
52 Informatica Economică vol. 21, no. 3/2017

DOI: 10.12948/issn14531305/21.3.2017.05

Dynamic Selection Screen Generation for SAP Solutions

Cornelia MUNTEAN

Faculty of Economics and Business Administration, West University of Timisoara, Romania

cornelia.muntean@e-uvt.ro

This paper presents an application for generating a dynamic selection screen in ABAP and the

need and advantages of this solution instead of the manual modification of the coding itself for

adding one or more parameters in the whole logic of the program. Depending on data found in

a customizing table, we would like to generate a program with a selection screen, containing

select options based on the criteria specified in the customizing table. The presented solution

can be adapted to any dynamically generated ABAP program, according to the desired

selection screen elements, and may be used as a template even for other programs. The

advantages of the proposed solution are also presented along with the disadvantages,

underlining the particularities of the ABAP programming language.

Keywords: Dynamic Programming, Selection Screen, Customizing Table, ABAP, SAP

Introduction

The study of algorithms forms a

cornerstone of computer science research and

education. However, many developers may

not be aware of common algorithmic

techniques, which the programming language

they are using may provide. That is why

companies like Google, Apple or Facebook

use dynamic programming algorithms

questions in their interviews and select only

the best.

In many areas of activity, dynamic

programming is a method for solving a certain

problem by breaking it into sets of

subproblems [1]. Every time the same

subproblem occurs, instead of searching again

for a solution, one simply looks at the

previously computed solution. By using this

method, precious time can be saved at the

expense of a modest storage increase.

The core idea of dynamic programming is to

avoid repeated work by remembering partial

results and this concept finds its application in

a lot of real life situations. Dynamic

programming algorithms are often used for

optimization purposes. These analyze if a

problem has two key attributes: optimal

substructure and overlapping of problems.

Dynamic programming is mainly used when

solutions of same subproblems are needed

again and again. Afterwards, one of the

following two approaches are used: a top-

down approach (memorization) or a bottom-

up approach (tabulation).

Since dynamic programming can be applied in

so many different ways, the underlying

concepts are quite general. The best way to

really understand something is by making use

of it, so in the next section we will check out

an interesting problem which can efficiently

be solved with dynamic programming, using

the ABAP programming language.

2 Dynamic programming in ABAP

2.1 General Assumptions

As we know, ABAP programs may contain

both static and dynamic parts, that cannot be

clearly delimited. According to Cecchini [2],

dynamic and static apply to the data and/or

operations performed on the data within

a program. It would not benefit anyone, if we

would try to create categories in this regard.

However, we would like to define these

characteristics.

The static parts of a program refer to the

characteristics of the data, which is fixed at

compile time and will not change during

runtime. On the other hand, dynamic

properties are for various reasons not known,

nor fixed at compile time [2]. Dynamic

programming enables you to use certain

features during runtime that cannot be

determined at compile time. Instead, these

features are defined by the values of

1

Informatica Economică vol. 21, no. 3/2017 53

DOI: 10.12948/issn14531305/21.3.2017.05

parameters that are passed to the program at

runtime.

To help us understand better the concept of

dynamic programming in ABAP, we would

like to present an easy example of Open SQL

syntax: SELECT COUNT(*) FROM

(tablename) INTO count. The variable

tablename can be read at runtime, as the user

interacts with the program by entering a value

for the tablename. As a result, the program

will be able to display a correct result for the

variable, which got its value at runtime.

In a similar manner, ABAP generic data types

like ANY, or DATA are used to create data

references via the command CREATE

DATA, which allows to dynamically specify

the type of the variable at runtime [3]. Field

symbols, another dynamic programming

feature of ABAP, which is not found in other

programming languages, help the developers

access and modify data from internal tables or

structures at runtime, without copying them,

acting as placeholders.

We can conclude, that dynamic programming

involves the use of incompletely typed or

untyped data objects. This enables generic

subroutines and methods to be created that run

independently of the types of input data. This

would not be possible in ABAP without the

RTTS (Runtime Type Services), which makes

it possible to handle the properties of types in

programs: RTTI (Runtime Type Information)

is used in order to get the corresponding types

at runtime and a related service, RTTC

(Runtime Type Creation), which creates new

types when programs are executed and

generates corresponding data objects [4].

However, dynamic programming is not only

used in ABAP to define generic data objects.

It can also be used to define screens and to

create and run other ABAP programs at

runtime. In the following section, we will

explain how a complete selection screen can

be generated in ABAP at runtime, without

using the screen painter.

2.2 Dynamic selection screen generation in

ABAP

Selection screens, unlike dynpros, can be

defined through coding lines and not only by

using the screen painter to define parameters,

select options, radio buttons, check boxes or

tabstrips. This allows the developer to

hardcode his selection screen. However, if

another customer requires an additional

parameter in his selection screen, additional

coding lines will be needed in order to satisfy

the customer needs. This is a downside when

you want to develop a program, which has to

be used by many customers simultaneously,

as it may be time-consuming to add customer

specific lines of code into each transport

request for every customer. The widely used

solution in many ABAP programs in order to

avoid this issue is to create customizing tables.

Therefore, a program is written dynamically

only once. It reads the customer specific data

from the customizing table, and then runs

according to the settings defined in the

customizing table. This will also be a suitable

solution in order to generate a selection screen

dynamically.

As stated by Mithun Kumar [5], the existing

literature, including the huge knowledge base

of the internet, lacks in presenting a simple

solution for achieving a dynamic selection

screen generation in ABAP, although it might

seem to be not a difficult issue to solve!

However many developers, most of them new

learners, have big difficulties to get this

problem right in their codes. In this paper I

want to present my application for solving this

very important and useful task, although you

may probably find in the near future also other

solutions on the internet, but hardly one more

simple and efficient.

So, in the next paragraphs I want to describe

the solution I developed.

As a first step, the selection of the customizing

data is in order.

The SELECT statement has been embedded in

a TRY-CATCH block in order to avoid

situations, where the customer does not have

any data maintained in the customizing table.

54 Informatica Economică vol. 21, no. 3/2017

DOI: 10.12948/issn14531305/21.3.2017.05

* Collect all information from the customizing table

 TRY.

 SELECT * FROM zparam

 INTO CORRESPONDING FIELDS OF TABLE lt_param

 ORDER BY ordr.

 CATCH cx_sy_sql_error.

 MESSAGE e460(zadapt_mess) RAISING selection_failed.

 ENDTRY.

This also prevents short dumps due to the

missing database table, in case the customer

forgets to transport the data from the test to the

production system.

After selecting the data from the customizing

table, the program, which has to contain

customer specific coding lines, has to be

generated at runtime with the

parameters/select options found in the

customizing table. This means, a whole new

program has to be generated at runtime. As an

ABAP program is an array of coding lines

(each component being a character field of

length 128), we will construct our program at

runtime, according to the settings found in the

customizing table. The generated program can

be compiled, and if no errors occur, it should

be pushed in the ABAP repository, activated

and run as well. The compilation of the

generated program can be executed with the

SYNTAX-CHECK command. If errors occur,

the WORD and LINE additions will tell the

developer where these errors can be found;

otherwise, the return code will be 0

(successful). Running the generated program

occurs via the SUBMIT… AND RETURN

statement. At this point, the program will call

the generated program and execute it line by

line; afterwards, it will return to the main

program, as the statement implies.

The coding block for defining a select option

(similar to a parameter, but more flexible,

because it offers intervals/ranges) will contain

the following lines:

* Selection screen with parameters from

 SELECTION-SCREEN BEGIN OF LINE.

 SELECTION-SCREEN COMMENT 1(37) s1 FOR FIELD s_1 .

 DATA so_1(80) TYPE c.

 SELECT-OPTIONS s_1 FOR (so_1) .

 SELECTION-SCREEN END OF LINE.

In the example above, there has been used the

command BEGIN/END OF LINE in order to

have only one select option per line. If there

have to be more parameters or select options

in one line, these can be added within the same

BEGIN/END OF LINE. A selection screen

comment has been used in order to add the

description for the parameter/select option.

The variables s1 and s_1 stand for the

customizing settings, which will get their

values during the INITIALIZATION event

from the customizing table. Instead of the

SELECT-OPTIONS command,

PARAMETERS could also have been used;

however, we have chosen the option above, as

a select option offers more flexibility (ranges

for example) in comparison to a parameter.

This coding block will have to be adapted for

as many select options our customizing table

may contain. Therefore, we will concatenate

the strings above in a loop, incrementing the

select option number in its name, and add the

lines of coding to our dynamically generated

program, which will be an array of character

lines.

The initialization event of the called program

is the step, where the each select option and its

corresponding comment get their values from

the customizing table. Therefore, each select

option has to get values similar to the

following:

Informatica Economică vol. 21, no. 3/2017 55

DOI: 10.12948/issn14531305/21.3.2017.05

INITIALIZATION.

 sy-title = 'Dynamic selection screen'.

 s1 = 'Material' .

 so_1 = 'MARA-MATNR' .

The structure component sy-title is the system

variable designated for the program title. As

the select option name (so_1) gets to be

concatenated in the form of tablename-

component, the select option label uses the

value returned by the function

'DDIF_FIELDINFO_GET' . This function returns the

value of the dictionary short text of the

component in the logon language of the user.

Beside the TOP-Include, where all the data

declarations occur, the INITIALIZATION

block is inserted in another Include program

as well with the help of the INSERT REPORT

… FROM … PROGRAM TYPE ‘I’

statement. This is necessary for the program

to be well structured and easier to read. It is

important to have a COMMIT WORK

statement after the reports have been inserted

into the repository, as the proceeding

statement is only triggered by it.

Also, the generated program has to contain

comments, stating that it is created at runtime,

and any changes made have no effect; instead,

changed have to be made to the main program,

which generated the called program. This is

necessary in order to avoid confusion and

wasting of precious time among developers.

The following section shows an

implementation example developed by the

author of this paper about how a dynamic

selection screen can be generated with the

help of a dynamically generated ABAP

program.

3 Proposed solution for dynamic selection

screen generation

We have created a customizing table called

ZPARAM, which contains the fields shown in

Figure 1:

Fig. 1. Structure of the customizing table

The entries presented in Figure 2 exemplify

the possible contents of the database table:

56 Informatica Economică vol. 21, no. 3/2017

DOI: 10.12948/issn14531305/21.3.2017.05

Fig. 2. Select entries of the database table

Based on these entries, we would like to have

three select options on the dynamically built

selection screen: first the material number

(MARA-MATNR), second the plant

(MARC-WERKS) and third the storage

location (MARD-LGORT). We have chosen

select options instead of parameters, as these

offer more flexibility, like using intervals for

example. Our proposed solution is to embed

ABAP code in a variable dyn_sel_screen of

type table c(100) and then submit this report

via a SUBMIT … AND RETURN statement.

The main program ZADAPT has the purpose

to generate the coding for our called program

ZADAPT_CALLED. Therefore, it will

contain the top include, for data declaration

purposes, the SELECT statement for the data

selection from our customizing table, and a lot

of APPEND statements, which will build line

by line the final program, that we need to

submit. The general schema of the program

could be summarized in the diagram shown in

Figure 3.

The code lines with the general declarations of

our application are presented in annex 1. In

these lines of code the top include

ZADAPTTOP will contain the general

declarations of the program. Here, we have

created a type called ty_abapsource of TYPE

c LENGTH 100, and some variables, which

use this type: dyn_sel_screen, code_line,

lt_int_comment and ls_int_comment.

&---

*& Report ZADAPT

&---

*& This report is intended for test purposes.

*& We would like to create a dynamic selection screen. Depending on

*& data found in a customizing table, we would like to generate a

*& program with a selection screen, containing select options based

*& on the criteria specified in the customizing table ZPARAM.

&---

INCLUDE ZADAPTTOP . " global Data

* INCLUDE ZADAPTO01 . " PBO-Modules

* INCLUDE ZADAPTI01 . " PAI-Modules

* INCLUDE ZADAPTF01 . " FORM-Routines

Other include files, as the PBO and PAI

modules for example, have been commented,

as our focus will be the dynamic selection

screen generation, and not the further

processing of data.

* Collect all information from the customizing table

 TRY.

 SELECT * FROM zparam

 INTO CORRESPONDING FIELDS OF TABLE lt_param

 ORDER BY ordr.

 CATCH cx_sy_sql_error.

 MESSAGE e460(zadapt_mess) RAISING selection_failed.

 ENDTRY.

Informatica Economică vol. 21, no. 3/2017 57

DOI: 10.12948/issn14531305/21.3.2017.05

Fig. 3. Diagram of the elaborated program

The SELECT statement is embedded in a

TRY-CATCH block in order to prevent short

dumps due to a faulty selection process. We

will select all the entries from the customizing

NO

Start of program ZADAPT

Select parameters from

customizing database table

Error:

Selection

failed

Create program

ZADAPT_CALLED based

on the parameters found

YES

Create TOP-Include

ZADAPT_CALLEDTOP

Create Selection Screen Include

ZADAPT_CALLEDE01

Create Event Include

ZADAPT_CALLEDE00

Insert created program

into repository

Syntax check the created

program

Error: Not able

to build screen

Run program

ZADAPT_CALLED

Initialization of title and select option labels

Display of selection screen

End of program

ZADAPT_CALLED

End of program ZADAPT

58 Informatica Economică vol. 21, no. 3/2017

DOI: 10.12948/issn14531305/21.3.2017.05

table ZPARAM into a variable lt_param

(TYPE STANDARD TABLE OF zparam).

No WHERE clause is necessary, as no more

than 1000 entries are expected to be available

in the customizing table, and all entries have

to be displayed in the dynamically generated

selection screen. That’s why the SELECT

statement also does not have to be optimized

for better performance. The ORDER BY

clause has been added to ensure the sorting of

the fields by the column ORDR of the

database table.

* Introduction of the report to be defined

 APPEND '*&---*' TO dyn_sel_screen.

 APPEND '*& * This report was generated by the program ZADAPT. ' TO dyn_sel_screen.

 APPEND '*& * Changes to the source text therefore have no effect. ' TO dyn_sel_screen.

 APPEND '*& * Changes have to be made in the program ZADAPT ' TO dyn_sel_screen.

 APPEND '*&---*' TO dyn_sel_screen.

The first step towards the creation of our

dynamic selection screen is to add an

explanation to the header of the called

program, so the user who views the coding for

the first time should know that the coding has

been generated automatically by another

program and that changing it will have no

influence whatsoever. The program

ZADAPT, which generated the program

ZADAPT_CALLED has also been specified.

The further lines of code, presented in annex

2, define the top include of the called program

ZADAPT_CALLED. As we observe, another

variable than dyn_sel_screen has been used:

sub_tab. That means, another include file has

been created for the called program via the

INSERT REPORT … FROM … PROGRAM

TYPE ‘I’ statement.

Observation: Only after the COMMIT

WORK statement will the include program be

available in the repository also.

 APPEND ' INCLUDE ZADAPT_CALLEDTOP. ' TO dyn_sel_screen.

 APPEND ' ' TO dyn_sel_screen.

The next step is to declare the top include of

the called program and to define the

dynamically generated selection screen. The

afferent code can be viewed in annex 3. In this

section of code listed in annex 3, we will have

a loop on the table lt_param, in which we have

selected our data from the customizing table.

A counter is needed

(lv_count_parameter/lv_int_parameter) in

order to ensure uniqueness of every declared

SELECTION-OPTION. We have used in-line

data declaration for every select option with

the DATA statement, as we know the type

only at runtime. These so_xxx will be

initialized during the INITIALIZATION

event of the program and with the help of the

function of DDIF_FIELDINFO_GET we

have access to the data element description

(SCRTEXT_L) of each field of the

customizing table.

If no entries are found in the customizing table

(ELSE branch), a message will be displayed,

stating to maintain the customizing table.

Afterwards, the include

ZADAPT_CALLEDE01 corresponding to the

dynamic selection screen generation is

inserted into the repository also.

In the initialization event (see line codes

presented in annex 4), the title of the program

is passed, along with the types and

descriptions of the select options (stored in the

lt_int_comment variable).

Before running the dynamically generated

report, a syntax check is necessary. If errors

are found, a message will be displayed to the

user, in order to contact the system

administrator. Otherwise, the generated

program ZADAPT_CALLED will be

executed. This section of code can be seen in

annex 5.

The program ZADAPT_CALLED will look

like that shown in annex 6.

The selection-screen

ZADAPT_CALLEDE01 is presented in

annex 7.

Informatica Economică vol. 21, no. 3/2017 59

DOI: 10.12948/issn14531305/21.3.2017.05

The code lines of the initialization include-

program ZADAPT_CALLEDE00 are

presented in annex 8.

As a result, the generated selection-screen,

represented in Figure 3, will have no more and

no less than the desired selection fields,

specified in the customizing table ZPARAM:

Fig. 3. The generated selection screen

As expected, the select options available on

the generated selection screen correspond to

the data maintained in the customizing table.

4 Advantages of the proposed solution

The proposed solution for the dynamic

selection screen generation has a lot of

advantages. We will name just a few, in order

to convince our readers:

 We don’t have to rewrite the program,

in order to define additional selection

parameters or select options. The simple

solution of adding an entry in a

customizing table is more adequate than

the changing the whole coding of the

program, in order to add a parameter in

the whole logic of the program. In some

cases not only the top include may have

to be adapted, but also the selection

process in a lot of places within the whole

program. With a dynamic approach, this

is simplified.

 Each customer could define various

selection-screen versions for each client,

as the customizing table is client-

dependent. By logging in with another

client, the program may be configured to

display certain select options for certain

clients. This would not be possible if the

customizing table would not be client

dependent and certainly not for the

manual modification of the coding itself.

 The customer can configure the

selection fields in the desired order.

This is also an advantage, as many

customers have a desired order, in which

they would like the fields to be displayed.

Only the change of the select options

order would take some time to modify the

coding. The usage of the customizing

table, regarding this point, comes in

handy, solving a lot of unnecessary code

change.

 Generally speaking, programs and

subroutines with dynamic features are

much more flexible and generic.

On the other hand, the dynamic approach

comes with a handful of shortages:

 Although the initial development of a

dynamic solution is a bit more time-

consuming, on the long run it proves to

be quite a good alternative to classic

screen-programming in ABAP, as no

further coding is needed, only

customizing entries in a database table.

 Depending on the size of the data

maintained in the customizing tables, a

moderate increase in storage space is

expected in comparison to a static

approach. However, the expected

increase in storage space will not have

any negative impact on the performance

of the program.

 Programs and subroutines with dynamic

features can become more complex

and harder to maintain.

5 Conclusions

As shown with the help of the coding blocks

above, which help us understand the idea of a

60 Informatica Economică vol. 21, no. 3/2017

DOI: 10.12948/issn14531305/21.3.2017.05

dynamic selection screen generation in the

context of ABAP programming, the proposed

solution provides a modern approach, which

may be used in other programming languages

and graphical user interfaces as well. Every

program interacts with the user in one way or

another and may use selection screens, which

should be customizable, in order to ensure

productivity and avoid confusion among the

end users regarding unnecessary and unused

parameters.

The purpose of simplifying the user interface

of a program and adjust it accordingly, so only

the desired or required parameters/select

options are displayed, has to be on the mindset

of every developer, as the end user has a final

say about the program and he may influence

supervisor, advising the use of a competing

solution. In this context, if a short delay in the

development process is not critical and a

moderate storage increase can be tolerated, we

can conclude that it is advisable to use

dynamic programming techniques in order to

achieve a more flexible program, which can

be adapted according to customer needs

without writing additional program coding.

References

[1] Dynamic Programming, Available :

https://en.wikipedia.org/wiki/Dynamic_pr

ogramming [Accessed Mai 2017].

[2] C. Anthony, "ABAP Dynamic

Programming – Part 1", 16 February 2015.

[Online].

Available: http://www.itpsap.com/blog/20

15/02/16/abap-dynamic-programming-

part-1/ [Accessed March 2017]

[3] C. Anthony, "ABAP Dynamic

Programming – Part 2", 15 March 2015.

[Online].

Available: http://www.itpsap.com/blog/20

15/03/15/abap-dynamic-programming-

part-2/ [Accessed March 2017]

[4] SAP Documentation, Dynamic

Programming, [Online]. Available:

https://help.sap.com/saphelp_nw74/helpda

ta/en/f7/2ca4e7ac3b471182783bf8540b0a

0a/content.htm [Accessed February 2017]

[5] K. Mithun, Programming for Selection

Screens with Dynamic Properties,

[Online]. Available:

https://blogs.sap.com/2012/08/17/dynamic

-screen-programming-for-selection-

screens/ [Accessed March 2017]

Cornelia L. MUNTEAN has graduated the Faculty of Computer Science at

the „Politehnica” University of Timişoara in 1986. She holds a PhD diploma

in Engineering and is currently assistant professor at the department of

Business Information Systems at the West University of Timişoara. She joined

the staff of the Faculty of Economics and Business Administration of the West

University of Timisoara in 1992 as a teaching assistant, then graduated in 1997

as a senior lecturer and in 2005 as an assistant professor. She is the author of 7

books and about 60 journal articles in the field of artificial intelligence, intelligent systems and

programming.

Informatica Economică vol. 21, no. 3/2017 61

DOI: 10.12948/issn14531305/21.3.2017.05

Annexes

Annex 1:
&---

*& Include ZADAPTTOP Report ZADAPT

*& Data declaration include for ZADAPT Program

&---

REPORT ZADAPT.

* Report name

 DATA: lv_rep LIKE sy-repid.

 TYPES:

* line of coding

 ty_abapsource TYPE c LENGTH 100.

 DATA:

* Variables to read customizing settings

 lt_param TYPE STANDARD TABLE OF zparam,

 ls_param TYPE zparam,

 gt_dfies TYPE TABLE OF dfies,

 gs_dfies TYPE dfies,

* Generic Select-Option name

 so_name(80) TYPE c,

* Run the generic coding

 prog TYPE c, " Name of the submitted program

 dyn_sel_screen TYPE TABLE OF ty_abapsource, " final coding of the new

program

 code_line TYPE ty_abapsource, " code line

* Message for syntax error

 mess TYPE string,

 lin TYPE i, " row where the error occured

 wrd TYPE c LENGTH 8, " word, where error occured

* Creation of subroutines dynamically

 sub_prog LIKE sy-repid,

 sub_tab TYPE STANDARD TABLE OF string,

 sub_mess TYPE string,

 sub_sid TYPE string,

 lv_int_parameter TYPE string, " Necessary for the creation of unique Par

ameter descriptions

 lv_count_parameter TYPE i VALUE 0, " Counts the number of parameters on sc

reen --> used as unique parameter identifier

 lv_parameter_type TYPE string,

 lt_int_comment TYPE TABLE OF ty_abapsource,

 ls_int_comment TYPE ty_abapsource. " Comment for field

Annex 2:
* Data declaration

 APPEND ' ' TO sub_tab.

 APPEND 'REPORT ZADAPT_CALLED . ' TO sub_tab.

 APPEND ' ' TO sub_tab.

 APPEND 'DATA: title(80) TYPE c. ' TO sub_tab.

 APPEND 'SET TITLEBAR title OF PROGRAM sy-repid . ' TO sub_tab.

 APPEND ' ' TO sub_tab.

 APPEND '***' TO sub_tab.

 APPEND '* Selection-screen ' TO sub_tab.

 APPEND 'INCLUDE ZADAPT_CALLEDE01. ' TO sub_tab.

 APPEND '***' TO sub_tab.

 sub_prog = 'ZADAPT_CALLEDTOP'.

 INSERT REPORT sub_prog FROM sub_tab PROGRAM TYPE 'I' .

 COMMIT WORK.

 REFRESH sub_tab.

62 Informatica Economică vol. 21, no. 3/2017

DOI: 10.12948/issn14531305/21.3.2017.05

Annex 3:
APPEND '* Selection screen with parameters from ' TO sub_tab.

 IF lt_param IS NOT INITIAL.

 LOOP AT lt_param INTO ls_param.

 lv_count_parameter = lv_count_parameter + 1.

 lv_int_parameter = lv_count_parameter.

 CONDENSE lv_int_parameter.

 APPEND ' ' TO sub_tab.

 APPEND ' SELECTION-SCREEN BEGIN OF LINE. ' TO sub_tab.

 CONCATENATE ' SELECTION-SCREEN COMMENT 1(37) s' lv_int_parameter ' FOR FIELD s_'

 lv_int_parameter ' .' INTO code_line.

 APPEND code_line TO sub_tab.

 CLEAR code_line.

 CONCATENATE ls_param-tablename '-' ls_param-field INTO so_name.

 CONCATENATE ' DATA so_' lv_int_parameter '(80) TYPE c.' INTO code_line.

 APPEND code_line TO sub_tab.

 CLEAR code_line.

 CONCATENATE ' SELECT-OPTIONS s_' lv_int_parameter INTO code_line .

 CONCATENATE code_line ' FOR (so_' lv_int_parameter ') .' INTO code_line .

 APPEND code_line TO sub_tab.

 CLEAR code_line.

 APPEND ' SELECTION-SCREEN END OF LINE. ' TO sub_tab.

 CALL FUNCTION 'DDIF_FIELDINFO_GET'

 EXPORTING

 tabname = ls_param-tablename

 LANGU = SY-LANGU

 TABLES

 DFIES_TAB = gt_dfies

 EXCEPTIONS

 NOT_FOUND = 1

 INTERNAL_ERROR = 2

 OTHERS = 3 .

 READ TABLE gt_dfies WITH KEY fieldname = ls_param-field INTO gs_dfies.

 CONCATENATE ' s' lv_int_parameter ' = ''' gs_dfies-

scrtext_l ''' . ' INTO ls_int_comment.

 APPEND ls_int_comment TO lt_int_comment.

 CONCATENATE ' so_' lv_int_parameter ' = ''' gs_dfies-tabname '-' gs_dfies-

fieldname ''' .'

 INTO ls_int_comment.

 APPEND ls_int_comment TO lt_int_comment.

 ENDLOOP.

 ELSE.

 MESSAGE e470(zadapt_mess) DISPLAY LIKE 'I'.

 ENDIF.

 sub_prog = 'ZADAPT_CALLEDE01'.

 INSERT REPORT sub_prog FROM sub_tab PROGRAM TYPE 'I' .

 COMMIT WORK.

 REFRESH sub_tab.

Annex 4:
 APPEND '* INITIALIZATION Event ' TO dyn_sel_screen.

 APPEND ' INCLUDE ZADAPT_CALLEDE00. ' TO dyn_sel_screen.

 APPEND ' ' TO dyn_sel_screen.

* INITIALIZATION

 APPEND ' ' TO sub_tab.

 APPEND 'INITIALIZATION. ' TO sub_tab.

 APPEND ' ' TO sub_tab.

* Title

 CONCATENATE ' sy-title = ''' text-tit '''. ' INTO code_line.

 APPEND code_line TO sub_tab.

 APPEND ' ' TO sub_tab.

 APPEND LINES OF lt_int_comment TO sub_tab.

 sub_prog = 'ZADAPT_CALLEDE00'.

 INSERT REPORT sub_prog FROM sub_tab PROGRAM TYPE 'I' .

 COMMIT WORK.

 REFRESH sub_tab.

Informatica Economică vol. 21, no. 3/2017 63

DOI: 10.12948/issn14531305/21.3.2017.05

Annex 5:
* Syntax check

 SYNTAX-CHECK FOR dyn_sel_screen MESSAGE mess LINE lin WORD wrd PROGRAM prog.

 IF sy-subrc = 4 OR sy-subrc = 8.

** Not able to build screen. Please contact your system administrator!

 MESSAGE w480(zadapt_mess).

 ELSE.

 lv_rep = 'ZADAPT_CALLED'.

* Insert the program into the repository

 INSERT REPORT lv_rep FROM dyn_sel_screen.

* Only after the Commit work statement is the program in the repository.

 COMMIT WORK.

* Executes the generated coding to create the selection screen.

 SUBMIT (lv_rep) VIA SELECTION-SCREEN AND RETURN.

 ENDIF.

Annex 6:
&--

*& * This report was generated by the program ZADAPT.

*& * Changes to the source text therefore have no effect. Changes have

*& * to be made in the program ZADAPT!

&--

 INCLUDE ZADAPT_CALLEDTOP.

* INITIALIZATION Event

 INCLUDE ZADAPT_CALLEDE00.

The top include contains the following lines of code:

REPORT ZADAPT_CALLED .

DATA: title(80) TYPE c.

SET TITLEBAR title OF PROGRAM sy-repid .

* Selection-screen

INCLUDE ZADAPT_CALLEDE01.

64 Informatica Economică vol. 21, no. 3/2017

DOI: 10.12948/issn14531305/21.3.2017.05

Annex 7:
* Selection screen with parameters from

 SELECTION-SCREEN BEGIN OF LINE.

 SELECTION-SCREEN COMMENT 1(37) s1 FOR FIELD s_1 .

 DATA so_1(80) TYPE c.

 SELECT-OPTIONS s_1 FOR (so_1) .

 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.

 SELECTION-SCREEN COMMENT 1(37) s2 FOR FIELD s_2 .

 DATA so_2(80) TYPE c.

 SELECT-OPTIONS s_2 FOR (so_2) .

 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.

 SELECTION-SCREEN COMMENT 1(37) s3 FOR FIELD s_3 .

 DATA so_3(80) TYPE c.

 SELECT-OPTIONS s_3 FOR (so_3) .

 SELECTION-SCREEN END OF LINE.

Annex 8:
 INITIALIZATION.

 sy-title = 'Dynamic selection screen'.

 s1 = 'Material' .

 so_1 = 'MARA-MATNR' .

 s2 = 'Plant' .

 so_2 = 'MARC-WERKS' .

 s3 = 'Storage Location' .

 so_3 = 'MARD-LGORT' .

