
Informatica Economică vol. 21, no. 2/2017 5

DOI: 10.12948/issn14531305/21.2.2017.01

Upon a Home Assistant Solution Based on Raspberry Pi Platform

Alexandru Florentin IFTIMIE, Claudiu VINȚE

The Bucharest University of Economic Studies

iftimie.alexandru.florentin@gmail.com, claudiu.vinte@ie.ase.ro

Our ongoing research on Internet of Things (IoT) has been focused on a project aiming to

creating a proof of concept for a distributed system capable of controlling common devices

found in a house such as TVs, air conditioning units, and other electrical devices. In order to

automate these devices, the system integrates various sensors and actuators and, depending of

user’s needs and creativity in conceiving and implementing new commands, the system is able

to take care and execute the respective commands in a safe and secure manner. This paper

presents our current research results upon a personal home assistant solution designed and

built around Raspberry Pi V3 platform. The distributed, client-server approach enables users

to control home electric and electronic devices from an Android based mobile application.

Keywords: IoT, Home Automation, Java, Raspberry Pi, Arduino UNO

Introduction

The vision of IoT is to create the

framework for a network of physical objects-

devices, embedded with electronics, software,

sensors, and network connectivity that enables

the respective devices to collect and exchange

data [1].

As the era of technology and information

expands at high rates, researchers, scientists

and hobbyists have begun to bring technology

into home, and integrate it with various

electronic or mechanical devices, in order to

simplify and secure human living experience

within society.

The IoT envisions a technologic environment

that sustains the ability for objects to be

sensed and controlled remotely, across

existing network infrastructure [2], creating

opportunities for more unobstructed

integration of the physical world into

computer-based systems, with results

reflected in improved efficiency, accuracy and

economic benefits [3], [4]. When IoT is

augmented with sensors and actuators, the

technology becomes an instance of the more

general class of cyber-physical systems, and

that is what our research effort intends to

tackle.

As the era of technology and information

expands at high rates, researchers, scientists

and hobbyists have begun to bring technology

into home, and integrate it with various

electronic or mechanical devices, in order to

simplify and secure human living experience

within society.

2 Literature Review

The current state of the art development

projects and research papers upon smart home

applications are focused on some particular

aspects of the field. Some of them have

attracted a greater interest, such as electricity

consumption management, component and

device security, health related intelligent

monitoring systems. While many researches

have been conducted on certain parts of a

smart home system, we have been primarily

interested in creating a framework that could

serve as a developing environment for various

integrations, test different components and

configurations, find flaws and identify

improvements.

Electricity consumption monitoring

applications are developed in order to reduce

the cost of living. That is from the end user’s

point of view. Furthermore, from an

environmentalist perspective, this type of

management can improve the quality of

society as less electricity is wasted. For

instance, an on-line data power application

with consumption data processed in cloud was

proposed in [5]. The system consisted in a web

server, a website, a hardware interface and the

software application for monitoring the

electrical switch control. The application

generated daily, weekly and yearly reports

1

6 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.01

regarding the electricity consumption. They

found that this application encouraged

households to carefully watch the energy

consumption. Another research direction is

related to smart grids, for both home and

industry appliances [6]. The smart grid may

provide customers the tools they need to

reduce energy consumption, thus lowering the

electricity costs and a more stable electric

grid. The authors argue that high performing

homes will have energy efficient walls,

fenestration and technologies that

communicate with customers.

End-user’s ability to configure and program

features is also a subject of interest in smart

home applications. It regards the development

of user friendly GUI applications that allow

for customizing the system in a preferable

way. On the other hand, in [7] the authors

observe that the user’s daily activities does not

map well to programming tasks, thus they do

not want to control their devices, but to be in

control of their life, time, activities and

relationships. End-user programming is

typically hard to understand and it is quite

rigid, not offering the full control of the

system. Among end-user interfaces there are

encountered implementations for natural

language processing, visual programming, or

magnetic refrigerator poetry [8].

The most important aspect in a smart home

application is about the security standpoint.

Automation systems are attractive targets for

attackers [9]. The reasons include aspects

such as non-stop internet connection, lack of a

permanent system administrator, customer

reluctance for system updates and upgrade,

device specific vulnerabilities. Also, often the

homeowner is misinformed and does not care

too much about the security. User’s mobile

devices can act as a gateway to the home

automation system. Moreover, in case of

system malfunction, only an expert can

actually fix it. There are specific security

issues in connection with a neighborhood

central control system, if that approach is the

case. Although it may appear as cost effective,

a minor breach can grant access to all homes

connected to it [9].

Important technology players have started to

offer smart home packages as well. One of

them is Samsung with their SmartThings

platform, which has the largest number of

apps. In [10] the authors describe performing

a number of penetration tests over 499 of their

smart home applications and found flaws and

bugs in most of the applications.

One of the most innovative smart home

applications that we have reviewed is the

Vital-Radio developed at MIT [11]. It is a

wireless sensing technologies that is able to

monitor and track with high accuracy the

breathing and the heart rate of multiple users

in an indoor environment. The application

uses a radar technique called FMCW to

separate the reflections arriving from objects

into different buckets, based on the distance

between a given object and the device. This

type of application can relieve the user from

carrying inconvenient and intrusive sensors

such as the nasal probe or the chest band.

3 A Home Assistant Solution Based on

Raspberry Pi Platform

The main objective of this project was to

create a proof of concept for a distributed

solution to remotely control a wide range of

home devices. Specifically, the system should

be capable of controlling lights, compute

energy consumption, monitor and control

doors, windows, coffee machines, AC units,

TV sets, web cameras, read sensor values,

control a home surveillance robot, alert user

about burglary, and be as secure as possible.

Fig. 1. Project’s main components –

overall interaction

The prototype that we propose is composed of

a collection of circuits having data input

sources like sensors and various output

devices like LEDs, motors, and other

Informatica Economică vol. 21, no. 2/2017 7

DOI: 10.12948/issn14531305/21.2.2017.01

consumers controlled by intermediate

components like driver chips and relays. The

core of the project is represented by the

Raspberry Pi development board. The

system’s main components and their overall

interaction are presented in Figure 1.

The chief component, the whole approach is

based on, is a Raspberry Pi V3 which plays the

role of command center. An Arduino UNO

board is employed for controlling a toy car

that will serve as a platform for a surveillance

robot, and multiple electric components to

command.

At the hardware level, on this board will be

attached all the electrical components while,

at the software level, a server written in Java

will run and act as the main controller of all

the electrical and electronic components,

Figure 2.

Fig. 2. The layered solution architecture

The current software architecture consists in:

 an application server, running on

Raspberry Pi platform;

 a GUI wrapped around the application

server, that plays the role of administrator

console, as a desktop application

accessible from the Raspberry Pi

platform;

 a SQLite database, located on Raspberry

Pi as well, and serving data persistency

required by the application server;

 and an Android application, as a

distributed client.

The key components the user will be able to

interact with fall in one of the following

categories:

 basic electrical devices, such as lights,

motors, relays, or transistors;

 IR controllable devices such as air

conditioning units, TV sets, video players,

video projectors etc.;

 various sensors distributed across the

house;

 surveillance cameras.

Each action generated by the client, such as

retrieving the list of light sources, represents a

request sent to the server, and then the client

waits for the server response.

8 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.01

Critical data, necessary for system state

consistency and state recovery, in case of a

hardware failure, is persisted in a SQLite

database located on Raspberry Pi [4]. The

system database consists in the following

tables:

 Accounts - stores the account data for

client applications: user ID, password,

account status.

 Commands - stores the commands that are

to be executed when a sensor reading

reaches a predefined value, or satisfies

certain conditions; a sensor may produce a

discrete value between 0 and 1024.

 Doors - stores the door locations, the

electrical component which opens the

door, the electrical component which

close the door, and the status of the door.

 Lights - stores the current status of the

light source, its location, the associated

pin code, and the associated time intervals

the light source is to be activated or not.

 Intervals - stores the start and stop

timestamps, along with the status of the

light which has to be activated during that

time interval.

 Remotes - stores the assigned names of the

remote controls.

 RemoteKeys - names of the buttons and

the ID of the remote control.

 Videos - an Android client application

may record video clips which, rather than

being stored on the smartphone, may be

sent to the sever which can make them

available to the other clients; store the path

to the directory where the video file is

located, along with name and the

timestamp of the recording.

 Cameras - stores the location of the

camera, its automatically generated ID,

and status, ON or OFF.

 DetectedFaces - stores the path towards

the pictures with the detected faces, when

the house security option was activated.

 GPIOOutputComponents - stores the pin

associated to component, name of the

component, and action description; for

example MotorRight means starting to

turn an electric motor clockwise, and has

associated pin 10.

 GPIOPins - stores the pin numbers for

mapping: physical pin number, BCM pin

code, Java 8 library code, current status,

and if it is used or not.

 SPISensors - name of the sensor, the

associated pin, the current value, and

sensor description.

The server application is multithreaded, each

thread being responsible for a simple and

repetitive task. The main thread listens for the

client requests, processes them in terms of the

request type, then creates new child threads

that take care of the specific request, and send

the reply to the client, Figure 3.

The AutomaticLighting thread is

responsible for initially retrieving from the

database the list of lights and the operating

time intervals associated to them, and then

checks periodically, every second, if they are

to be on or off. Inserting a new light, along

with its associated time interval is achieved

within LightsPanel class.

Informatica Economică vol. 21, no. 2/2017 9

DOI: 10.12948/issn14531305/21.2.2017.01

Fig. 3. Detailed component architectures

The Command thread contains methods for

sending 1/0 signals to GPIO pins.

These methods employs other static methods

from Pi4J library [5]. Below are examples of

calls for creating a GPIO controller instance

and its usage for fetching the 11th pin state.

GpioController gpio =

GpioFactory.getInstance();

GpioPinDigitalOutput pin =

gpio.provisionDigitalOutputPin(RaspiPin.

GPIO_11, "", PinState.LOW);

The Command thread fetches the command

lists enrolled in the database, checks the

conditions and, if they are satisfied, then the

command is executed right away (if the delay

time is zero, and the execution time is zero),

or it is passed to an auxiliary thread (if the

delay and execution times are different than

zero).

There can be created commands for various

scenarios:

 select the component to be executed;

 set the low and high threshold values,

between 0 and 1024;

 select component status when the sensor

reading is lower than the low threshold,

and the component status when the value

returned by the sensor is higher than the

high threshold;

 set the delay from the moment the

condition is satisfied, sensor reading lower

than the low threshold, or sensor reading

greater than high threshold;

 set the action duration – for instance, when

the light sensor returns 500, then that is

10 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.01

considered to be too dark and, within 1

second, a light will be turned on for 2

hours.

The SensorReader thread is created to

monitor sensor activities and, if the user had

defined and set a specific command/action for

certain readings supplied by sensors, that

command is executed right away. Another

thread is used to query the SQLite database for

certain preregistered events, like an alarm

clock. Unlike a simple alarm though, which

may only trigger a ring, on this thread can

execute a certain user defined command.

The CameraRecorder thread is created to

record video captures from all started

cameras, and stores these files in area from

which they may be accessed by threads

created with other purposes, such as human

face recognition, or live streaming to mobile

client application.

The ClientHandler thread is created for

accepting connections from the client

applications, and then for each connection,

there is created a RequestConnection

thread for replying to client requests.

A distinct thread checks for each electrical

consumer (light, motor etc.), which has

associated at least one interval, if the current

time falls into the specified interval and,

consequently, if the predefined action has to

be executed or not.

Once the client application sends to server the

message “away from home”, a new thread is

created and started to monitor the security

related sensors and alert the client if there

were any activity in the house while it

shouldn’t had been.

There is a dedicated thread,

RadioTransmitter, for sending radio

signals to Arduino UNO board. On both ends,

for the sender within the server on Raspberry

Pi, and for the receiver on Arduino UNO, we

make use of API provided by RCSwitch

library.

An important aspect that has to be factor in is

that the Raspberry Pi platform has a fairly

modest number of GPIO pins. Using chips

like MCP23008 or MCP23017 could supply

Raspberry Pi with at least 64 pins, a number

which covers most of the needs for sensor

connections required by a medium sized

house. Also the number of ADC that can be

simultaneously connected is limited to 2

converters. That means a quite small number

of sensors, respectively 16, as each one has 8

channels. For more ADCs a switch controlled

by a GPIO pin should make possible for

reading more sensors, but not at the same

time, rather by reading one at a time,

switching between them. Within the project it

has been implemented as well a radio

communication between Raspberry Pi and the

Arduino UNO board mounted on a toy car

chassis, via a Radio Transmitter-Receiver.

The goal was to send simple commands like

UP, DOWN, LEFT or RIGHT from the client

applications in order to control de toy car. We

intend to raise the complexity on this research

path, in order to build a RC robot as Arduino

has 13 GPIO pins and 5 analog pins. For

controlling the communication between

Raspberry Pi and Arduino UNO we used

WiringPi library on both sides.

For controlling IR devices we make use of

LIRC (Linux Infrared Remote Control), a

command line program that listens for IR

signals, records them in a configuration file,

and sends signals via the Infrared LED. The

programs irrecord and irsend, included of

Lirc, are used to record keys from remote

controls and to send the signals respectively.

In order to install and configure LIRC on

Raspbian operating system, the following

instructions must be executed:

sudo apt-get install lirc

Then the following lines must be added into

the file /etc/modules where

gpio_in_pin is the pin used for attaching

the infrared sensor which will be used for

recording the remote buttons, and the

gpio_out_pin is the pin used to attach the

infrared LED which be used for emitting the

signal:

lirc_dev

lirc_rpi gpio_in_pin=23 gpio_out_pin=22

Another file to modify is

/etc/lirc/hardware.conf where it

Informatica Economică vol. 21, no. 2/2017 11

DOI: 10.12948/issn14531305/21.2.2017.01

will have the following content in it where the

directive LIRCD_ARGS will tell which

arguments will be loaded by default when the

program is launched, the directive

LOAD_MODULES will tell whether or not to

load kernel modules:

LIRCD_ARGS="--uinput"

LOAD_MODULES=true

DRIVER="default"

DEVICE="/dev/lirc0"

MODULES="lirc_rpi"

LIRCD_CONF=""

LIRCMD_CONF=""

And the last file to modify is

/boot/config.txt which is necessary if

the installed firmware version is 3.18.x in

order to load the lirc-rpi kernel

extension:

dtoverlay=lirc-

rpi,gpio_in_pin=23,gpio_out_pin=22

After the file has been modified, the following

commands must be executed in order to load

the changes:

sudo /etc/init.d/lirc stop

sudo /etc/init.d/lirc start

Before the command line program can be

used, first of all the server will start a daemon

that is responsible with the actual process of

emitting the infrared signal. To start the

daemon, the following line of code will be

executed when the server starts.

Runtime.getRuntime().exec("sudo lircd -d

/dev/lirc0");

After the daemon is started, the server is ready

for accepting new clients that will request

code numbers to emit. The code numbers for

the remotes that have been previously

recorded into a LIRC configuration file, are

parsed from that file and stored into the

database so that the user is not responsible

with remembering the codes for the remotes.

The following line of code will make the

daemon start emitting a light signal:

Runtime.getRuntime().exec("/home/pi/Desk

top/wiringPi/433Utils/RPi_utils/codesend

"+nr);

Regarding the security aspects of the personal

home assistant solution, we have

experimented with web camera and magnetic

sensor. The system can be programmed to

alert every client application and send

messages containing information about a door

status. If the door is open, an action is

triggered by the magnetic sensor found on the

frame of the door since it is no longer

activated by the south pole of the magnet

found on the door. Also the system can take

photos for a specific amount of time specified

by the user. This action is triggered either by

sensing the door open or detecting a face. For

image processing has been used OpenCV

library with Java code.

4 GUI Console Features

The system administrator is the only one who

can access the server console. The server side

administration is achieved through a desktop

Java GUI. This Swing application is wrapped

around the server and offers access to account

table, GPIO connections and other devices.

The desktop GUI is organized in multiple

panels from which the administrator can

configure the system. The first panel controls

the Lights, which can be turned on and off and

added intervals to specify that at a certain part

of the day the light should be turned on or off

automatically, Figure 4.

The Doors panel enables the user to select a

particular door, then which component locks

the door and which component unlocks the

door, and provides as well the ability for

choosing the current state of the door.

From the Server panel, the user can start and

stop the server, provide the port number, and

also check the IP cameras.

12 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.01

Fig. 4. Desktop client GUI – Lights configuration panel selected

There is also provided a text console for

logging the actions that have been executed

recently. From the Remotes panel, the user is

able to add new IR remote controls to the

database. As the Lirc is a command line

program, when the user presses the button for

recording new signals, a terminal and an

instruction panel are showed.

Within Cameras panel, the video cameras

connected to the system can be configured and

managed. The thread CameraRecorder

maintains a map of video captures associated

to each video camera. This thread insert

images in the corresponding location of the

map. The ClientHandler thread copies

images from this map and sends them to the

client application. Based on the client request,

the FaceDetector thread may as well copy

an image from the map and process it for face

recognition. Due to performance reasons,

since for a single frame the system requires

about 3 seconds of processing, while the

Raspberry Pi processor reaches about 50% of

load during this time interval, only one

FaceDetector thread is launched at a time.

From the Toy panel the toy car movements can

be controlled. When activated, the

RadioTransmitter thread sends signal

codes every 300ms. Our experiments showed

that if the time interval between signals is

narrower than 200ms the signal is distorted.

We have to investigate if the phenomenon

occurs due to the Radio Transmitter and

Receiver characteristics, or it is cause by

electromagnetic interference. The toy car

unshielded motors reside in the proximity of

the Radio Receiver located on the car. A very

important part of the application regards the

Sensor panel from where the user can program

certain actions that are to be executed when a

condition is satisfied based on sensor

readings, Fig. 5.

Informatica Economică vol. 21, no. 2/2017 13

DOI: 10.12948/issn14531305/21.2.2017.01

Fig. 5. Sensor panel options

This is the panel where the administrator has

the capability to create and manage

commands, in the manner that we presented in

the server section.

5 Android based client application

In order to control the entire system while

away from home, we design and implemented

a dedicated mobile client application. The end

user has been provided with a personal

account which is used to authenticate for the

Android application in order to be able to

visualize and remotely control home devices.

The client application has a setting panel to

allow for creating a new account, delete an

existing account, update password, add new

IP address and Port number to connect to, and

display various useful information, Figure 6.

The client application is able to send and

receive messages to and from the server.

Between the mobile client application and

server the messages passed are encrypted Java

String instances. The class Crypter,

contained in java.crypto package

provides implementation of AES algorithm

and the methods for encrypting, respectively

decrypting Java String.

The messages coming from the client have the

following CSV format:

user_name,action[,values, …]

For example, the following messages

represents request toward the server with the

meaning provided as Java comment:

Alex,GetCameras // request for the list

of active surveillance cameras

Alex,StartCamera,Garage // start

receiving video frames from the garage

camera

Alex,GetLights // request for the list

of installed lights

Alex,UpdateLights,Kitchen,ON // turns on

the kitchen light

Alex,GetIRDevices // request for the

list of enrolled IR controlled devices

Alex,GetKeys,SonyDVD // request for the

key of a certain remote control

Alex,UpdateIR,SonyDVD,KEY_VOLUMEDOWN //

request for lowering the volume of a

Sony DVD player

14 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.01

Fig. 6. The Android based client application – various screens

The messages sent by the server have

following generic format:

 number of devices concerned (lights,

motors, relays etc.), followed by a list of

pairs:

o device name (identifier),

o device status.

Once an update request is sent to the server,

the server does the following actions:

 sends a command to the corresponding

GPIO, if necessary, for actuating the

physical device;

 updates the device status in the database;

 sends and update to all client applications

with the new status of the device

concerned for maintaining consistency

within the distributed system.

Each message received by the server from

client is recorded in a log file. If a mobile

phone has been lost or stolen, having the client

application running on it, the administrator

can delete the user data from the database and

then the client application is automatically

logged out from the server.

For example, the client could record a video

message or write a text message and send it to

the server without being necessary to use local

storage. The reason behind implementing

such a function derives from the need of

having the server communicate in a consistent

manner, RESTfully, with all registered

accounts, family members respectively. As

home security is of high interest for all the

family members, the message will be stored

on the server side until every registered client

consumes it, or until the administrator decides

to remove it.

6 Security Aspects

We believe that security is the most important

feature of a home assistant solution. No

potential user will trust an insecure

application when it comes to a real-estate

property. Apart from the basic aspects of

security such as user authentication, we

implemented methods for different scenarios.

Technology solution pitfalls come from both

software and hardware components. When

discussing about software weaknesses, those

concern main server accessibility, and the

communications between server and client

applications.

Starting from the easiest break-in method that

is using another computer to disable the

system or take control over all devices in the

house, the current system’s version included

the change of port number for the Secure Shell

login on the server. As there are at least 60000

possible ports available, an attacker will have

lower chance of breaking into the system.

Other measures for limiting the access to the

server via Secure Shell include the creation

and allocation of public and private keys for

the users of the system. This method will

Informatica Economică vol. 21, no. 2/2017 15

DOI: 10.12948/issn14531305/21.2.2017.01

lower the chances even more of allowing an

unknown user from accessing the server. Even

if the user will access the server by using a

broken account, the account’s privileges are

very limited so that the system will not be

fundamentally affected. In addition, the root

login for the same reason mentioned earlier.

The software component that has been

developed for accessing the devices and

receiving connections from client applications

can also present a set of exploitable features.

Therefore, we used the implementation of

Advanced Encryption Standard (AES) found

in Java Crypto class for encrypting all

messages that are exchanged between the

client and the server. The only messages that

are not encrypted consist of web camera live

transmission. As a single frame from the

camera has at least 1.5 MB in size, the

encryption and the decryption of the bytes

would have taken too much computation time,

along with a network traffic increase since the

algorithm introduces several extra bytes.

It was chosen to have the encryption key

required by the algorithm hardcoded, because

it would have been too much overhead for the

user to remember an encryption key.

Regarding the hardware, one of the

components that potentially may pose security

vulnerabilities is the magnetic sensor for the

door. As the magnetic sensor checks whether

in the near proximity there is a magnetic field

of south orientation, this can easily be fooled

if the hostile person has knowledge about such

a sensor by simply keeping a large magnet

around the sensor while lock-picking the door.

As a second layer of protection, we

implemented a facial detection heuristics that

alert the user when it is not at home. In order

for the application to not give false alarms, if

the detection algorithm was trained enough,

the user must first announce the server about

not being at home.

The last level of security implemented within

the proposed prototype is user delayed

authentication from the mobile application.

When the user is accessing the application, the

first operation is to send to the server a

message that contains the username and the

password. When the server receives this

message, it waits for a while before checking

the database, and then continues with sending

back the approval or denial code.

7 Conclusions and Further Research
The solution that we have presented in this

paper is the result of a particularly applicative

research. At the current stage of our research

project upon a personal house assistant

solution based on Raspberry Pi platform we

have successfully implemented most of the

objectives that we aimed for. The solution,

although it is inexpensive, as it cost less than

200 Euros, it is quite rough and fairly

complicated at this point for a non-technical

end user to understand the whole process and

make personal adjustments. Our ongoing

research on IoT is focused in the near future

on improving the level of security for the

current home assistant solution, along with

tweaking the implementation regarding AC

units control via IR interface, monitoring

windows, and building an autonomous

surveillance robot. There are also

considerations that have to be taken into

account regarding the integration of such a

solution within an existing house interior,

since most of the sensors and actuators are

wired to the Raspberry Pi platform. An

entirely wireless approach, particularly based

on WI-FI, would be marginally more

expensive, and would require encrypted

messages for ensuring security, but would

offer a much greater flexibility with regard to

the solution architecture design, installation

and long term maintenance. Our main focus is

to design and implement a coherent and

comprehensive API for interconnecting

generic WI-FI based distributed controllers

with application services residing on

Raspberry Pi platform.

References
[1] Internet of Things Global Standards

Initiative, ITU July 2015,

http://www.itu.int/en/ITU-

T/gsi/iot/Pages/default.aspx/, (April 29,

2016)

[2] Internet of Things: Science Fiction or

Business Fact, 2014 A Harvard Business

http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx/
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx/

16 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.01

Review

[3] Analytic Service Report,

https://hbr.org/resources/pdfs/comm/veri

zon/18980_HBR_Verizon_IoT_Nov_14.

pdf/, (April 29, 2016)

[4] Ovidiu Vermesan, Peter Friess: Internet

of Things: Converging Technologies for

Smart Environments and Integrated

Ecosystems, http://www.internet-of-

things-

research.eu/pdf/Converging_Technologi

es_for_Smart_Environments_and_Integr

ated_Ecosystems_IERC_Book_Open_A

ccess_2013.pdf/, 2013 River Publishers,

(April 29, 2016)

[5] R.G. Marvin. Garcia, Hannah R. B. Chan,

Benilda E. V. Comendador , Grant B.

Cornell, Christopher D. Celestial, and

Arc E. P. Mercolesia: Smart Home

Electricity Management System Using

Cloud Computing (SHEMS). In: Journal

of Advances in Computer Networks

(2013)

[6] Kara Saul-Rinaldi, Robin LeBaron and

Julie Caracino: MAKING SENSE OF

THE SMART HOME

[7] S. Davidoff, M.K. Lee, C. Yiu, J.

Zimmerman, A.K. Dey. (2006)

Principles of Smart Home Control. In:

Dourish P., Friday A. (eds) UbiComp

2006: Ubiquitous Computing.

UbiComp 2006. Lecture Notes in

Computer Science, vol 4206. Springer,

Berlin, Heidelberg

[8] K.N. Truong, E.M. Huang, & G. D.

Abowd. CAMP: A magnetic poetry

interface for end-user programming of

capture applications for the home. In:

Proceedings of Ubicomp (2004)

[9] Arun Cyril Jose, Reza Malekian: Smart

Home Automation Security: A Literature

Review. In : Smart Computing Review

(2015)

[10] Earlence Fernandes , Jaeyeon Jung , Atul

Prakash: Security Analysis of Emerging

Smart Home Applications. In : Security

and Privacy (SP), IEEE Symposium

(2016)

[11] Fadel Adib Hongzi Mao Zachary Kabelac

Dina Katabi Robert C. Miller: Smart

Homes that Monitor Breathing and Heart

Rate

Alexandru IFTIMIE is student in the final year of The Faculty of Economic

Cybernetics, Statistics and Informatics within The Bucharest University of

Economic Studies. His domain of interest and research include artificial

intelligence, neural networks, computer vision and robotics. His major

achievements include first prizes at student scientific competitions,

hackathons, and innovative projects competitions.

Claudiu VINŢE graduated in 1994 The Faculty of Economic Cybernetics,

Statistics and Informatics, with the leading overall average of 9.91/10. He is

member of The Department of Economic Informatics and Cybernetics.

Claudiu holds a PhD in Economics from The Bucharest University of

Economic Studies. His domains of interest and research include heuristic and

metaheuristic algorithms, middleware components, trading technologies,

algorithmic trading, and data analysis.

https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf/
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf/
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf/
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf

