
Informatica Economica vol. 21, no. 2/2017 33

DOI: 10.12948/issn14531305/21.2.2017.03

An IoT project for Vital Signs Monitoring

Felician ALECU1, Paul POCATILU1, Sergiu CAPISIZU2
1Bucharest University of Economic Studies, Romania

2Bucharest Bar Association, Romania

felician.alecu@ie.ase.ro, ppaul@ase.ro, sergiu.capisizu@yahoo.com

Nowadays, the Internet of Things (IoT) projects are very popular and they are developed for

numerous fields. In order to detect various medical problems on time, it is required to monitor

the subjects either human or non-human. This could be used on regular or specific activities,

like sport or work. It is necessary to determine the factors that could lead to medical problems.

Another important aspect is to quantify the factors, to monitor them, to collect data and to make

the proper interpretation. This could be achieved using dedicated sensors, controlled by an

application embedded on a development board. When a dangerous value is reached, the system

has to inform the subject (if human) or someone else (if non-human). This paper presents an

Arduino based IoT project used for monitoring the vital signs for human and non-human and

the results based on its usage. The paper details the hardware and software components of this

project.

Keywords: IoT, Arduino-based development, Vital Signs, Sensors, Communication.

Introduction

Vital signs are very important in detecting

and monitoring various medical problems

from early stages because they show the

quality of the basic functions of the body,

indicating the general status of a person’s

physical health. The acceptable values may

vary depending on multiple factors, like the

person’s sex, age, weight, medical

background, life style, geographical location,

and so on.

The medical theory is consistently pointing

out four primary vital signs: body

temperature, pulse, blood pressure and

respiratory rate. Vitals can be very useful for

prevention, while the pain must be considered

a sign of an already existing illness.

The body temperature and pulse are showing

a general view over a person’s health

condition, while the respiratory rate and blood

pressure are highly specialized indicating

potential respiratory dysfunctions or heart

failure risks [1].

This is the main reason why the most

important vital signs are considered to be the

body temperature (BT), and the pulse, also

called heart rate (HR), so the continuous

monitoring appears to be a must.

Arduino-based development platforms are

very popular for the development of such

systems due their low price and capabilities

[2], being easily programmed and integrated

[3].

One important aspect for this solution is the

dimension, having in mind that such a device

could be used by humans or non-humans.

The paper is structured as follows. The

sections Human Vitals and Vital Signs for

Non-Human presents the main factors that can

be monitored in order to detect signs of illness

or infection for human, respectively non-

human. The section Hardware Design

describes the proposed Arduino-based

solution for monitoring the vital signs on

human or non-human. Software Design deals

with the software component of the proposed

system. The results are presented in Findings

and Results section. The paper ends with

conclusion and future work.

2. Human Vitals

The normal body temperature recorded at skin

level is about 36.5⁰C for adults (and 37.0⁰C for

babies and children). A value between 36.5⁰C

and 37.5⁰C is considered to be normal for

adults. Fever (or hyperthermia) occurs when

the value is higher than 37.5⁰C and it usually

indicates infection or illness. The severe fever

1

34 Informatica Economica vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.03

is called hyperpyrexia and it appears when the

body temperature is over 40.0⁰C.

When the body becomes too hot, the

following two critical conditions may occur –

heat exhaustion and heatstroke, as described

below [4]:

 heat exhaustion – because of the heat, the

body starts losing salts and water, leading

to degradation of the person’s physical

condition, like feeling dizzy, faint or sick,

weakness, sweating, thirst, muscle

cramps, etc. Severe symptoms may

include seizures or the loss of

consciousness.

 heatstroke – the body is not able anymore

to cool down by itself so the temperature

is going higher until a dangerous level is

touched. A not spotted heat exhaustion

may lead to heatstroke that can be life

threatening.

A drop below 36.5⁰C of body temperature is

known as hypothermia (the reverse of

hyperthermia), usually being life threatening

so it should be addresses as a real medical

emergency. Cold environments are usually

producing hypothermia, like falling into cold

water, having no enough heat in the house or

staying outside for a long time in cold

conditions without wearing proper warm

clothes.

The second important vital sign is the pulse,

also known as HR (heart rate), indicating the

heart beat rate while pumping blood and

usually measured in BPM (beats per minute).

The normal adult resting pulse is between 60

and 100 beats per minute, while the athletes

may have a resting rate between 40 and 60

beats per minute. The pulse is affected by the

activity a person is doing, higher when doing

exercises and lower when deep resting or

sleeping. The maximum pulse rate a person

may achieve without being in danger to lose

consciousness can be simply computed by

using the following formula:

HR_MAX = 220 – AGE (1)

So, for example, the HR of a 40 years old adult

doing exercises should be under 180 beats per

minute, going over is a clear sign of a

dangerous situation that must be avoided by

taking a few minutes of rest. Exercises are

having great benefits over the body, leading to

a healthier and happier life.

While it is very important to constantly

monitor the vital signs, only a few people are

doing this daily, even if it is very simple to

quickly check the body temperature and the

pulse.

3. Vital Signs for Non-Human

We used statistical analysis to check if the

human most important vitals are also vital

when discussing about non-humans. For this

reason, we used various data sets concerning

dogs, cats and other common animals. For

example, based on data from Table 1, it is

analyzed a data set containing details about

horse colic (severe abdominal discomfort that

must be treated as emergency because of the

high rate of mortality) [7].

Table 1. Factors that influences non-human health conditions

Factor ANOVA

CellVolume - number of red cells by volume in the blood 31.912

Pulse - heart rate in beats per minute 31.876

TotProtein - total protein in blood 28.959

AbdCenTotProt - abdomcentesis total protein (fluid from

the abdominal cavity)

6.760

NasogReflpH - nasogastric reflux PH – indicating a gas

cap in the stomach

3.3389

RR - respiratory rate 1.985

BodyTemp – higher values may occur due to infection 0.967

By applying ranking, we can easily see that the Pulse and Body Temperature are

Informatica Economica vol. 21, no. 1/2017 35

DOI: 10.12948/issn14531305/21.2.2017.02

important factors explaining the health

condition for the horse, as is depicted in

Figure 1. The pulse clearly indicates a sign of

illness, most of the horses with higher pulse

values finally died due to the colic.

Fig. 1 Ranking results and the BoxPlot chart

PCA (Principal Component Analysis) shows

the pulse is by far the most important

component explaining the variations of

outcome (lived, died or euthanized), Table 2.

[7]

Table 2. Results of Principal Component Analysis

Feature name PC1

Pulse - heart rate in beats per minute 0.874

RR - respiratory rate 0.289

CellVolume - number of red cells by volume in the

blood

0.142

PeriphPulse=reduced – reduced peripheral pulse 0.006

AbdCenTotProt - abdomcentesis total protein (fluid

from the abdominal cavity)

0.006

CapRefill=>=3s - capillary refill time, indicating a

poor blood circulation

0.006

BodyTemp – higher values may occur due to

infection

0.004

These results lead us to choose to monitor the

pulse and the temperature for both human

and non-human.

4. Hardware Design

There are several books and papers dealing

with Arduino projects, like [10] and [11]. The

projects can be developed for almost anything

in real life, even for health monitoring.

We can easily notice the human vital signs

seem equally important for non-humans as

well, so the continuous monitoring becomes a

very wise decision that allows to early notice

any health issue signs.

In this respect, we propose a system that is

depicted in Figure 2. The proposed system is

36 Informatica Economica vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.03

based on an Arduino board and it gathers data

from pulse sensor (heart rate), temperature

sensor, accelerometer, GPS and, in case of

emergency, it sends SMS using a GSM

module. Also, the system shows the collected

data on a display and it uploads data to a

server using the cellular line. The board and

the components are powered by an

accumulator in order to assure portability and

autonomy.

Fig. 2. The proposed system components

On the market, we can find devices being able

to track such signs, like [5], or proposals like

[6], but we were thinking about the

opportunity to design an inexpensive mobile

device to be used for continuous heart rate and

body temperature monitoring for humans and

non-humans, too.

Fig. 3. The Arduino-based assembled device

Figure 3 represents the setup we did by using

the components that are briefly presented

below.

The IR Temperature sensor, TMP007, is an

Informatica Economica vol. 21, no. 1/2017 37

DOI: 10.12948/issn14531305/21.2.2017.03

integrated microelectromechanical system

(MEMS) thermopile sensor that contactless

measures the temperature [9]. The sensor can

read temperature between -40°C to +125°C

and it has a supply voltage between 2.5V and

5.5V.

The HR sensor, XD-58C, works at a sample

rate of 500Hz and it is powered at 5V.

The accelerometer is CJMCU-116, based on

MPU-6500 Integrated Gravity 6-axis Gyro

Acceleration Module with SPI/I2C interfaces.

The maximum power supply is 3.3 V. It

provides data for three axes.

The GPS, GSM and Bluetooth board is based

on SIM808 integrated circuit. The GSM

module is used for sending data over a GPRS

connection. The location coordinates are

provided by the GPS module and are collected

by the application in order to track the subject.

The supply voltage is between 5 and 18V.

The OLED display has 0.96 inches and it uses

SPI/I2C. The display has a resolution of 128 x

64 pixels and it uses tow colors: yellow and

blue.

The development board is compatible with

Arduino Nano (ATmega328p and

CH340).The board works at 16MHz and is

powered at 5V. It has 14 I/O pins (6 PWM and

8 ADC).

All components are connected using a

breadboard. The breadboard can be easily

identified in Figure 3 as it connects the

Arduino board and the other modules.

The Arduino-based board is collecting data

about the heart rate, body temperature and

location (one reading per second) and is

uploading these details in the cloud by using

the GPRS connection at a 3-minute interval

(less than 500 entries during a day). This time

interval could be customized according to the

needs, but for the regular monitoring we

consider a 3-minutes timer offers a good

balance between the quantity of data and the

vitals monitoring benefits.

The system is using the OLED display to

show the current readings for the pulse and

temperature together with the GPS and GPRS

status.

5. Software Design

The collected data are processed by a module

developed using the dedicated Arduino

environment and third-party libraries when

necessary.

Once the setup is finished, the data are

uploaded into the cloud once at every 3

minutes in a dedicated so-called channel. The

Great Wearable channel settings page is

presented in Figure 4.

Fig. 4. Great Wearable channel settings page

38 Informatica Economica vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.03

We are using the maximum number of fields

the cloud platform is supporting for regular

users (Field1 to Field8). Also, the location

checkbox is on, meaning we can additionally

upload the latitude, longitude and altitude for

each reading.

The channel data upload is done by using a

HTTP GET call directly executed in the code.

The design of the Arduino sketch we

implemented is presented in Figure 5, each

component having its own dedicated module.

Fig. 5. The software components

Inside the main loop, the program is reading

the heart rate for 30 seconds (for accurate

results) and is also checking for any SMS

received since the user can issue commands

by sending text messages (like give me the

current heart rate, GPS position or battery

level).

For power saving reasons, the display is off all

the time, so a button is used to manually turn

it on to see the instant readings and the status

of the sensors. There is also the option to turn

on/off the display by sending SMS

commands.

Listing 1. The Main Loop structure
void loop(){

 // check if the setup is finished

 if (Setup_in_Progress)return;

 // sms check

 unsigned long lastGSMCheck = millis();

 // 3 minutes for main loop (180 seconds)

 #define main_loop_secs 180

 unsigned long loopStart = millis();

 while(millis() - loopStart < (unsigned long)main_loop_secs * 1000){

 // BUTTON

 button_loop(); // check if pressed

 // PULSE

 if (HR_ON && HR_BPM == 0){

 // no pulse detected yet

 // 30 seconds action for hr update

 #define secs_to_search_for_hr 30

 getHR(secs_to_search_for_hr); // get hr for 30 seconds

 }

 // IR TEMP

 ir_temp_loop(); // get infrared temperature

 // ACCELELROMETER

 acc_loop(); // accelerometer details

 // SMS check at every 30 seconds

 #define GSM_check_in_secs 30

 if (GSM_ON)

 if(millis() - lastGSMCheck > (unsigned long)GSM_check_in_secs * 1000){

 gsm_loop(); // check for incoming sms

 // update the timer

 lastGSMCheck = millis();

 // restore the screen

 display_line_update(display_line_3, false);

 }

 // GPS

 gps_loop(); // gps details

 // DISPLAY

 display_loop(); // display details

Main Loop

Heart Rate
Infrared

Thermometer
Accelerometer GSM GPS Display Button

Informatica Economica vol. 21, no. 1/2017 39

DOI: 10.12948/issn14531305/21.2.2017.03

 }

 // finally, GPRS data transmission

 if (GSM_ON && GPRS_ON)

 sendGPRS();

}

The data upload is done by using a HTTP GET

call to the following address:

http://api.thingspeak.com/update?api_key=M

Y_API_KEY. The fields to be updated are

specified as query parameters, like

http://api.thingspeak.com/update?api_key=A

PI_KEY&field1=85, where field1 is defined

as being the HR value. The GPRS is turned on

only at data transmission time, otherwise it

stays disabled for power saving reasons. The

GPS data has the following structure: mode,

fixstatus, utctime (yyyymmddHHMMSS),

latitude, longitude, altitude, speed, course,

fixmode, reserved1, HDOP, PDOP, VDOP,

reserved2, view_satellites, used_satellites,

reserved3, C/N0max, HPA andVPA.

Listing 2 Source code for the sendGPRS() function
void sendGPRS(){

 // read gps status

 int8_t gps_status = GSM.GPSstatus();

 update_gps_status(gps_status);

 // get GPS data, if any

 #define gps_data_len 11

 char latitude[gps_data_len], longitude[gps_data_len];

 char altitude[gps_data_len], gpsspeed[gps_data_len];

 char gpsdata[220];

 //

 if (GPS_CONNECTED){

 // read gps data

 // check for GPS location

 GSM.getGPS(0, gpsdata, 120);

 // skip GPS mode

 char *tok = strtok(gpsdata, ",");

 // skip fixstatus and utctime

 tok = strtok(NULL, ","); tok = strtok(NULL, ",");

 // get latitude and longitude

 char *gps_latitude = strtok(NULL, ","); char *gps_longitude = strtok(NULL, ",");

 // get altitude and speed (km/h)

 char *gps_altitude = strtok(NULL, ","); char *gps_speed = strtok(NULL, ",");

 strcpy(latitude, gps_latitude); strcpy(longitude, gps_longitude);

 strcpy(altitude, gps_altitude); (gpsspeed, gps_speed);

 }

 // read battery percent

 VPRC = getBatteryPercent();

 // read acceleration data

 sensors_event_t event;

 if (ACC_ON)

 accel.getEvent(&event);

 // enable GPRS

 GSM.enableGPRS(true);

 // prepare the GET URL

 strcpy(gpsdata, "http://api.thingspeak.com/update?api_key=MY_API_KEY");

 #define field_data_len 11

 char url_data[field_data_len];

 // field1 - HR_BPM

 strcat(gpsdata, "&field1=");

 String(HR_ON?HR_BPM:0).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // field2 - IR TEMP

 strcat(gpsdata, "&field2=");

 String(IR_TEMP_ON?tmp007.readObjTempC():0).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // field3 - ACC_X

 strcat(gpsdata, "&field3=");

 String(ACC_ON?event.acceleration.x:0).toCharArray(url_data, field_data_len);

http://api.thingspeak.com/update?api_key=MY_API_KEY
http://api.thingspeak.com/update?api_key=MY_API_KEY
http://api.thingspeak.com/update?api_key=API_KEY&field1=85
http://api.thingspeak.com/update?api_key=API_KEY&field1=85

40 Informatica Economica vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.03

 strcat(gpsdata, url_data);

 // field4 - ACC_Y

 strcat(gpsdata, "&field4=");

 String(ACC_ON?event.acceleration.y:0).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // field5 - ACC_Z

 strcat(gpsdata, "&field5=");

 String(ACC_ON?event.acceleration.z:0).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // field6 - GSP_SPEED

 if (!GPS_CONNECTED) strcpy(gpsspeed, "0");

 strcat(gpsdata, "&field6=");

 String(gpsspeed).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // field7 - GSP_STATUS

 strcat(gpsdata, "&field7=");

 String(gps_status).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // field8 - BATTERY_PERCENT

 strcat(gpsdata, "&field8=");

 String(VPRC).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 if (GPS_CONNECTED){

 strcat(gpsdata, "&location=true");

 // latitude

 strcat(gpsdata, "&lat=");

 String(latitude).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // latitude

 strcat(gpsdata, "&long=");

 String(longitude).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 // altitude

 strcat(gpsdata, "&elevation=");

 String(altitude).toCharArray(url_data, field_data_len);

 strcat(gpsdata, url_data);

 }

 uint16_t statuscode; int16_t length;

 // send the data

 GSM.HTTP_GET_start(gpsdata, &statuscode, (uint16_t *)&length);

 GSM.HTTP_GET_end();

 // now close the GPRS connection

 GSM.enableGPRS(false);

}

According to the compiler feedback, the

sketch uses 25228 bytes (82%) of program

storage space (maximum is 30720 bytes).

Global variables use 1438 bytes (70%) of

dynamic memory, leaving 610 bytes for local

variables (maximum is 2048 bytes).

Apart the default web based visualizations, for

the GPS data (latitude, longitude and altitude)

we implemented our own Matlab code

showing the GPS points on the map to

generate the full geopath. Also, we added

some JavaScript functions able to create a

GeoChart showing the region (like thw

country, province or state) containing all the

GPS readings in a time interval.

6. Findings and Results

The visualization of historical data is web

based, so the data can be accessed by anyone

from anyplace, as illustrated in figures 6 and

7. Figure 6 presents the time evolution of heart

rate and body temperature.

Informatica Economica vol. 21, no. 1/2017 41

DOI: 10.12948/issn14531305/21.2.2017.03

Fig. 6. Representation of data provided by sensors (heart rate and temperature)

Figure 7 presents the geolocation data showed

on maps, using the same web interface. The

geolocation data can be correlated with the

sensors' data within any moment of time. This

could be used for further analysis.

Fig. 7. Representation of geographical data collected by GPS receiver

Despite the web visualization, the application

is also implementing a powerful alert system

by sending SMS massages and calling to the

emergency number the user assigned to the

personal account. A SMS messages is sent

each time the vital signs are outside the

normal limits. So, when the body temperature

drops under 36.5⁰C or goes over 37.5⁰C, an

alert is quickly generated. For the pulse rate,

the warning system is based on the formula

from equation (1), so if the pulse is exceeding

this value, the alert is instantly sent. The same

for the situation when the pulse goes under 60

beats per minute, the lower limit of the normal

range.

If the abnormal situation persists for 15

minutes or longer, the device is calling the

user registered phone. If there is no answer,

the next step is to call the emergency number

defined on the user account.

All these normal range limits can be

customized inside the user account in order to

reflect person’s fitness level and physical

conditions, so the alerts can be easily

personalized for any particular user.

7. Conclusions

The present paper tries to highlight the

enormous importance of the continuous vital

signs monitoring for human and non-human

subjects. We designed a simple and

inexpensive IoT project, a portable device that

acquires the vital signs data and uploads the

details in the cloud for a web based graphical

friendly interface. The real power of this

system resides in the alerting component that

indicates very rapidly when a vital sign is

going outside the normal limits, so the user

can take very quick the appropriate measures,

like resting, consulting a doctor or calling for

an emergency crew.

Future steps involve more system testing and

42 Informatica Economica vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.03

fine tuning and extended use in real

conditions.

An important and useful future improvement

would be to add a voltage regulator (like

LM7805) to prevent the LiPo power source

discharge to a level below 3V per cell that may

permanently damage the battery capacity.

Acknowledgment

Parts of this research have been published in

the Proceedings of the 16th International

Conference on Informatics in Economy, IE

2017 [8].

References

[1] NHS Choices - Your health, your choices.

Internet: http://www.nhs.uk [Mar. 20,

2017].

[2] A. Hayes, Arduino: A Quick-Start

Beginner's Guide, Amazon Digital

Services LLC, 2017

[3] C. Amariei. Arduino Development

Cookbook, Packt Publishing, 2015

[3] D. L. Schriger. Approach to the patient

with abnormal vital signs in L. Goldman,

D. Ausiello, Cecil Textbook of Medicine.

23rd ed. Philadelphia, Elsevier; 2007,

chap 7.

[5] e-Health Sensor Platform V2.0 for

Arduino and Raspberry Pi [Biometric /

Medical Applications]. Internet:

https://www.cooking-

hacks.com/documentation/tutorials/ehealt

h-biometric-sensor-platform-arduino-

raspberry-pi-medical [Mar. 20, 2017]

[6] N. Ahmed, R. Banerjee, A. Ghose, and A.

Sinharay, "Feasibility Analysis for

Estimation of Blood Pressure and Heart

Rate using A Smart Eye Wear," In Proc. of

the Workshop on Wearable Systems and

Applications (WearSys '15), New York,

NY, USA, 2015, pp. 9-14.

[7] Horse Colic Data Set. Internet:

https://archive.ics.uci.edu/ml/datasets/Hor

se+Colic [Mar. 20, 2017].

[8] F. Alecu, P, Pocatilu, S. Capisizu, "Human

and Non-Human Vital Signs Monitoring,"

In Proc. of. the 16th International

Conference on Informatics in Economy

(IE 2017), pp. 128-133, 4-7 May 2017,

ISSN 2284-7472

[9] TMP007 Infrared Thermopile Sensor with

Integrated Math Engine,

http://www.ti.com/lit/ds/symlink/tmp007.

pdf Mar. 20, 2017].

[10 M. Geddes, 25 Practical Projects to Get

You Started, No Starch Press, 2016

[11] John Boxall, Arduino Workshop: A

Hands-On Introduction with 65 Projects,

No Starch Press, 2013

Felician ALECU has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 2000 and he holds a PhD diploma in Economics from

2006. Currently he is lecturer of Economic Informatics within the Department

of Economic Informatics at Faculty of Cybernetics, Statistics and Economic

Informatics from the Academy of Economic Studies. He is the author of

several articles in the field of parallel computers, grid computing and

distributed processing. He holds a Project Management Professional (PMP)

certification from the Project Management Institute (PMI), and he is member of the Romanian

chapter of PMI.

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 1998. He achieved the PhD in Economics in 2003

with thesis on Software Testing Cost Assessment Models. He has published as

author and co-author over 45 articles in journals and over 40 articles on

national and international conferences. He is author and co-author of 10 books,

(Mobile Devices Programming and Software Testing Costs are two of them).

He is professor at the Department of Economic Informatics and Cybernetics

Informatica Economica vol. 21, no. 1/2017 43

DOI: 10.12948/issn14531305/21.1.2017.03

within the Bucharest University of Economic Studies, Bucharest. He teaches courses, seminars

and laboratories on Mobile Devices Programming, Economic Informatics, Computer

Programming and Project Quality Management to graduate and postgraduate students. His

current research areas are software testing, software quality, project management, and mobile

application development.

Sergiu CAPISIZU has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 1997 and National University of Defense in 2005.

He holds a PhD diploma in Economic Cybernetics and Statistics, having the

title Models and techniques to perform the economic information audit. He is

co-author of books and articles in information audit and ICT fields. Also, he

has published articles in proceedings of national and international conferences,

symposiums, workshops in the fields of data quality, software quality,

information audit and juridical aspects in ICT field. He is evaluator of ANEVAR association.

