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The adoption of any new product means also the apparition of new issues and challenges, and 

this is especially true when we talk about a mass adoption. The advent of Internet of Things 

(IoT) devices will be, in the authors of this paper opinion, the largest and the fastest product 

adoption yet to be seen, as several early sources were predicting a volume of 50 billion IoT 

devices to be active by 2020 [1][2]. While later forecasts reduced the predicted amount to about 

20-30 billion devices [3], even for such “reduced” number, demand side management issues 

are foreseeable, for the potential economic impact of IoT applications in 2025 will be between 

3.9 and $11.1 trillion USD [4]. Not only that new patterns will emerge in energy consumption 

and Internet traffic, but we predict that the sheer amount of data produced by this quantity of 

IoT devices will give birth to a new sort of demand side management, the demand side 

management of IoT data. How will this work is yet to be seen but, at the current moment, one 

can at least identify the bits and pieces that will constitute it. This paper is intended to serve as 

short guide regarding the possible challenges raised by the adoption of IoT devices. The data 

types and structures, lifecycle and patterns will be briefly discussed throughout the following 

article. 
Keywords: Internet of Things, Structured Data, Semi-structured Data, NoSQL, Demand Side 

Management. 
 

Introduction  
The concept of Internet of Things (IoT) 

mainly implies Internet connectivity of things 

such as smart appliances or devices (lighting 

or heating systems, automatic pet feeders, 

medical monitoring implants, surveillance 

monitoring systems, vehicles, etc.), sensors, 

actuators, communication protocols, big data 

management and analytics.  

Even today, IoT produces large volumes of 

data, with the consequent need for collection, 

aggregation, processing and storage more 

effectively. This ocean of data provides new 

perspectives of services, environment, 

improved efficiency and life quality, but also 

come up with some challenges.  

Mainly, data is acquired by embedded sensors 

or electronics platforms designed to measure 

additional data such as current and voltage, 

operation duration and other parameters.  

For instance, some smart refrigerators sense 

the food items that are being cooled inside and 

keep a track of the stock based on barcode or 

radio-frequency ID scanning. They are also 

equipped to keep the track of the stocks and 

inform the householders whenever food needs 

to be replenished. However, these features are 

relevant for the life quality improvement, but 

for other purposes such as energy demand side 

management or device performance, they are 

not relevant or sufficient.  

Also, smart washing and dish machines can be 

programmed via mobile phones to operate 

within certain hours and identify by embedded 

sensors that the detergent level is low, but its 

application could also provide detailed 

information about consumption of each 

specific washing program based on certain 

loading of the tank. The data sensor from 

different washing machine operation 

programs will be used in the consumption 

optimization process, since the consumption 

level and duration are based on the washing 

program. The smart vacuum could sense the 

level of dust, start operate in certain 

conditions and so on. Therefore, in the coming 

years the producers of smart appliances or 
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devices will provide more and more data, 

since it is required [5].  

 

2 The IoT world – devices and 

communications 

IoT can be considered a special type of 

Information System that has the same two 

main components: hardware and software. 

The hardware part consists of sensors, 

devices, servers, network components 

(routers, cables, etc.), while the software part 

contain mobile and web applications, 

communication protocols, databases, analysis 

tools, etc. 

In [6] there are some examples of smart 

devices that have their own software for 

gathering data from different sensors in a 

home. For example, Sen.se Mother contains a 

hub (the “Mother”) and 4 wireless sensors 

(cookies). It has several functionalities like 

alerting when someone enters home, reminder 

for medicine and fitness activities. The 

sensors can be attached to toothbrushes, 

doors, food or any other object. Movement, 

temperature and location data can be 

monitored and processed. 

[7] has set the communication models for IoT 

systems: Device to Device, Device to Cloud, 

Device to Gateway and Backend Data 

Sharing.[8] has proposed its own system for 

the communication between the Internet and 

source object on IoT and [9] propose a model 

for IoT specific features and adapted from 

OSI (ISO 1984), TCP/IP (US DoD4 1970) and 

Internet model. 

The four communication models for IoT are 

presented below. In Figure 1, the Device to 

Device model is listed. It is the simplest 

model, the cheapest, but the lowest level of 

security. It is useful for transmitting small 

amounts of data between devices. 

 
Fig. 1. Device to Device 

 

In Figure 2 the Device to Cloud model can be 

seen. Data can be transmitted from smart 

devices into the Cloud and then receive 

analyzed data, like voice recognition or time 

left until the next fitness session. Also, video 

cameras can be set to transmit images from 

certain angles, based on the Cloud 

information received from the user.

 

 
Fig. 2. Device to Cloud 

 

Device to Gateway model in presented in 

Figure 3. The Gateway gathers data from 

sensors, sends it to Applications Service 

Providers that process it and return the 

analyzed data to the same or other sensor. 
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Fig. 3. Device to Gateway 

 
Fig. 4. Backend data sharing 

 

Backend data sharing extends Data to Cloud 

communication model. You can see in Figure 

4 that data that was received and processed 

from device sensors is then sent to other 

application services that interact with IoT 

system. In Table 1, there are some examples 

of devices that can connect to each type of IoT 

system.

 

Table 1. Type of communication models 
Type of 

communi

cation 

Amount 

of data 

Security Connection 

technology 

Standards Cost IoT devices 

Device to 

Device 

small simplified IP networks, 

Internet, 

Bluetooth, Z-

Wave, Zig Bee 

Bluetooth 

low energy 

low Ex: heart monitor 

paired to a 

smartwatch [10] 

Device to 

Cloud 

big more 

complex 

(network and 

cloud access 

credentials) 

Wired 

Ethernet, Wi-

Fi 

connections, 

LoRa, 

Sigfox, 

Narrowban

d 

higher Ex: - smart tag that 

tracks dogs when 

they are alone[10] 

- dropcam 

- smart TV 

App 

Service 

provide

r 

Local 

Gateway 

App 

Service 

provider 1 

App 

Service 

provider 2 

 

App 

Service 

provider 3 
 

HTTP 
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cellular 

technology 

Device to 

Gateway 

big complex 

(data & 

protocol 

translation) 

HTTP, TLS, 

TCP,Wi-Fi, 

CoAP 

Smart 

Things’z-

Wave, 

Zigbee 

higher Ex: - fitness 

device connected 

to cloud through a 

smartphone app. 

[10] 

- home automation 

app. that involve 

connecting devices 

to a hub 

Backend 

data 

sharing 

large complex CoAP, HTTP LoRa, 

Sigfox, 

Narrowban

d 

higher Ex: - different 

fitness sensors can 

be analyzed for the 

same sport 

exercise  

- energy 

consumption by all 

energy sensors in a 

building 

 

The connection technology used for IoT 

systems is quite wide: from HTTP, Wi-Fi to 

CoAP (Constrained Application Protocol), 

ZigBee, etc. The security is simple for Device 

to Device model, but it gets more complex for 

Device to Cloud and Backend data sharing 

because two set of credentials are added: 

network and cloud. Also for Device to 

Gateway communication model the security 

consists in data and protocol translation. 

 

3 IoT data types and structures 

IoT devices are primarily characterized by 

their data production function, only some of 

them having data processing abilities – 

according to [11], one can classify IoT devices 

in four categories: the devices from the first 

category are simply making one-way service 

requests while monitoring themselves; the 

ones from the second category are making 

one-way export of monitored data, but they 

also function as a real-time reporter of more 

complex data in a much more ramped-up 

fashion; the third category includes devices 

with interactive abilities and the fourth 

category includes the IoT devices capable of 

processing data, sometimes to the extent of 

some level of artificial intelligence. Taking 

into account the data as a primary product of 

IoT devices, one should think about the data 

types and structured involved. 

3.1 Types of data generated by IoT 

IoT systems work with a huge volume of data, 

collected usually through sensors, RFIDs, and 

mobile devices. In IoT systems, data is 

streaming continuously from a variety of 

sources which led the companies to the need 

to rapidly collect, store and analyze large 

volumes of heterogeneous data [12]. Big data 

technologies, such as NoSQL databases and 

Hadoop, can resolve this kind of problems 

listed above. 

According to [13], there are four types of data 

in the Internet of Things:  

 Status data: indicate the status of every 

activity monitored by an IoT device; 

 Location data: help to track an IoT device 

across a geographical area; 

 Automation data: represent the core of an 

IoT system and the main reason of IoT 

development; 

 Actionable data: can be defined as status 

data which may have implications on 

customers’ behavior for future modality of 

action. 

When we refer to IoT data management, there 

are two main questions that need to find 

answers, as detailed in [14]: where the data 

will be stored (the storage facilities) and how 

the data will be stored (the format to be used 

for storage). 
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The solution for the first issue refers to 

NoSQL databases, the only effective way of 

storing huge volumes of heterogeneous, 

streaming and geographically-dispersed real-

time data. 

The second issue addressed above refers to the 

data format used for storage. The main 

supported data formats are briefly described 

below:  

 XML (eXtensible Markup Language): 

markup language used for encoding 

unstructured and semi-structured data in 

a format that is both human and machine-

readable; 

 JSON (JavaScript Object Notation): data 

interchange format, derived from 

JavaScript, which is used for storing and 

exchanging data. Since JSON defines 

only a data format as text to be read and 

used by any programming language, we 

can conclude that it is language 

independent; 

 PNG (Portable Network Graphics): 

extensible file format for the lossless, 

portable, well-compressed storage of 

raster images [15]; 

 CSV (Comma Separated Values): file 

format that stores tabular data as plain 

text. Each file consists of records divided 

into fields separated by commas; 

 XDR (eXternal Data Representation): 

data serialization format for the 

description and encoding of data; 

 RDF (Resource Description Framework): 

data format recommended by W3C for 

data interchange on the Web. According 

to [16], RDF data model is similar to 

classical modeling approaches, as entity-

relationship or class diagrams. Using 

RDF, we can model data by making 

statements about it using triples as 

subject-predicate-object. 

Other particular data formats are as follows: 

 GeoJSON / TopoJSON: data formats 

used for storing spatial data as JSON 

objects. GeoJSON stores both non-spatial 

attributes and simple geographical 

attributes (as points, lines, and polygons). 

Instead, TopoJSON is an extension that 

encodes topology, enabling more 

accurately computations[17]; 

 N3, Turtle, and N-Triples: data formats 

for storing and exchanging data using 

RDF model; 

 Entity Notation: data format for 

distributed systems, compatible with 

RDF. 

A detailed comparison regarding the semantic 

aspects of RDF, N3, and Entity Notation can 

be found in [18]. 

 

3.2 Structure requirements for various 

data generated by IoT  

Since 2012, two reasons led to impressive 

extension of IoT connectivity: both sensors 

and communications were improved 

drastically and that is the origin of the large 

amounts of data mentioned above. The 

biggest challenge is to process and use such a 

large amount of data generated by IoT while 

it is still “alive”, still have value and major 

impact (while the date is not becoming stale). 

For instance, data sensors of appliance may 

send alerts regarding their performance that 

could affect other things such as food inside 

refrigerator when the cooling system is not 

working properly or even the life cycle of the 

appliance itself. If data regarding low 

performance of the refrigerator is not used 

rapidly then the food will be altered and the 

life of the refrigerator engine may shorten 

drastically. It is very important to prevent the 

expensive and critical device such as heating 

system to encounter failure. So, the storage 

and post-event analytics processing of this 

data will be useless. When the data is 

processed, and used rapidly then the almost 

real-time actions will be possible. Therefore, 

the scope is to process and use the data as soon 

as the occurrence of the event. 

However, data stream processing needs 

assessment, aggregation, correlation and time-

based analyses (as seen in Figure 5). Data 

assessment can be seen as a filter that retain 

the significant data, identify events and 

discard irrelevant data. Different appliances 

with different sensors provide variate formats 

and recording rates. Also, data generated by 

sensors could be missing, inconsistent or 
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incomplete due to sensors damage or drops in 

communication network. 

The recording rate might be too detailed for 

certain analysis and monitoring for trends, 

therefore aggregation is necessary. Even if the 

sensor is able to record operating values at 

short time intervals, they could be aggregated 

on hourly basis since other analyses imply 

hourly consumption data. Based on simple 

correlations, alerts will be generated 

considering relation with other data sets and 

basic rules. Temporal analyses usually 

identify irregularities in the consumption 

pattern that could trigger certain alerts and 

actions. For instance, in case the heating 

system is operating more than usually in 

similar outside temperature conditions, then a 

window could have been left open. This 

information may help consumers to save 

energy since they can decide to slow down the 

heating system until the event is removed.

 

 
Fig. 5. Steps in processing data streams 

 

These steps should be performed immediately 

after the data is being generated in order to 

find out what is happening now, rather than 

what happened some time ago. When 

predictive, optimization and specific 

algorithms are included, what will happen in 

the near future comes out [19][20]. 

For on-device data management, SQL 

(Structured Query Language) is too resource-

intensive and probably inappropriate, while a 

combination of a language producing fast 

code (e.g. C, C++ or, maybe, C#/.Net Core) 

with a database management systems 

(DBMS) provided with a performant native 

API are most appropriate. On-device 

embedded databases mainly collect data, act 

based on that data, and perform some data 

processing. However, for upstream data 

already accumulated from the devices, 

DBMSs that collect, aggregate and process 

data produced by the IoT can take advantage 

of the benefits provided by SQL or Not only 

SQL (NoSQL) technologies. Usually, a 

combination of technologies, for example 

SQL and NoSQL for semi or unstructured 

data for fast data processing, Hadoop for data 

storage and analytics are usually envisioned 

[21]. 

 

 

 

4 How are the data models and application 

patterns evolving because of the IoT? 

Traditional applications, such as OLTP 

(Online Transaction Processing) or OLAP 

(Online Analytical Processing), follow data 

life cycles we are accustomed to. For OLTP 

data, a normal pathway will pass through data 

capture, maintenance, synthesis, usage, 

publication, archival and purging [22]. For 

OLAP data, one will add some 

transformation, filtering and aggregation 

stages in between capture and maintenance. 

Also, the OLAP data life cycle will be, time 

concerning, longer than the one for OLTP 

data. Data modelling and application design 

patterns are well known for both OLTP and 

OLAP. 

The next historical step was the apparition of 

Big Data, and,while the data lifecycle for Big 

Data is largely the same as the one for OLTP 

data[23], new constraints appeared on data 

itself, meaning the so called four V’s (Volume 

– large volumes of data, Velocity – data 

lifecycle happens at a higher speed, Variety – 

data comes from a much larger number of 

sources, has different forms and structures, 

Veracity – Big Data’s data has a higher degree 

of uncertainty than the one usual for 

traditional applications)[24]. Later on, a fifth 

V was added, Value[25], but in this paper’s 

authors opinion, this fifth V is less a data 

characteristic from a purely data science point 

Assessment Aggregation
Correlation and 

time-based analyses

http://embedded-computing.com/topics/sql
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of view and more an economic concern which 

can be made not only for Big Data.  

 

4.1 Data modeling 

The last apparition in the data world, the IoT 

has the potential to be a game changer for the 

fact that it involves new data modeling and 

application design patterns, even negating 

some of the old ones[26] while some others 

are kept [27]. 

From a pure design point of view, one will 

have to include into a complete IoT 

application, components / models for the 

following features [26][28]: 

Data Ingestion: IoT solutions require the 

ability to ingest various types of data such 

real-time telemetry data at a massive scale 

while remaining effective (i.e. providing a low 

latency at accepting and persisting messages). 

Control Channel: Unlike most web 

applications, IoT solutions need the ability to 

send commands and notifications to IoT 

Devices in real time. A two-way 

communication channel with the following 

characteristics should be included in the IoT 

solution: 

 The channel should allow either party to 

initiate communication. 

 The channel should also offer guarantees 

to ensure delivery of commands (i.e. 

Resilience against packet drops etc.) 

 Extensibility to support new commands 

in the future as the solution evolves. 

 Ensure that commands are delivered 

securely with sufficient mutual 

authorizations. 

Loose Coupling: IoT devices may encounter 

connectivity issues in their wireless networks. 

On top of that, unlike traditional computing 

equipment, the IoT devices sometimes 

suspend their radio interfaces or hibernate 

entirely in order to conserve power. To cover 

for this, an asynchronous model of 

communication loose-binding between the 

message senders and recipients is necessary. 

IoT Gateway: Smaller IoT devices often 

communication protocols such as Zigbee, Z-

Wave, or BLE which do not support an IP 

stack, which is necessary to further 

communicate with an IoT Cloud. An IoT 

Gateway is an intermediate device that 

communicates with sensors and actuators 

using low-level protocols. Such a gateway 

will offer capabilities such as sanitization of 

telemetry data, aggregation and edge-

analytics of telemetry data. 

Business Rules Engine: Once ingested, the 

data has to be processed in order to derive 

control decisions and business insights. The 

processing could be done at two points in 

time: immediately, on real-time data streams 

(the so called Hot Path), and later, on offline 

data (the so called Cold Path). 

Heartbeat: For the same reason mentioned 

earlier at Loose Coupling, IoT devices should 

send a ‘heartbeat’ to the Cloud platform from 

time-to-time which includes information 

about the internal health of the device.  

Watermark: having an explicit model of the 

age of data to ensure accurate data is 

processed (e.g., by using heartbeats). 

Lineage: similar to a watermark. Lineage 

maintains a history of data as it moves across 

all devices. 

Control totals: consistency checks between 

values. 

Canary Firmware Releases: Most of the IoT 

devices require their firmware to be remotely 

updated, which means remote download and 

integrity check before replacing the older 

firmware on the device. Unlike software 

updates for traditional applications which 

should be ideally done on the entire base of 

systems at the same time, firmware updates 

should be incrementally rolled-out, limiting 

the risks due to a faulty firmware release and 

avoiding the data transfer spike generated in 

the cloud infrastructure by a mass update. 

Unified Endpoint Management: The ability to 

manage IoT devices remotely, usually via a 

dashboard and a set of APIs. 

Device Authorization: IoT devices are often 

headless, offering no means to provide 

authorization via credentials, using client 

certificates to authorize themselves with the 

IoT Cloud. 

State Synchronization: It can be based on 

virtualizing the IoT device’s “state” as an 

object in the Cloud. Web and Mobile 

applications can interact with this “state” 
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object to change the state of the IoT device. 

The changes will be further synchronized with 

the real device object. 

Device Registry: IoT applications need to 

keep track of all deployed IoT devices 

(identifiers, certificates, configuration, state, 

etc.). 

By including in an application the above-

mentioned techniques, one will obtain a 

consistent and stable IoT solution. 

 

4.2 Application patterns 

Volkmar Denner, chairman of the board of 

management at Robert Bosch GmbH, 

identified in [29] five application patterns for 

IoT solutions: 

Cloud-based applications: This pattern 

supports applications that reside solely in the 

cloud – in other words, applications that are 

not connected to any assets or devices. In 

many respects, this pattern is supported by any 

normal cloud, but there are some aspects to 

this pattern that are specific to the IoT. Before 

connecting to the asset, most IoT solutions 

require basic functions, such as master data 

management for users and assets. IoT 

application developers demand basic 

functions from a cloud, including the ability to 

manage the relationship between users and 

assets also with different access rights. 

Asset-based applications: This pattern sees 

the IoT solution from the opposite point of 

view: an IoT cloud has to support application 

logic and data, which enables autonomous 

asset behavior. It is important for many 

mission-critical solutions that simply cannot 

rely on the assumption that the asset is always 

connected. However, even if asset functions 

have to perform autonomously in this pattern, 

there is one dependency on the cloud. Since 

most IoT solutions are constantly evolving, 

the IoT cloud’s job is to ensure that software 

is distributed to the asset whenever a 

sufficient level of connectivity is available. 

Distributed IoT applications: Many IoT 

applications will leverage the ability to 

combine and integrate an application’s logic 

and data, both on the asset and in the cloud. 

Distributed IoT applications can be extremely 

powerful, with the means to harness the IoT’s 

full potential. 

Digital twin: The idea of this pattern is that 

IoT will provide us the ability to create a 

digital twin of the physical asset based on 

readouts from machine components as well as 

additional sensors. This digital twin in the 

cloud will open up many new functions and 

solutions, including predictive analytics (see 

the state synchronization model described at 

4.1). The key benefit for application 

developers in this scenario is that they don’t 

have to worry about connecting to the asset 

and extracting the data. Because the 

applications are not deployed on the asset, but 

only in the cloud, the sandbox approach 

reduces the security risks. 

Social IoT: Multiple assets can be aggregated 

and used by multiple applications. These 

applications can use this “social” IoT data to 

benefit either the community or an individual 

asset user. In order to support the social IoT 

pattern, an IoT cloud would have to be capable 

of supporting data ingestion and processing on 

a massive scale. Also, the IoT cloud needs an 

enforceable data management and security 

policy to ensure that only designated data is 

shared. 

Greg Gorbach later identified in [30] two 

more application patterns, on top of the five 

imagined at Bosch: 

Edge-optimized IoT:  In industrial 

applications, there are cases which may 

benefit from a pattern in which intelligence 

and analytics is deployed at or near the assets.  

Rapid responses and actions would be 

facilitated, and only a subset of the streaming 

data would need to be sent to the cloud for 

storage and processing. 

Multi-party IoT:  The concept behind this 

pattern is that there is often more to the story 

than just the asset and the cloud.  For example, 

look at a mining operation.  Data from an asset 

(heavy machine) may be monitored by the 

machine manufacturer in order to improve the 

machine design, by the mine operator to 

coordinate the machine’s work with other 

machines, by a local third-party field service 

company; and by a replacement parts 

company. 
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5 Issues to solve in order to make IoT work 

As for any new technology, IoT adoption 

means the emergence of new issues to be 

solved. Some of them can even lead, 

according to the authors of this paper opinion, 

to the advent of a new specialty, the demand 

side management of IoT data, as various 

sources are indicating a volume of 4.9 billion 

IoT devices active in 2015, 6.4 billion devices 

in 2016 [31], 8.4 billion devices in 2017 [32] 

and a predicted 20.4-20.8 billion devices in 

2020 [3]. 

New energy consumption patterns will be 

surely induced in the demand side 

management of energy. While is not the 

purpose of this paper to discuss energy 

consumption issues, and one of the IoT 

devices usages is to provide data usable in 

order to reduce the energy consumption of 

other devices, on a demand side management 

note, we can remark that a typical IoT device 

consumes an average of 0.4 – 8.0 W of energy 

in standby, which leads to a staggering 

predicted standby consumption of 46 TWh for 

2025, not taking into account the energy 

consumed by the IoT devices while active, 

and the energy used in auxiliary activities (i.e. 

battery and solar cells production, IoT devices 

production, etc.) [33]. 

Some of the issues to be solved will be related 

to the sheer number of devices and to the 

volume of data generated by them while other 

challenges will be technology related. The 

following subchapters will briefly describe 

these types of issues. 

 

5.1 Volumes of data implied by IoT  

For an individual accustomed with day-to-day 

data volumes involved by the activities 

involving PC or traditional mobile devices 

(megabytes, gigabytes, or maybe even 

terabytes), the amount of data produced by 

inconspicuous systems, such as the small IoT 

devices, may seem amazingly large. 

Cloud traffic will rise 3.7-fold by 2020, 

starting from a 3.9 zettabytes (ZB) growth per 

year in 2015 to a 14.1 ZB growth per year in 

2020[34]. 

The Big Data and associated Internet of 

Things are a big part of this growth. As IoT 

grows, so do the volumes of data it generates. 

Globally, the data created by Internet of 

Everything (IoE) devices will reach 507.5 ZB 

per year (42.3 ZB per month) by 2019 (269 

times greater than the data being transmitted 

to data centers from end-user devices and 49 

times higher than total data center traffic), up 

from 134.5 ZB per year (11.2 ZB per month) 

in 2014 [35]. 

By 2020, database, analytics and IoT 

workloads will account for 22% of total 

business workloads, compared to 20% in 

2015. The total volume of data generated by 

IoT will reach 600 ZB per year by 2020, 275 

times higher than projected traffic going from 

data centers to end users/devices (2.2 ZB); 39 

times higher than total projected data center 

traffic (15.3 ZB)[34]. 

Again, by 2020, for a typical smart city, 

connected air planes will produce 40 TB per 

day, 0.1% of this being further transmitted to 

a cloud / data center, connected factories will 

produce 1 PB per day, 0.2% of this being 

transmitted, public safety systems will 

produce 50 PB per day, less than 0.1% of this 

being transmitted, weather sensors will 

produce 10MB per day, 5% of this being 

transmitted, intelligent buildings will produce 

275 GB per day, 1% of this being transmitted, 

smart hospitals will produce 5 TB per day, 

0.1% of this being transmitted, smart cars will 

produce 70 GB per day, 0.1% of this being 

transmitted and smart grid will produce 5 GB 

per day, 1% of this being transmitted [36]. 

 

5.2 Challenges of IoT  

The following challenges can be identified 

while working with data produced by IoT 

devices [37]: 

Latency: Communications and data 

processing are characterized by latency. For 

some mission-critical functions, a large 

latency is intolerable, so compute on the edge 

is a must. Latency in data transfer reduces 

time to insight, which slows time to action for 

business and responses to the data. 

Bandwidth: Even when each device is sending 

small amounts of data, a large number of 

devices will need a hefty bandwidth and, 

while the available bandwidth is growing 
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rapidly[38], there was never a large excess to 

be used by a supplementary application. 

Cost: Sending large amounts of data is costly. 

Processing data at the edge reduces the 

network-related costs. 

Threats: The practice of data communication 

channels involves the fact that data is exposed 

to attacks and security breaches. These risks 

strengthen the case for securing and analyzing 

data at the edge. 

Duplication: While traditional OLTP 

applications design loathes redundancy of 

data, duplicated data is a fact for Big Data / 

IoT applications. The complexity and cost of 

supplementary storage and other assets is a 

challenge. 

Corruption: Various factors (attacks, faults) 

can lead to data corruption. Taking into 

account that data quality for Big Data / IoT is 

already low, supplementary corrupted data is 

an issue. 

Compliance: Regional and country 

compliance regulations can restrict or 

complicate data transfer across borders and 

over long distances. Such issues can be 

mitigated with edge analytics. 

As noted by Kevin Kalish, IoT Domain Lead 

at SAS, “The view of big data in IoT is that it 

is more a commodity and that sometimes can 

lead businesses to the desire to become a bit 

of a data hoarder.” “The misconception is that 

storage is a commodity and big data will solve 

these problems but the volumes and the costs 

are quickly becoming unsustainable.” “Unless 

part of your business model is data 

monetization, it's highly likely that you can 

afford to only send back filtered data.”[39]. In 

simpler terms, half of the above-mentioned 

challenges can be mitigated by not sending all 

the data that is produced by the IoT devices to 

a central cloud / data center. 

Several solutions, all of them involving lesser 

amounts of data to be transmitted to a central 

cloud / data center, are already available or are 

envisioned as answers to these challenges 

[40]: 

Edge Computing / Fog Computing: A “fog” 

(term proposed by Cisco) extends the cloud to 

be closer to the things that produce and act on 

IoT data. These devices, called fog nodes, can 

be deployed anywhere with a network 

connection: on a factory floor, on top of a 

power pole, alongside a railway track, in a 

vehicle, or on an oil rig. Any device with 

computing, storage, and network connectivity 

can be a fog node. Examples include industrial 

controllers, switches, routers, embedded 

servers, and video surveillance cameras 

[41][42]. 

Mobile Edge Computing: Mobile Edge 

Computing (MEC) is a solution proposed by 

ETSI which offers application developers and 

content providers cloud-computing 

capabilities and an IT service environment at 

the edge of the network. This environment is 

characterized by ultra-low latency and high 

bandwidth as well as real-time access to radio 

network information that can be leveraged by 

applications. MEC provides a new ecosystem 

and value chain. Operators can open their 

Radio Access Network (RAN) edge to 

authorized third-parties, allowing them to 

flexibly and rapidly deploy innovative 

applications and services towards mobile 

subscribers, enterprises and vertical segments 

[43]. 

Edge computing / Cloudlet: a new 

architectural element that arises from the 

convergence of mobile computing / IoT and 

cloud computing. It represents the middle tier 

of a 3-tier hierarchy: mobile or IoT device - 

cloudlet - cloud. A cloudlet can be viewed as 

a “data center in a box” - it’s self-managing, 

requiring little more than power, Internet 

connectivity, and access control for setup - 

whose goal is to “bring the cloud 

closer”[44][45]. 

Micro Data Center: a smaller or containerized 

(modular) data center architecture that is 

designed to solve different sets of problems 

that take different types of compute workload 

that does not require to traditional facilities. 

Typically, it is a standalone rack-level system 

containing all the components of a 

“traditional” data center [46]. 

 

6 Conclusions 

IoT is already a part of our daily lives, solving 

various problems and providing answers and 

insights, while it is still in its infancy stage. 
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This paper passed through some of the already 

large quantity of information available about 

the IoT devices, attempting a synthesis of the 

challenges raised by their usage while, 

together with some available or proposed 

solutions.  
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