
Informatica Economică vol. 21, no. 1/2017 43

DOI: 10.12948/issn14531305/21.1.2017.04

Modelling the Replication Management in Information Systems

Cezar TOADER 1, Rita TOADER 2

1, 2 Technical University of Cluj-Napoca, Department of Economics,

North University Center in Baia Mare, Romania

cezar.toader@cunbm.utcluj.ro, rita.toader@cunbm.utcluj.ro

In the modern economy, the benefits of Web services are significant because they facilitates the

activities automation in the framework of Internet distributed businesses as well as the

cooperation between organizations through interconnection process running in the computer

systems. This paper presents the development stages of a model for a reliable information

system. This paper describes the communication between the processes within the distributed

system, based on the message exchange, and also presents the problem of distributed agreement

among processes. A list of objectives for the fault-tolerant systems is defined and a framework

model for distributed systems is proposed. This framework makes distinction between

management operations and execution operations. The proposed model promotes the use of a

central process especially designed for the coordination and control of other application

processes. The execution phases and the protocols for the management and the execution

components are presented. This model of a reliable system could be a foundation for an entire

class of distributed systems models based on the management of replication process.

Keywords: Information Systems, Services, Reliability, Fault-Tolerance, Replication

Management

Introduction

This paper presents the development

stages of a model of a distributed system in

which the primordial abstract elements are the

process and the connection (link) between

processes. This paper deals with the problem

of communication between the processes

within the distributed system, with the

concept of message exchange between

processes, and also presents the problem of

distributed agreement.

This paper presents the importance of two

concepts: the logical time of a distributed

system and the causal order of messages. All

of these concepts are necessary to define a

model of a distributed system in which some

processes have the role of management of the

operations carried out by other processes

which only have an execution role.

After presenting of the processes of the

system components, there is an abstraction of

the exchange of messages between the

processes of the distributed system. In the next

step, an abstract model of a distributed system

is proposed and analyzed, in which there are

modelled several worker-processes controlled

by a manager-process, which runs on different

host than the worker’s. The model described

here forms the basis for the development of a

distributed system tolerant of faults, which

uses the replication of operations.

Based on the abstract model of the distributed

system previously presented, a replication

model is proposed, for operations and data

based on the structure of a distributed system

containing several worker-processes. After

the presentation of a list of objectives for the

fault-tolerant system, a logical separation of

management operations from the execution

operations and data storage is proposed.

Web services are increasingly used in

distributed systems, applications and services

of outmost importance. For distributed

systems, the architecture oriented on services,

SOA - Service Oriented Architecture is

already accepted as being the architecture able

to interconnect applications running on

different operating systems and facilitates the

complex interactions between autonomous

systems and heterogeneous ones, either within

organizations or between organizations in

relations of B2B (business-to-business) type.

Web services allow software applications

found in different organizations (company) to

1

44 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

interact with each other, even if those

organizations use different hardware systems,

or operating systems and even different

programming languages. Web services are

able to standardize and improve the

effectiveness of business activities on the

Internet by automatically invoking operations

which otherwise should be invoked manually

by a human operator. So, Web services allow

direct interactions between computers located

in different organizations.

Based on Web services it is possible to build

technologies to support interoperability with

Decision Support Systems. Important aspects

for healthcare systems are described in [1],

where the proposed technology is meant to

raise the interoperability degree between

different medical information systems is

described. Web Services ensure

communication between medical units

automatically with minimum human

intervention, which is an essential

requirement when designing applications for

users in the medical domain.

The design of applications based on Web

services can take into account important

aspects in creation of new levels of

abstraction, giving a special importance to

scalability and adaptability. Due to a growing

importance given to resource-oriented Web

services, the authors must implement the

principle of organizing the algorithmic

resources in multi-level hierarchy and the

principle of uniform access to resources. In

order to implement these principles, an

architectural model of Web applications is

promoted in [2].

2 Availability and Reliability of Distributed

Systems

The failures and damages of web applications

may lead to incorrect processing or even to the

system failure in the business of e-commerce

type, e-banking or other systems based on

transactions. One of the important causes of

the services’ interruptions is the so-called

„server falling”. Therefore, there are

becoming increasingly important the

techniques which provide fault tolerance and

the provision of the services on Internet even

in the conditions of damages to the servers.

For many distributed systems based on Web

services there are a large number of client

applications already installed and is very

complicated the modification of all of these

applications. This is the reason why the

service providers search for specific fault

tolerant solutions, called client-transparent,

which do not require any special action on the

part of the client applications or any

amendments of them. This transparency on

the part of client application is an important

requirement for both the application itself, as

well as for the operating system in question.

In complex applications, Web services should

be connected to other services with a view to

form composite Web Services and complex

architectures based on services (SOA, Service

Oriented Architectures). If a component in the

chain of services is not available or is not

reliable, then the entire system is affected.

A correct service is the one which implements

the function of the system concerned. When

the service provided by the customer differs

from the correct service, it means that there is

a failure of the system. This deviation means

that the service does not comply with its well-

defined specifications. An error is that part of

the system status which may cause a failure.

The cause of the error is a fault. A fault can be

active or not. When it is active, the fault

produces an error in the system. Serious errors

lead to the system crash [3].

Web Services can raise new problems in the

computer systems of the organizations:

 Faults existing in the information system

of an organization may adversely affect

the information system of a partner organ-

ization;

 Data consistence, integrity and confidenti-

ality are more difficult to keep;

 Lack of availability, reliability and data

security may cause damage to the relations

between a company and their customers,

suppliers and partners.

These problems are becoming more important

and more demanding as the activities in the

information system necessary for the conduct

of the business are becoming more automated,

as the Web Services calls for other Web

Informatica Economică vol. 21, no. 1/2017 45

DOI: 10.12948/issn14531305/21.1.2017.04

services and the business activities require

more steps.

The system availability refers to the ability of

a system "to be ready to provide a service

correctly". The system reliability refers to the

ability of a system "to be able to continuously

provide a correct service". Dependability is a

more comprehensive concept which

incorporates several components: availability,

trust, security, confidentiality, integrity,

maintainability [3].

A very important means to achieve the

reliability is the fault tolerance. This refers to

the techniques meant to give the system the

ability "to provide a service correctly even in

the presence of errors".

In the systems considered reliable, data

replication is a technique that has been widely

accepted that allows the avoidance of system

crashes. Thus, the architects of the system

implement a service within a distributed

system using a group of servers, independent

from a physical point of view in such a way

that if a part of them cease to operate, the

remaining servers have the ability to provide

the service in question to the clients.

Replication protects an application running on

a server against the faults, so that if a replica

becomes inoperative, other replica is available

to provide that service to customers. The most

frequently used replication strategies are

classified as follows: liabilities, active and

semi-active. An overview of these strategies

can be found in [4].

2.1 Traditional Replication Techniques and

their Limitations

Data replication consists of maintaining

several copies of data, called replicas, on

separated computers. Replication is an

important technology in the field of

distributed services. Replication improves the

availability of the data by means of enabling

the access of users to duplicate data in the

close vicinity, even when some copies of the

data requested are not accessible.

Replication improves the system performance

by reducing the waiting times when to a user,

it is offered data located in the duplicates from

immediate vicinity, thus avoiding the large

distance access. Furthermore, there is an

increase in performance due to data

replication, which is manifested by

simultaneous serving of multiple client

applications.

Traditional techniques of replication are

aimed at maintaining the consistence between

the main package of data and a single copy,

and the client applications could "see" a single

set of data with high degree of availability.

The basic concept is as follows: the access to

replicated data is locked until they are up-to-

date, and this update is proven within the

application. This is the reason why such

techniques are called "pessimistic".

The algorithms use at least two replicas of

data. In many cases, it is necessary to choose

one of these two replicas which receives the

role of the main replica. After changing any

data, the main replica transmits the main

changes to the other replicas and only after

this data synchronization, the client

application is allowed to carry out new

operations on data.

In the case in which the main replica becomes

unavailable, between the remaining replicas,

it should be chosen one to become the main

replica. These techniques of pessimistic

replication can be used successfully in the

local networks, where the transfer speeds are

relatively high, latency is relatively low and

system crashes are relatively rare.

The replicated entity could be of several

types: data object, file, data structure, and

service. Therefore, the replication techniques

may be different in order to be able to operate

with specific components. There are at least

two categories of replication techniques:

 Techniques targeting the replication of da-

tabases;

 Techniques targeting the replication of ob-

jects and processes in a distributed system.

The techniques of the two categories above

have many similarities, but also important

differences [5]. Due to the continuous

progress of Internet technologies, it appears

the tendency to apply the algorithms specific

to pessimistic replication to wide area

networks (WAN).

However, in this case, there are not expected

46 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

the same performance and the same data

availability as in the case of local area

networks.

In the first place, the Internet is relatively slow

and does not provide the same reliability and

the same data availability as local networks

[6]. These problems are more evident once

with the more and more usage of mobile

computers with intermittent connectivity.

If an algorithm to woof pessimistic replication

attempts to sync with a site which became

unavailable (inaccessible), it will be in a

locked status (locked pending an external

event). Furthermore, there is even the

possibility of data corruption because, in the

event of a network break, the recovery time is

not predictable and thus it is impossible the

right choice of a main replica [7].

Secondly, the algorithms of pessimistic

replication are not easily to scale for being

used in WANs. It is difficult to build on a

WAN a pessimistic replication system, having

a large size, in which frequent updates of data

appear because the increasing number of

served sites leads to the degradation of

important performance parameters: response

times and availability of data [8]. That is why

many Internet services adopted the

"optimistic" replication techniques.

Thirdly, certain activities of the human users

require data-sharing. In many engineering

areas and especially in the software

engineering, the specialists often work on

punctual problems, well delimited and

specified, in a particular isolation until the

completion of the work in question.

Therefore, it is better to allow independent

updating of data in centralized data deposits of

the organizations and the subsequent solving

of conflicts appeared, instead of blocking the

access to a specific set of data until a certain

human operator finishes editing the data [9].

2.2 Optimistic Replication and its Features

Optimistic replication signifies a set of

techniques for the efficient sharing of data in

mobile or large size working environments.

The essential feature that distinguishes the

algorithms for the optimistic replication from

those of pessimistic replication is the manner

in which the control of concurrent access is

approached.

The pessimistic algorithms coordinate the

synchronization between replicates during

access and block the new requests of users for

the duration of an update in progress. The

optimistic algorithms allow access to data

even if it has still not been completed the

synchronization of replicas on the basis of the

optimistic hypothesis that conflicts will

appear only rarely, or not at all. The updates

are sent to replicas in the background, and the

occasional conflicts are solved when they

occur. This optimistic way of seeing things is

not new, but was widely spread as the Internet

and mobile technologies have become more

and more used.

As compared to the traditional techniques of

pessimistic replication, optimistic replication

promises a high degree of system performance

and of data availability, but accepts for a

limited duration some differences between the

main data and their duplicates, this

inconsistency being solved in due time.

The optimistic algorithms have several

advantages compared to pessimistic ones in

the field of distributed applications over the

Internet. In the first place, applications are

progressing even if the network connections

or the sites are unreliable.

Secondly, the optimistic algorithms are

flexible as regards the network in the sense

that the used techniques propagate operations

reliably to all replicas, even if the graph of the

network is unknown and variable.

Thirdly, these optimistic algorithms are easily

scaled in the case of a large number of

replicas, because they require a smaller

synchronization effort between sites.

In the fourth place, the optimistic algorithms

allow sites and users to remain autonomous,

meaning that it is possible to add a replica to

the existing ones without the need of changes

to the existing sites. In the fifth place, the

optimistic algorithms enable the

asynchronous collaboration between users, as

in the case of CVS systems [9].

In the end, there has to be said that the

optimistic algorithms give a fast response to

client applications as they carry out the

Informatica Economică vol. 21, no. 1/2017 47

DOI: 10.12948/issn14531305/21.1.2017.04

updates of data as soon as they have been

requested.

These advantages require a cost. Any

distributed system is faced with the problem

of a compromise between the consistent data

and their availability [10]. In the early stages

of work where the pessimistic algorithms are

waiting to achieve a certain status of the

system, optimistic algorithms allow the

continuation of the operations with the client

applications, but in the background, they are

carrying out other operations.

The optimistic algorithms have to cope with

the situations in which there are replicas

different from each other, which may lead to

conflicts between concurrent operations.

Therefore, they are suitable only to

applications that can tolerate occasional

conflicts and data inconsistency for a limited

time.

2.3 Elements of Optimistic Replication

Any system of replication operates with the

concept of minimum unit of replication. These

units of replication are, practically, objects. A

replica is a copy of an object stored on a site,

in a computer. Replicas of several items are

stored on a site. Every object is independently

managed in accordance with the mathematical

algorithms of replication used.

Some algorithms distinguish between the sites

that have permission to modify the objects

contained, called master sites and sites that

only store replicas accessible only for reading.

Usually it is noted with R- the total number of

replicas and with M- the number of master

replicas of the same object. A case is the one

in which M=1 and R = M, meaning that there

is a single master site that contains a master

replica for every object.

Other important components of replication

refer to the operations and the manner of

spreading operations on replicated systems. A

system of optimistic replication must allow

access to replicated objects even if one of the

replicated systems is inoperative or

disconnected.

An update of an object in the system bears the

name of the operation. In the case of

optimistic replication, the operations differ

from traditional updates in data bases, because

the operations are propagated and applied in

the background, often after an answer was

submitted to the client application which has

initiated the request.

An operation can be regarded as a

precondition for the detection of conflicts

combined with a command for updating an

object. The nature of the operations differ

from one system to another. Many systems

only supports the update of the whole object

in question. These are called systems based on

the status transfer (state-transfer systems).

Other system allow the detailing of the update

operations and are called systems based on the

transfer of operations (operation-transfer

systems) [11].

To update an object, the user requests a

specific operation on a specific site. It

performs the operation at the local level and

then allows the user to continue to work

relying on the fact that that task has been

completed. The site calls in the background

for other servers (possibly data bases) and

requests the remote operations, to propagate

the request received. These systems give

eventual consistency as the status of replicas

will converge, possibly, towards consistency.

This guarantee of consistency is practically

very low. It may be considered sufficient for

many applications of optimistic replication

but, however, some systems offer better

guarantees like, for example those in which

the status of a replica is not updated more than

a certain period of time. An operation is

registered in order to be propagated later on

other replica servers.

Due to the propagation in the background, the

operations are not always received in the same

order on all sites. Each site must reorder the

received operations in order to produce results

equivalent to those offered by other replicas

from the system.

A "replica" of the system must reorder

repeatedly its operations until it reaches the

concordance with the other replicas from the

system on the final order of operations. The

term used for the policy of ordering of

operations is "scheduling".

Without a coordination of the sites,

48 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

established beforehand, it is possible that

multiple users to update the same object at

about the same time. A relatively simple

solution may be the arbitrary choice of an

amendment requested by a user and ignoring

the others. However, such a policy for the

treatment of competing requests leads to the

appearance of lost updates. These lost updates

are not desirable in many distributed

applications.

A better solution for the treatment of such

problems consists in detecting the operations

which are in conflict and solving them by

renegotiating their succession. A conflict

occurs when the conditions necessary for an

operations are broken, even if the operations

were carried out according to the system

scheduling policy. A fault tolerant

architecture based on Web services is

presented in [12], where system

functionalities, such as replication, fault

management and client transparency, are

analyzed.

3 Modelling the Replication in Distributed

Systems

3.1 Process, Messages, Manager, Worker

The system abstraction should begin with the

abstraction of the physical infrastructure

which will be used by the system. The

definition of the system model implies, in the

first place, the description of the relevant

elements with their specific properties and

specifying the manner in which these

elements interact with each other.

In this paper, there are used two abstract

elements which allow the representation of the

physical infrastructure of the system: the

process, and the connection between

processes.

Within the framework of a distributed

program, the process is abstracting an active

entity which carries on its activity after a

certain algorithm and performs a certain

processing of specific data. The process may

represent a computer, a processor of a

computer or a thread.

The processes should be able to cooperate for

the fulfilment of common tasks. Therefore,

they should exchange messages between

them. The messages between processes are

possible only if there is a specific physical link

between processes.

The connection is abstracting at the physical

level (and also at the logical level) the link

between the processes and lies at the

foundation of the communication between the

processes. Organized in a certain way, the

links form network. The communication

between processes involves the following

components: the message m, the sender

process S, and the receiver process R, as seen

in Figure 1.

Fig. 1. The communication between

processes

The description of a distributed system

requires a multitude of properties of these

processes and connections, as well as the

manner in which these items operate (or cease

to operate) under certain conditions in the

working environment (Figure 2).

Fig. 2. One sender process, S, and several

receiving processes, R1…Rn

In many cases it is important to locate the

processes, i.e. the elements that host the

processes and ensure their conditions of

progress. For this we use an abstract element

called "host".

A usual case is that in which the host is the

computer on which a certain process is carried

out (along with other processes in the

operating system).

The importance of a host is given by the fact

that it provides certain environmental working

conditions for the hosted process, and the

Informatica Economică vol. 21, no. 1/2017 49

DOI: 10.12948/issn14531305/21.1.2017.04

process is influenced by the conditions offered

by the host, as seen in Figure 3.

Fig. 3. Processes located on different hosts (S

= sender, R = receiver)

Using the abstract elements mentioned until

now (process, connection, the host) may be

shape distributed systems most complex in

which a process communicate via messages

with several processes, some of them located

on the same host, and other located on

different hosts, as seen in Figure 4.

Fig. 4. The process S communicates with

more processes (C = client, S = server, X =

execution process)

There can be build systems in which each

process has a certain role in the framework of

the distributed system, and in order to fulfil

the role, the process must be able to carry on

specific activities. In these cases, it is

important the nature of the messages received

and sent between processes.

For instance, there may be built distributed

systems in which a process C, with the role of

client, sends a message to a process S, with the

role of the server, by asking him to carry out

certain operations and to give him a reply

message.

The process S has an internal processing part,

but it may send a message to another process

X, with the execution role, requesting it

specific operations. In this case, the process

must communicate with both the process C as

well as with the process X (Figure 4).

In the case of some complex distributed

systems, more processes can be defined, with

the role of execution, noted, for example, X1,

X2 and so on, located on different hosts,

which carry out specific activities after

receiving specific message from a process

with the role of manager, noted, for example,

with M, as seen in Figure 5.

Fig. 5. The process M plays the role of

manager for the worker-processes X1, X2

3.2 The Matter of Distributed Agreement

A model of distributed system is abstracting

the interactions within the system. These refer

to the cooperation between processes. This

cooperation may be shaped as a matter of

distributed agreement. Between the processes

of a distributed system there must be an

agreement on, for example, the interpretation

way of a certain set of input data, the mode of

expression of identity of the processes,

performing a particular sequence of

operations from several possible variants,

respectively, achieving a consensus, etc.

In a distributed system, it is possible that there

is an agreement between the participating

processes relating to a specific task, which

must take place only if there are met several

conditions expressed by different data

existing in the participating processes. In the

case in which there are not fulfilled all the

conditions laid down, then the participating

processes "come to an agreement" that the

operation in question does not take place. This

form of agreement between the processes of a

system is used in the case of transactions.

In a distributed system, the participating

processes in a distributed program must be

agreed upon the operations that must be

carried out, but there must be also an

agreement on the order in which the

operations must be carried out, named the

total order broadcast. This form of distributed

agreement is one of the basic techniques of

systems, which use data replication processes

in order to realize the fault tolerance.

50 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

3.3 Processes and Operations

For a process, let’s consider the abstract

element called operation. Within a distributed

system, a participant process transmits and

receives messages from other participating

processes. The nature of the messages may

cause the execution of operations in different

ways in the process.

An operation consists of the following steps:

 Receiving a message sent by another pro-

cess;

 Execution of calculations at the local

level;

 Sending a message to another process

within the system.

Receiving and transmitting messages are

global events in the system because there are

more participating processes, at least two. The

execution of the calculations at the local level

does not imply a direct participation of other

processes, therefore there are internal events

of the process in question.

The process can have several modules, each

of them can participate in a stage of an

operation: to receive a message, to execute

some calculations, to send a message to

another process. These modules have specific

roles and cooperate each other.

Fig. 6. The operation steps in a system

process

The process may have an organization on

several levels, a module being placed, from

the point of view of the logic of programming,

on a certain level. A complex process is that

in which there must be run a multitude of

operations and, therefore, at the software

level, the process has a multi-level structure

called "software component stack".

3.4 Levels, Components and Events

At each process, the stack of software

components contains one component for each

level from the logical structure of the process.

The top level is called the Application level,

while the lower is the Network level. In the

model of distributed system, the elements

which are abstracting the distributed

programming are in the middle of the stack

levels.

The software components located on different

layers in the same stack communicate with

each other via the events, as seen in Figure 7.

Each component is, at a given moment, in a

given status. The receipt of an event triggers a

transition to a different status of the

component.

The event is a grouping of information placed

in a well-established structure, previously

defined and known by the components that

receive and/or transmit the event. The rules

for the communication between the

components determine certain types of events.

Thus, each event has the following

characteristics:

 It is of a particular type;

 It has a certain source (the component

which sent the event);

 It has a series of attributes;

 It has a destination (it is carrying certain

information for other components).

The notation for an event used in this paper,

starting from here, is:
{ comp,
EvType | attr1, attr2 …} (1)

In the equation above the used symbols are:

 comp is the source component of the

event;

 EvType is the type of the event;

 attr1, attr2 … etc. are the attributes of the

event.

Informatica Economică vol. 21, no. 1/2017 51

DOI: 10.12948/issn14531305/21.1.2017.04

Fig. 7. The model of a process based on

components and events

Observations:

 Several components can use events of the

same type;

 Several components can use the same

event;

 An event received by a component can be

retransmitted without changes to the other

components, keeping or not the infor-

mation about the original source.

An event received by the destination

component is processed by a software entity

especially designed for this operation, called

handler. In the pseudo-code that describes

what operations must be carried out on the

basis of the receipt of the event, there will be

used an instruction especially designed for

this, that indicates the event and the

instructions which must be carried out due to

the occurrence of the event in question: upon

event.

The processing of an event has a number of

features:

 An event triggered by a component is pro-

cessed only if the process which all the

components are part of, are carried out

correctly.

 The processing of an event can trigger the

creation of new events by the same code

or by different components.

 The destination component of an event

can filter explicitly events. This will be in-

dicated in the pseudo-code by clause such

that.

 The events of the same components are

processed in which they have been trig-

gered.

 The events exchanged between the com-

ponents in the same stacks of components

are listed in FIFO mode (first-in-first-out).

The interfaces of the components contain two

types of events: requests and indications. The

events of type request are used by a

component in any of the following purposes:

 To invoke a service provided by a compo-

nent;

 To signal a condition of other compo-

nents.

From the point of view of the treatment on the

component software, the events of request

type are input events (input).

The events of indication type are used by a

component in any of the following purposes:

 To deliver a signal;

 To signal a condition of other compo-

nents.

From the point of view of the treatment on the

software component, events of indication type

are output events (output).

Consider now a process which contains

several software components, each of which is

located on a certain layer in the logical

structure of the process.

Each level communicates with the top level (if

it exists) through a series of events of request

and indication type. On the other hand, each

layer communicates with the lower level (if it

exists) through another series of events of

request and indication type.

The propagation of the events between the

levels of the process, applications from top to

bottom and, respectively, the indications from

bottom to top is shown in the Figure 8.

Fig. 8. The communications between the

process levels

52 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

At a given level N, the execution consists of

the following steps:

 The Message Request released by the soft-

ware component on the top level, the level

n+1, is received at the level n where it trig-

gers the Send procedure for sending a

message further toward the lower levels.

 The component on the n level executes the

Invoke procedure in order to invoke the

services from the lower hierarchical level,

n-1, using for this Request events specific

to lower level.

 The messages of type Indication sent by

the lower level are received at the level n

in the Receive procedure. They must be

passed on to the top level.

 The message of type Indication, if it fulfils

the conditions necessary for the safety of

the process, is delivered to the upper level

in the Deliver procedure.

The messages of type Request or Indication,

which are transmitted between the levels, do

not always have a data payload. Sometimes,

they indicate only the conditions for the

synchronization of the levels. For example,

the top level can distribute a specialized

message to the other levels to indicate that a

particular processing phase has been

completed and that it will move to the next

phase.

3.5 The Communication between Processes

Consider now the two processes S (sender)

and R (receiver) between which there is

established a connection. Over this

connection, the processes send their

messages.

To build the model the communication

between processes, consider now the point-to-

point connection between two processes as an

object called conn, which is an instance of a

class called PointToPointConnection.

At the level of the object conn there are taking

place two distinct events, one at the end of the

process from the source process S and the

other one, at the end of the destination process

R.

The event which models the sending of the

message m by the source process S is:
{ conn,

Send | R, m } (2)

The event which models the receipt of

message m to the process R is:
{ conn,
Receive | R, m } (3)

In (2), the attributes of the event are: the

recipient R and the message m. In (3), the

attributes of the event are: the transmitter S

and the message m.

In the model of distributed system analyzed in

this paper, the correctness of the

communication between processes assumes

the compliance with the following list of

properties.

The properties of secure communication

between the correct processes are below:

 P1. Reliable delivery of messages. If the

process S, which shall be carried out cor-

rectly, sends a message m to the process

R, which also shall be carried out cor-

rectly, then the process R possibly re-

ceives the message m.

 P2. The messages are not duplicated to the

source. A fair process, at any stage of its

execution, sends a message only once.

 P3. The messages are not created at the

recipient. If a message m has reached the

destination process R from the S process,

then the message m has surely been sent

before the process R, by the process S.

 P4. The messages are received in the strict

order of their arrival (FIFO). If the pro-

cess R has received from another process

S firstly the message m1 and subsequently

the message m2, then the correct operation

of the R process means taking in order of

messages: firstly m1 and then m2.

 P5. Compliance with an agreement at the

level of the entire distributed system. If a

message m was delivered successfully to a

process R that is correct, then the message

m is eventually delivered successfully to

any correct process in the system.

The correctness of the processes and

communication is the basis of the proper

functioning of the distributed system.

The model of the message sequence may be

made only with the initial model shown in

Figure 1, as it should be taken into

consideration a new coordinate: the logical

Informatica Economică vol. 21, no. 1/2017 53

DOI: 10.12948/issn14531305/21.1.2017.04

time of processes.

Lamport [13] proposed a model for the logical

time just to be able to correctly present this

sequence of events and messages within a

distributed system. In his approach, the

execution of a process is modelled as a

sequence of atomic events, each of them

requiring for execution a unit of logical time.

In the model of Lamport, sending and

receiving messages are considered events

within the framework of the processes, as in

Figure 9.

Let’s consider two correct processes, noted P

and Q, who carries out their activity in time.

At the level of the process P, the event noted

Send(m) takes place, by sending a message m

to the process Q. At the level of the process Q,

two events take place: one is the reception of

the message m, Receive(m), and the other one

is the delivery of the message m, Deliver(m),

to the components of the process Q designed

to process the message m.

Fig. 9. The evolution in time of the

communication between two processes

Modelling the message exchange according to

Figure 7 allows the highlighting the sequence

of events. For example, at the level of the

process Q, firstly the receiving event takes

place and subsequently the delivery event of

the message to the other components takes

place.

The separation between the receiving events

and delivery ones of the messages allows the

expansion of the abstract model of the system

with the protocols for receiving messages,

which may consist of a series of activities

related to the message before it is delivered to

the other components of the process.

Here it should be highlighted a few possible

situations:

 Not all messages will be received (net-

work issues could appear);

 Not all received messages must be deliv-

ered to the components of the process

(messages could be incorrect or they are

sent to another recipient).

Having a model of distributed system in

which the execution at the level of processes

and communication between processes are

presented in connection with the logical time,

we can switch to the modelling of the order of

the messages based on causality relations.

3.6 The Causal Order of Messages

In the distributed system operations, the

processes send several messages to other

processes and, in return, receive multiple

messages.

Transmitting messages between processes

involves the message broadcast over the

connection and subsequently the receiving

phase and the phase of message delivery to the

recipient. Transmitting messages comply with

the property called the causal order of

messages. This refers to the fact that messages

are delivered with respect to the relationship

cause-effect. A message must have a property

called "happened-before" in order to show this

causal order.

Consider now two processes and a message

m1 transmitted from a transmitter process P

toward a process receiver Q. If, at the level of

the process Q, the receipt of message m1

causes the transmission of a different

message, noted m2, to a different process R,

then a causal order exists between the

messages m1 and m2 which is noted as

follows:
 m1
→ m2 (4)

There are several situations in which, in the

abstract model of the distributed system, it is

considered that the message m1 is a potential

cause for the message of the message m2, and

these situations are:

1) a process broadcasted the message m1

and, subsequently, the message m2;

2) a process received the message m1 and,

subsequently, broadcasted the message

m2;

3) at the process level, if a message m’

exists, such that m1 exists before m’, and

m’ exists before m2, and these

relationships are noted as follows:

54 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

m1 → m’
and m’ → m2 (5)

Fig. 10. The causal order of messages (P =

transmitter, Q and R = receivers)

In the phase of message delivery to the

recipient, the causal order means that if a

message is delivered, then all the previous

correct messages have been delivered.

In the distributed system model, it can be

abstracted the reliable broadcast of messages

in which the delivery comply to the causal

order of messages as follows:

The properties of causal order are described

below:

 P1. Validity. If the correct process S

broadcasts a message m, then the message

is eventually delivered to the destination

process R.

 P2. Non-duplication of messages. A mes-

sage is delivered only once.

 P3. Non-creation of messages. If a mes-

sage m broadcasted by the source process

S has been received by the destination pro-

cess R, the message m has surely been is-

sued previously by the process S.

 P4. Agreement. If a message m is deliv-

ered by a correct process, then the mes-

sage m is eventually delivered in each cor-

rect process in the system.

 P5. Causal delivery. If the message m1 is

a potential reason for the dissemination of

the message m2 (m1→m2), then a correct

process is not delivering the message m2

before m1.

4 Centralized Management and Separated

Execution

4.1 Assumptions, System Structure,

Advantages

Consider now a distributed system in which

there are several processes with well-defined

roles, located on several hosts, as seen in

Figure 9.

The main features of this system are described

below:

 The process C, referred to as the client-

process, has established a secure connec-

tion with the process M, referred to as the

manager-process.

 The process M is located on another host

than the process C.

 Over the secure connection between these

processes, there are messages sent from C

to M, called "requests", and also messages

from M to C, called "responses".

 The process M receives the request mes-

sages sent by the clients and delivers them

to the system components with respect of

the receiving order.

 The manager-process M is capable of stor-

ing the requests made by the client C in a

form which permits subsequent finding of

a certain request.

 The system also contains the processes

W1, W2, W3, referred to as worker-pro-

cesses, which have each established a se-

cure connection with the manager-process

M, but they do not have direct links be-

tween them.

 The worker-processes W1, W2, W3 are

located on different hosts, other than the

host of M.

 The worker-processes W1, W2 and W3

are deterministic, in the sense that when

they receive identical messages from the

process M, they will carry out the same

operations and formulate identical re-

sponses which they send back to the man-

ager-process M. Therefore, there are no

local factors that could determine different

responses to identical requests from the

manager-process M.

 As a result of receiving requests from the

client-processes, the manager-process M

sends the messages to the worker-pro-

cesses W1, W2 and W3, in the same order.

 The content of the messages sent by the

manager-process M to the processes W1,

W2, W3 is determined by the two factors

below:

1) The content of the request sent by

client-process C;

Informatica Economică vol. 21, no. 1/2017 55

DOI: 10.12948/issn14531305/21.1.2017.04

2) The existence of an agreement on the

messages format for the entire system.

 The manager-process M receives the re-

sponses sent by the workers W1, W2, W3,

and processes these responses in a sepa-

rate phase of its execution, in order to form

a response message for the client.

Fig. 11. Distributed system with centralized management and separate execution

The distributed system shown in Figure 11

operates based on the following assumptions:

 The connections between the processes

are secure, so that the message broadcast

is reliable;

 The messages sent by the client-process C

are arranged in a FIFO structure at the

level of the manager-process M;

 The messages sent by the manager-pro-

cess M to the worker-processes Wi (i = 1

… n) comply with the causal order;

 The messages received by each worker-

process Wi (i = 1, 2 … n) are stored in a

FIFO structure and are delivered one by

one on all process components, complying

with a causal order.

The advantages of this system with

centralized management and separate

execution are below:

 The use of the processing power of multi-

ple computers due to the separate physical

location of these processor-intensive pro-

cesses;

 The location of the stored data is closer to

the other systems that may require data ac-

cess through the use of multiple, sepa-

rately located, worker-processes;

 Less response time of manager-process M

in relationship with the client process C

through the separation of management-

process and worker-processes;

 Ease of worker-processes debugging,

based on their separate location and exe-

cution;

 The ability to add, relatively quickly, other

workers in the system;

 The ability to use worker-processes W2,

W3 … Wn, with the role of replicas of a

main process W1, and having a processing

logic identical to the main process W1,

and controlled by the same separate man-

ager-process M.

The above-mentioned advantages lead to the

idea that such a distributed system as the one

in Figure 11, having one centralized

management process and several separate

execution processes, could be organized as a

system providing secure groups of reliable

services [14]. The algorithms presented below

could be used to model such a reliable system.

4.2 The Exchange of Messages between the

Client and the Manager

As a result of the user actions, the client-

process C sends a message to the distributed

system, practically, to the manager-process

M, requesting the execution of an action and

obtaining a response message. This response

message contains data and their volume varies

depending on many factors, the most visible

being the nature of the requested action.

This exchange of messages between the client

and the system requires a prior agreement on

the format of the messages, so that the

56 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

processes can have a "dialogue".

The message of the client-process contain the

name of the requested action (or the requested

service) and the parameters required by the

execution.

The procedure which determines the send of a

message to the process-manager is:

Execute (action, params, clientID) (6)

This procedure determines the creation of an event at the level of the client-process:
 { C, Send | [action, params], manager, self } (7)

The message reaches the manager-process M and as a result, at the level of M several

procedures are successively triggered:
Receive (action, params, client)
[opID, opName, params] := Operation (action, params)
Log (opID, opName, parameters)
Execute (opID, opName, params, worker)
Send (result, client)

Fig. 12. The exchange of messages between the client-process C and the manager-process M

The abstraction of the message exchange

between the client-process C and the

manager-process M, shown in above figure, as

well as the triggered procedures, are presented

in the algorithm below.

ALGORITHM 1.

The messages between Client and Manager, and the specific operations (used notations:

params=parameters, opID=operation ID, opName=operation name)

Implements:
Class Name: Client, instance name: client
Class Name: Manager, instance name: manager

upon event { manager, Receive | [action, params], client } do

[opID, opName, params] := Operation (action, params)
successfullyLog := Log (opID, opName, params);
if successfullyLog then

trigger { self, Deliver | [opID, opName, params], client }
else

result : = ”Logging Error. Abort”;
trigger { manager, Send | client, [opID, result] };

upon event {manager, Deliver | [opID, opName, params], client} do

workers := CheckWorkers();
for each worker in workers do

if (status(worker) == ”Ready”) then
trigger { worker, Send | [opID, result] , manager , self };

else
trigger { self, Resychronize | worker, opID }

upon event { client, Receive | result, self, manager } do

Informatica Economică vol. 21, no. 1/2017 57

DOI: 10.12948/issn14531305/21.1.2017.04

trigger { self, Deliver | result };

upon event { client, Deliver | result } do

trigger { self, GetResponse | result };

4.3 The Exchange of Messages between the

Manager and the Worker

As a result of a request previously made by a

client-process, at the level of the manager-

process M, after a request registration, the

following procedure is executed:
Execute (opID,
opName, params, worker, self) (8)

This procedure determines the creation of an

event at the level of the manager-process M:
{ M, Send | [opID, opName, params],
worker, self } (9)

As a result, at the level of the worker-process

W, these procedures are successively

triggered:
Receive (opID, operationName,

parameters, manager)
Log (opID, operationName,

parameters)
Execute (operationName, parameters)
Send (opID, result, manager, self)

In the end, the worker-process W sends a

message to the manager-process M. As a

result of this message, within the manager-

process M the following procedures are

triggered:
Receive (operationID, result, worker)
PrepareResponseForClient (result)

The procedures mentioned above use the type

of data called operation. It is actually a public

class in the distributed system. Therefore,

within the system, there is an agreement for

the use of this class, referring to the transport

of data between the software components.

Fig. 13. The exchange of messages between

the manager-process M and the worker-

process W

The abstraction of the exchange of messages

between the manager-process M process and

the worker-process W, shown in the above

figure, as well as the triggered procedures, are

shown in the algorithm below.

ALGORITHM 2.

The messages between Manager and Worker, and the specific operations (used notations:

params=parameters, opID=operation ID, opName=operation name).

Implements:
Class Name: Manager, instance name: manager
Class Name: Worker, instance name: worker

upon event { worker, Receive | [opID, opName, params], manager } do
successfullyLog := Log (opID, opName, params);
if successfullyLog then

trigger { self, Deliver | [opID, opName, params], manager }
else

result : = ”Logging Error. Abort”;
trigger { worker, Send | manager, [opID, result] };

upon event { self, Deliver | [opID, opName, params], manager } do
result := Execute (opName, params);
trigger { worker, Send | [opID, result] , manager , self };

upon event { manager, Receive | [opID, result], self, worker } do

trigger { self, Deliver | [opID, result], worker };

58 Informatica Economică vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.04

upon event { manager, Deliver | [opID, result], worker } do

trigger { self, PrepareResponseForClient | result };

5 Conclusions

The distributed system proposed in this paper

has been analyzed according to specific

procedures, on the basis of primordial

elements: the process, the connection between

processes and the message.

Important aspects concerning the location and

the role of the processes in a distributed

system have been presented. For the model

proposed in this paper, the matter of logical

time of process has been presented.

Within the process model, software

components and the process levels were

abstracted. Subsequently, the communication

between the process components based on

events has been modelled. There have been

analyzed some problems which influence the

functioning of a distributed system as a whole,

namely, the matter of distributed agreement

and the matter of causal order of messages.

A model of distributed system was proposed

and analyzed, in which several separate

processes have the role of executors of

specific operations and the related

management execution operations are

centralized in a separate process of

management. Thus, the specific concerns

related to these two categories of operations,

management and execution, were separated,

according to the separation of concerns

principle.

The management and the distinct

development of the two categories of

processes is considered to be an advantage

brought by the proposed system model.

The separation of the management process

and the execution processes brings benefits

coming from the use of the processing power

on multiple computers.

In the model proposed in this paper, the

manner of abstraction the communications

between processes, based on messages, has

been presented. Subsequently, the abstraction

of communications between the client and the

manager, and also the communications

between the manager-process and the worker-

processes was described in details.

The distributed system model and the

algorithms presented in this paper could be the

starting point for developing a class of

distributed systems providing secure groups

of reliable services.

References

[1] M. Vida, O. Lupse, V. Gomoi, L. Stoicu-

Tivadar, V. Stoicu-Tivadar, E. Bernad,

Using Web Services to support the

interoperability between healthcare

information systems and CDS systems,

Journal of Control Engineering and

Applied Informatics, vol.16, no.1, 2014,

pp.106-113.

[2] C. Toader. Multilayer resource-oriented

architecture supporting RESTful and non-

RESTful resources. Annals of DAAAM for

2009 and Proceedings of 20th DAAAM

International Symposium, Vienna,

Austria, November 25-28, Vol.20, 2009,

pp.467-468.

[3] A. Avizienis, J.C. Laprie, B. Randell, & C.

Landwehr. Basic concepts and taxonomy

of dependable and secure computing,

IEEE Transactions on Dependable and

Secure Computing, vol.1, no.1, 2004,

pp.11-33.

[4] L.E. Moser, P.M. Melliar-Smith, and W.

Zhao. Building dependable and Secure

Web Services, Journal of Software, vol.2,

no.1, 2007, pp.14-26.

[5] M. Wiesmann, F. Pedone, A. Schiper, B.

Kemme & G. Alonso. Understanding

replication in databases and distributed

systems, Proceedings of 20th

International Conference on Distributed

Computing Systems (ICDCS’2000),

Taipei, Taiwan, ROC, 2000, pp.464-474.

[6] M.Dahlin, B.B.V. Chandra, L. Gao, A.

Nayate, End-to-end WAN service

availability, IEEE/ACM Transactions on

Networking, Issue 2, 2003, Vol.11,

pp.300-313.

Informatica Economică vol. 21, no. 1/2017 59

DOI: 10.12948/issn14531305/21.1.2017.04

[7] M.J. Fischer, N.A. Lynch, M.S. Paterson,

Impossibility of distributed consensus

with one faulty process, Journal of the

ACM, Volume 32, Issue 2, 1985, pp.374-

382.

[8] H. Yu & A. Vahdat, The costs and limits

of availability for replicated services.

Journal of ACM Transactions on

Computer Systems, Vol. 24, Issue 1, 2006,

NY, USA, pp.70-113.

[9] J. Vesperman, Essential CVS, 2nd Edition,

O’Reilly Media Inc., USA, 2006.

[10] F. Pedone, Boosting system performance

with optimistic distributed protocols,

IEEE Computer, Vol. 34, Issue 7, 2001,

USA, 80–86.

[11] Y. Saito, & M. Shapiro. Optimistic

replication, ACM Computing Surveys,

vol.37, nr.1, 2005, pp.42-81.

[12] C. Toader. Increasing reliability of Web

services. Journal of Control Engineering

and Applied Informatics, Vol.12, No.2,

2010, pp.30–35.

[13] L. Lamport, Time, Clocks, and the

Ordering of Events in a Distributed

System, Communications of the ACM,

Vol.21, Issue 7, 1978, pp.558-565.

[14] C. Toader, C. Rădulescu, C. Anghel, G.

Boca. Organizing Secure Groups of

Reliable Services in Distributed Systems,

Proceedings of the 14th International

Conference on Informatics in Economy

(IE 2015), University of Economic Studies

ASE Bucharest, Romania, April 30 – May

03, 2015, pp.44-49.

Cezar TOADER graduated the Faculty of Sciences at Technical University of

Cluj-Napoca, with a diploma in Economics. He holds a PhD diploma in

Computer Science from 2011, obtained at “Politehnica” University of

Timișoara. He had gone through all teaching positions since 1992 when he

joined the academic staff. Currently he is Professor within the Department of

Economics, Faculty of Sciences, at Technical University of Cluj-Napoca. He

is the author/coauthor of many books and scientific articles in his fields of

interest: Architecture and reliability of distributed systems, Web programming, Web services.

Rita TOADER graduated the Faculty of Sciences at Technical University of

Cluj-Napoca, with a diploma in Economics. She had teaching positions since

1992, and now she is Associate Professor PhD within the Department of

Economics, Technical University of Cluj-Napoca, and also the Vice-Dean of

the Faculty of Sciences. She is the author/coauthor of scientific articles and

books related to Information systems and Modelling of economic processes.

