identify the courses list for
the student>, Action 2: <Identify details about the courses that the student attends>, Action 3:
<Get details about the courses from the partner university>, Action 4: <Compare courses details
to identify the courses the student will have to attend at the partner university>

 Action 1 Action 2 Action 3 Action 4

Action
Name

Check study
program for
student

Get details about
student courses

Get details about
the courses

Compare
curricula

Action
Type

READ READ READ READ

Action
Data Input

Student ID Courses List from
SRMP

Year and
semester of study

Courses details
from origin and
partner
universities

Action
Data
Output

Courses List from
SRMP

Courses Details
from SPC

Courses details
from SPC

Equivalent
courses

Next actions concern basic transactions
necessary to acquire selected courses from the

partner university.

Table 3. Action 5: <Decide which classes a student will have to attend to have a match in the
SRMP>, Action 6: <Student evaluation which will take place in the partner university>
 Action 5 Action 6

Action Name Establish equivalent study
courses

Evaluate the student (SRMP)

Action Type WRITE WRITE

Action Data Input Equivalent courses Courses to attend, student
ID, grades

Action Data Output Courses to attend Grades from Partner
University

Last actions are about exporting student
grades from the partner university to students’

original university.

Informatica Economică vol. 22, no. 1/2018 43

DOI: 10.12948/issn14531305/22.1.2018.04

Table 4. Action 7: <The grades must be published to be accessed from inside and outside>,
Action 8: <After the student is evaluated the grades from Partner University will be accessed>,
Action 9:<After the student is evaluated the grades will be converted in different grading
systems>, Action 10: <Final Grades are inserted in parent university database >

 Action 7 Action 8 Action 9 Action 10

Action Name Publish grades Access data from
partner university

Grades
conversion

Insert grades in
SRMP

Action Type READ READ UPDATE WRITE

Action Data
Input

Student ID,
grades and
converted grades
from Partner
University

Credentials,
student ID

Student ID,
Grades from
partner
university

XML/JSON
Final Grades
Data

Action Data
Output

Grades Data Student grades
(XML/JSON)

Converted
grades

Service
(message with
status)

3.2 HTTP Action Specifications [HTTP
API]
By mapping business actions from initial BP
model to HTTP predicates will result a new
set of specific HTTP Actions.

As in previous section, we first present actions
and formalized HTTP operations concerning
identification of eligible courses from the
partner university.

Table 5. Action HTTP 1: < Identify the courses list for the student>, Action HTTP 2: < Identify
details about the courses that the student attends >, Action HTTP 3: < Get details about the
courses from the partner university>>, Action HTTP 4: < Compare courses details to identify
the courses the student will have to attend at the partner university >

 HTTP Action 1 HTTP Action 2 HTTP Action 3 HTTP Action 4

HTTP Action
URL

http://server:host/
SRS/<sub_modul
e>/.../
parent.univ/STX/
students/studentI
D/course

http://server:host/
SRS/<sub_modul
e>/…/parent.uni
v/STX/courses/s
peciality/specNa
me/courselist

http://server:host/
SRS/<sub_modul
e>/.../part.univ/S
TX/courses/main
field

http://server:host/
SRS/<sub_modul
e>/..../part.univ/S
TX/courses/main
field/coursefield

BPM Action
Name

Check study
program for
student

Search Student
Details at parent
university

Get details about
the courses

Compare
curricula

HTTP Action
Type

READ READ READ READ

HTTP GET GET GET GET

44 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

Predicate

[Input] URL
Parameters

 semester semester semester

[Input] Request
Body

[Output] HTTP
Response Code

200 200 200 200

[Output]
Response Body

Courses List
from SRMP
(XML/JSON)

Courses details
(XML/JSON)

Courses details
(XML/Json)

Equivalent
courses
(XML/Json)

Next actions formalize the necessary
operations to define student enrollment

transactions to the partner university.

Table 6. Action HTTP 5: < Decide which classes a student will have to attend to have a match
in the SRMP >, Action HTTP 6: < Student evaluation which will take place in the partner
university >

 HTTP Action 5 HTTP Action 6

HTTP Action URL http://server:host/SRS/<sub_
module>.../parent.univ/STX/e
qualizations

http://server:host/SRS/<sub_
module>/…./part.univ/STX/gr
ades/studentId

BPM Action Name Access parent university
service

Evaluate the student (SRMP)

HTTP Action Type CREATE CREATE

HTTP Predicate POST POST

[Input] URL Parameters

[Input] Request Body {
 "convertedScore": "",
 "courseName": "Logical
games",
 "eqCourseName":
"Logic&design",
 "eqId": ,
 "score": "",
 "semester": 2,
 "studentId": "student2",
 "year": 2016
 }

{
 "course":
"Logic&design",
 "grade": "C",
 "id": 5,
 "needsConversion": true,
 "scoringSystem":
"swedish",
 "semester": 2,
 "studentID": "student2",
 "year": 2016
 }

[Output] HTTP Response 200 200

Informatica Economică vol. 22, no. 1/2018 45

DOI: 10.12948/issn14531305/22.1.2018.04

Code

[Output] Response Body Courses to
attend,semester,studentID,
year (JSON)

Grades from Partner
University (XML/JSON)

Finally, last HTTP actions formalize the
grades import transactions from the partner
university information system to the

information system of students’ original
university.

Table 7. Action HTTP 7: < The grades must be published to be accessed from inside and outside
>, Action HTTP 8: < After the student is evaluated the grades from Partner University will be
accessed>, Action HTTP 9: < After the student is evaluated the grades will be converted in
different grading systems and updated into equalization system >, Action HTTP 10: <Final
Grades are inserted into parent university database>

 HTTP Action 7 HTTP Action 8 HTTP Action 9 HTTP Action 10

HTTP Action
URL

http://server:host/
SRS/<sub_modul
e>/.../part.univ/S
TX/grades/stude
ntId

http://server:host/
SRS/<sub_modul
e>/.../part.univ/S
TX/grades/stude
ntID

http://server:host/
SRS/<sub_modul
e>/..../parent.uni
v/STX/equalizati
ons

http://server:host/
SRS/<sub_modul
e>/.../parent.univ
/STX/grades

BPM Action
Name

Publish grades Access data from
partner university

Student ID,
Grades from
partner university

Insert Grades into
parent university
database

HTTP Action
Type

READ READ UPDATE CREATE

HTTP
Predicate

GET GET PUT POST

[Input] URL
Parameters

 Year,semester,st
udentID,eqCours
eName

[Input] Request
Body

 {

"convertedScore"
: "7",

"courseName":
"Logical games",

"eqCourseName"
:
"Logic&design",
 "eqId": 1,
 "score":

{
 "course":
"Logical games",

"dateGranted":
"2016-07-09",
 "grade":
"7",
 "id": auto,

"needsConversio
n": false,

46 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

"C",
 "semester":
2,
 "studentId":
"student2",
 "year": 2016
 }

"scoringSystem":
"romanian",
 "semester":
2,
 "studentID":
"student2",
 "year": 2016
 }

[Output] HTTP
Response Code

200 200 200 200

[Output]
Response Body

Grades Data
(XML/JSON)

Student grades
(XML/JSON)

Converted grades
(XML/JSON)

Service (message
with status)

3.3 Implementation approach of Student
Exchange REST model
The structure of our business data model is
designed in a way to conform to the BPM
requirements of the project. To accomplish
this, we needed:
● a model of entity classes which are the

equivalent of the tables from a database;
● a repository class to manage data queries

from the database using model classes;
● service classes use data from database and

apply specific methods for lists of data, to
implement specific operations for REST

resources;
● resource classes which contain instances

of services and the REST infrastructure.
The implementation context used refers to
JEE platform with JPA-ORM framework
(Hibernate), JAX-RS using Jersey
implementation and JAXB-OXM (Object to
XML/JSON mapping) with Jackson Provider.

3.3.1 Specifications of REST Resource
Model
The hierarchic implementation of classes is as
it may be seen in figure 3 below:

Fig. 3. Hierarchic implementation of model specs

The (data) model classes (located in model
package within the project) are: Course,
Student, Grade, Equalization Each instance of
these classes represents a record into the
corresponding database table. Using another

class (DatabaseClass) we extract the data from
the database using lists of each model class.
These classes are simple implementations of
Java-Beans conventions as shown in figure 4.

Resource

Service

Database

 Model

Informatica Economică vol. 22, no. 1/2018 47

DOI: 10.12948/issn14531305/22.1.2018.04

Fig. 4. Course Model Class

Listing 1. Course model class with XML-OXM annotations (OXM: Object-to-XML/JSON)
@XmlRootElement
public class Course {
 private long courseID;
 private String courseName;
 private String spec;
 private Integer semester;
 private String mainField;
 private String courseField;
… … …
// Getters and setters java-bean methods
}

The service classes (located in services
package within the project) are as follows:
● CourseService: offers the possibility to

view all courses, to view a course by id, to

get courses by speciality, by main field
(the domain of the course), by course field
(a branch from the domain), by semester,
to delete, add or update a course.

Listing 2. Course Service implementation
public List<Course> getAllCourses(){
 return new ArrayList<Course>(courses.values());
 }

 public Course getCourse(long courseId){
 return courses.get(courseId);
 }

 public List<Course> getCoursesBySpeciality(String spec){
 List<Course> coursesBySpec= new ArrayList<Course>();
 for(Course crs:courses.values()){
 if(crs.getSpec().toLowerCase().equals(spec.toLowerCase())){
 coursesBySpec.add(crs);
 }

48 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

 }
 return coursesBySpec;
 }

 public List<Course> getCoursesByMainField(String mainField){
 List<Course> coursesByField = new ArrayList<Course>();
 for(Course crs:courses.values()){
 if(crs.getMainField().toLowerCase().equals(mainField.toLowerCase())){
 coursesByField.add(crs);
 }
 }
 return coursesByField;
 }

 public List<Course> getCoursesByCourseField(String courseField){
 List<Course> coursesByField = new ArrayList<Course>();
 for(Course crs:courses.values()){

if(crs.getCourseField().toLowerCase().equals(courseField.toLowerCase())){
 coursesByField.add(crs);
 }
 }
 return coursesByField;
 }

 public List<Course> getCoursesBySemester(String spec,int semester){
 List<Course> coursesBySem = new ArrayList<Course>();
 for(Course crs:courses.values()){
 if(crs.getSpec().toLowerCase().equals(spec.toLowerCase())){
 if(crs.getSemester()==semester){
 coursesBySem.add(crs);
 }
 }
 }
 return coursesBySem;
 }

 public Course addCourse(Course course){
 course.setCourseID(courses.size()+1);
 courses.put(course.getCourseID(),course);
 return course;
 }
 public Course updateCourse(Course course){
 if(course.getCourseID()<=0){
 return null;
 }
 courses.put(course.getCourseID(), course);
 return course;
 }
 public Course removeCourse(long courseID){
 return courses.remove(courseID);
 }

● StudentService: offers the possibility to

add, remove, update a student and get
information about all students, students by
specialties or information by one student
by id.

● GradeService offers the possibility to add,
remove, update a grade and to see the

grades of a student, or by course, or by
student and course name.

● EqualizationService offers the possibility
to add, delete, update equalizations, to
view all equalizations, to view
equalizations by year and semester or by
student.

Listing 3. CourseService method to get courses by filter
public Map<Long, Course> courses = DatabaseClass.getCourses();

Informatica Economică vol. 22, no. 1/2018 49

DOI: 10.12948/issn14531305/22.1.2018.04

public List<Course> getCoursesBySpeciality(String spec){
 List<Course> coursesBySpec= new ArrayList<Course>();
 for(Course crs:courses.values()){
 if(crs.getSpec().toLowerCase().equals(spec.toLowerCase())){
 coursesBySpec.add(crs);
 }
 }
 return coursesBySpec;
}

According to the specialized literature [12],
the resource classes will be the ones that
contain our REST architecture. The REST
implementation of this model means that each
method will have a @GET, @POST, @PUT,
@DELETE (and @Path if it’s the case)
annotation attached, each class will have a
@Path annotation attached, and the return
type of the http request using @Produces and
@Consumes annotations. The specific REST
annotations are included in Jersey Library, in
javax.ws.rs package. The annotation
@PathParam is used to get data from the URL
while @QueryParam is used to get data from
URL parameters.
The resource classes are:
● CourseResource with /courses default

path sets paths and specific actions over
Course objects:

/courses will give the list of all courses

available
/courses/mainfiled will give the list of
courses filtered by mainfield, and it
can return results using an url
parameter to filter results by semester
/courses/mainfield/coursefield will
return a list of courses filtered by
mainfield and coursefield, and it can
return results using an URL parameter
to filter results by semester (see figure
5).
/courses/specialty/specname/courselis
t will return the list of courses for the
specialty specname, and it can return
results using an url parameter to filter
results by semester (see figure 5).
/courses with POST,PUT,DELETE
actions will add, update or delete a
Course object (in JSON format).

Listing 4. CourseResource class to produce Course JSON documents
@Path("/courses")

@Consumes({MediaType.APPLICATION_JSON})
@Produces(MediaType.APPLICATION_JSON)

public class CourseResource {
 CourseService courseService = new CourseService();
 @GET
 public List<Course> getCourses(){
 return courseService.getAllCourses();
 }
 @GET
 @Path("/speciality/{spec: .*}/courselist")
 public List<Course> getCoursesBySpec(@PathParam("spec") String spec,
 @QueryParam("semester") int sem){
 if(sem>0){
 return courseService.getCoursesBySemester(spec,sem);
 }
 return courseService.getCoursesBySpeciality(spec);
 }
… … …
// other REST-HTTP mapping methods
}

50 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

Fig. 5. Courses by specialty and semester (left) and by main field and course field (right)

● StudentResource: with /students as default

path, sets paths and specific actions over
Student objects:

/students will return a list of all
students
/students/studentId will return the
information about student with id
studentId
/students/studentId/grades will return
the list of all grades for the student
having id studentId (see figure 6).
/students/studentId/courses will return
the list of all courses for the student

having id studentId and it can receive
and url parameter to filter results by
semester.
/students/studentId/equalizations will
return the list of all equalizations for
the student having id studentId (see
figure 6).
/students with POST, PUT will update
or add a Student object.
/students/studentId with DELETE
action will delete the student with id
studentId.

Informatica Economică vol. 22, no. 1/2018 51

DOI: 10.12948/issn14531305/22.1.2018.04

Fig. 6. Grades for student 3 (left) and equalizations for student 2 (right)

● GradeResource with /grades as the default

path, sets paths and specific HTTP actions
over Grade objects:

/grades will return a list of all grades
/grades/courses/courseName will
return a list of grades for the course
with name courseName (see Figure 7)
/grades/studentId will return the
grades for the student with id studentId

(see Figure 7)
/grades/studentId/equalizations will
return the grades from equalization
system for the student with id
studentId
/grades with POST, PUT and
DELETE actions will add, update or
delete a Student object (in JSON
format).

Fig. 7. Grades by student id (left) and by course name (right)

52 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

● EqualizationResource with /equalizations
as the default path, sets paths and specific
HTTP actions over Equalization objects:

/equalizations will return a list of all
equalizations with the possibility to
add URL parameters to filter results by
year and semester (see figure 8).
/equalizations/studentId will return a
list of equalizations for the student
with id studentId (see figure 8).

/equalizations with POST and
DELETE methods will delete the
given equalization (in JSON format).
/equalizations with PUT and URL
parameters will update the
equalization given by year, semester,
studentId and equivalentCourseName
with the given values for score and
convertedScore.

Fig. 8. Equalizations by year and semester (left) and for student1 (right)

4. Business Process Integration Model
Starting from the HTTP specification and
implementation of Student Exchange REST
model we made [1] the BPM.REST Action
Model, which is based on a number of

variables: Name, Request Body and Response
Body. Following the specifications we create
a project on jBMP platform (6.2.0 version)
and we obtained the process diagram
illustrated in figure 9.

Informatica Economică vol. 22, no. 1/2018 53

DOI: 10.12948/issn14531305/22.1.2018.04

Fig. 9. BPM.REST Action Model (according to [1])

Each BPM.REST action have some
parameters and parameters assignment. The
common parameters are the URL of the action
endpoint and for each HTTP method of
request we have parameter named Method.
Below we have illustrated the Action
Parameters and Action Parameters
Assignment under each Action.

BPM.REST Action 1 [Check study program
for student(SRMP)] Specifications
● Action REST Resource Target (from

REST Resource Model) -
StudentResource

● Action Parameters and Parameters
Assignment

Fig. 10. Action 1 specs: Check study program for student

BPM.REST Action 2 [Get details about
student courses] Specifications
● Action REST Resource Target (from

REST Resource Model) -
CourseResource

54 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

Fig. 11. Action 1 specs: Get details about student courses

BPM.REST Action 3 [Get details about
courses (SPC)] Specifications
● Action REST Resource Target (from

REST Resource Model) -
CourseResource

Fig. 12. Action 1 specs: Get details about courses

BPM.REST Action 4 [Establish Equivalent study Courses (SRMP)] Specifications
● Action REST Resource Target (from REST Resource Model) - StudentResource

Fig. 13. Action 1 specs: Establish Equivalent study Courses

BPM.REST Action 5 [Evaluate the student
(SRMP)] Specifications
● Action REST Resource Target (from

REST Resource Model) -
StudentResource

Informatica Economică vol. 22, no. 1/2018 55

DOI: 10.12948/issn14531305/22.1.2018.04

Fig. 14. Action 1 specs: Evaluate the student

BPM.REST Action 6 [Publish grades
(SRMP)] Specifications
● Action REST Resource Target (from

REST Resource Model) -
EqualizationResource

Fig. 15. Action 1 specs: Publish grades

BPM.REST Action 7 [Access data from Host
University] Specifications

● Action REST Resource Target (from
REST Resource Model)

56 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

Fig. 16. Action 1 specs: Access data from Host University

BPM.REST Action 8 [Insert grades in SRMP]
Specifications
● Action REST Resource Target (from

REST Resource Model) -
StudentResource

Fig. 17. Action 1 specs: Insert grades in SRMP

5. Conclusions
In this paper we have tried to achieve two
goals. On the one hand, we made an extensive
effort to build a complex of services that could
automate the Student eXchange activities in a
process that could be useful for those
universities having students involved in
international programs which are searching
for a way to make these management
processes more effective and transparent. On
the other side, we have tried to make an
experimental validation of our BPM-to-SOA
modelling and to develop an approach in a
relevant context inspired from a real
(academic) problem encountered within
actual University Information Systems.

Throughout our project we have tried to
follow an end-to-end approach in order to
cover the most relevant and critical aspects
specific to SOA architectures. Our intentions
were not to build a new SOA methodology,
but to show a practical way on how to
complement existing SOA approaches with
the advantages of BPM methodologies, tools
and platforms.
Although SOA and BMP methodologies
emerged and evolved in parallel, we found
that they could be fully compatible to build a
mix between the very declarative approach of
existing BPM platforms (meaning no code …
just model, at one extreme) and the very
customizable approach of SOA implementing

Informatica Economică vol. 22, no. 1/2018 57

DOI: 10.12948/issn14531305/22.1.2018.04

platforms (assuming complex and proprietary
integration and orchestration protocols, at the
other extreme). We prove that declarative
(even visually) orchestration is possible for
service-based actions built in a customized
and extensible manner.

Acknowledgments:
1. This work was supported by a grant of the
Romanian National Authority for Scientific
Research and Innovation, CNCS –
UEFISCDI, project number PN-II-RU-TE-
2014-4-0748.
2. Some of the findings reported in this article
were also orally presented at The Fourth
Annual Conference on Global Higher
Education at Tokyo held on June, 10th, 2017,
at Lakeland University Japan, according to the
official schedule available at:
http://conference.lcjapan.com/schedule.html
and
http://conference.lcjapan.com/info.php?topic
=34.

References

[1] O. Dospinescu, C. Strimbei, R. Strainu

and A. Nistor, "REST SOA
Orchestration and BPM Platforms,"
Informatica Economica, vol. 21, no. 1,
pp. 30-42, 2017.

[2] M. Mohsen and M. Muriati, "A review
of SOA Modeling Approaches for
Enterprise Information Systems,"
Procedia Technology, vol. 11, pp. 794-
800, 2013.

[3] IBM Business Consulting Services,
"IBM Service-Oriented Modeling and
Architecture," NY, 2004.

[4] C. Garcia and R. Abilio, "Systems
Integration Using Web Services, REST
and SOAP: A Practical Report," Revista
de Sistemas de Informação da FSMA,
vol. 1, no. 19, pp. 34-41, 2017.

[5] L. Burita and K. Zeman, "Architecture
Approach in System Development,"
Journal of Systems Integration, vol. 8,
no. 1, pp. 31-44, 2017.

[6] C. Strȋmbei, O. Dospinescu, R. Strainu

and A. Nistor, "The BPMN Approach of
the University Information Systems,"
Ecoforum Journal, vol. 5, no. 2, pp. 181-
193, 2016.

[7] N. Dospinescu, M. Tătăruşanu, G.
Butnaru and L. Berechet, "The
Perception of Students from the
Economic Area on the New Learning
Methods in the Knowledge Society,"
The Amfiteatru Economic Journal, vol.
13, no. 30, pp. 527-543, 2011.

[8] K. Stankevičius and O. Vasilecas,
"Research On Rules-Based Business
Process Modelling And Simulation,"
SCIENCE - FUTURE OF LITHUANIA,
vol. 6, no. 2, pp. 147-150, 2014.

[9] M. Mohammadi and M. Mukhtar,
"Business Process Modelling
Languages in Designing Integrated
Information System for Supply Chain
Management," International Journal on
Advanced Science, Engineering and
Information Technology, vol. 2, no. 6,
pp. 464-467, 2012.

[10] M. Mohammadi, "Combination of
Modeling Techniques for Supporting
Business Process Architecture Layers,"
International Journal on Advanced
Science, Engineering and Information
Technology, vol. 7, no. 3, pp. 1038-
1048, 2017.

[11] M. Ahmadi and A. Nikravanshalmani,
"Providing a framework to improve the
performance of business process
management projects based on BPMN,"
Advances in Computer Science : an
International Journal, vol. 5, no. 1, pp.
10-17, 2016.

[12] S. Kennedy, O. Molloy, R. Stewart, P.
Jacob, M. Maleshkova and F. Doheny,
"A Semantically Automated Protocol
Adapter for Mapping SOAP Web
Services to RESTful HTTP Format to
Enable the Web Infrastructure, Enhance
Web Service Interoperability and Ease
Web Service Migration," Future
Internet, vol. 4, pp. 372-95, 2012.

58 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.1.2018.04

Octavian DOSPINESCU graduated the Faculty of Economics and Business
Administration in 2000 and the Faculty of Informatics in 2001. He achieved
the PhD in 2009 and he has published as author or co-author over 30 articles.
He is author and co-author of 10 books and teaches as an associate professor
in the Department of Information Systems of the Faculty of Economics and
Business Administration, University Alexandru Ioan Cuza, Iasi. Since 2010 he
has been a Microsoft Certified Professional, Dynamics Navision,

Trade&Inventory Module. In 2014 he successfully completed the course “Programming Mobile
Applications for Android Handheld Systems” authorized by Maryland University. He is
interested in mobile devices software, computer programming and decision support systems.

Cătălin STRÎMBEI has graduated the Faculty of Economics and Business
Administration of Al.I.Cuza University of Iaşi in 1997. He holds a PhD
diploma in Cybernetics, Statistics and Business Informatics from 2006 and he
has joined the staff of the Faculty of Economics and Business Administration
as teaching assistant in 1998 and as associate professor in 2013. Currently he
is teaching Object Oriented Programming, Multi-Tier Software Application
Development and Database Design and Administration within the Department

of Business Information Systems, Faculty of Economics and Business Administration,
Al.I.Cuza University of Iaşi. He is the author and co-author of four books and over 30 journal
articles in the field of object oriented development of business applications, databases and
object oriented software engineering.

Roxana-Marina STRAINU graduated in 2014 the Master of Business
Information Systems at the Faculty of Economics and Business
Administration, Alexandru Ioan Cuza University of Iasi. She also graduated
the Faculty of Mathematics in the year 2005. She is interested in developing
smart systems and mobile applications on Android platform. Now she is a PhD
student in the business information systems area.

Alexandra NISTOR graduated the Faculty of Economics and Business
Administration in 2011 and the Master of Business Information Systems at the
Faculty of Economics and Business Administration in 2013. Her research
interests include the use of automated testing in small and medium companies.
Now she is a PhD student in the business information systems area.

