
Informatica Economică vol. 20, no. 4/2016 15

DOI: 10.12948/issn14531305/20.4.2016.02

Controlling and Monitoring Specific Hardware Resources

Mihaela MUNTEAN, Gabriela MIRCEA, Andreea POP

West University of Timisoara,

mihaela.muntean@e-uvt.ro, gabriela.mircea@e-uvt.ro, badau.andreea@gmail.com

Within an agile approach, a RIA application for controlling and monitoring specific hardware

will be proposed. It is always a challenge to choose the suitable technologies and IT frameworks

to transform the PIM model into the PSM model of the future RIA and after that to implement

the prototype. The main technological aspects are presented; the approach makes direct

referees to the developed tiers of the RIA prototype.

Keywords: Rich Internet Applications (RIA), Multi-Tier Architecture, Agile Development, RIA

Frameworks

Introduction

Rich Internet Applications (RIAs) is an

umbrella term for various applications that are

combining "the media-rich power of the

traditional desktop with the deployment and

content-rich nature of web applications" [1].

According to Gartner, RIA frameworks can be

divided in JavaScript/AJAX-based

frameworks and plugin-based frameworks.

The first ones are browser-based and more

lightweight, the second ones are more heavy-

weight with a bigger download footprint

(Valdez, 2009; Busch & Koch, 2009).

Plugin-based frameworks like Adobe Flex,

JavaFX and Microsoft Silverlight, offer

extended support for media, are highly

interactive, cross-platform, cross-device,

cross-browser and desktop-like with offline

and out-off-browser support [8].

A typical RIA application has a multi-tier

architecture, based on data integration layer,

business logic & services layer and

presentation layer. Taking into consideration

the new client-side capacities, the new

presentation features, and the different

communication flows between the client and

the server, the following four phases in

designing RIA applications are necessary:

 data model design,

 business logic & services design,

 presentation design, and

 communication design [12].

Communication is a cross-cutting concern

related to data synchronization, business logic

& services distribution and presentation. The

communication must provide the binding

between the presentation and the underlying

data/business logic & services layers using

synchronous/ asynchronous methods.

Best practices in RIA development enrich the

general design considerations with specific

design issues depending on the requirements

and the technologies used for implementation.

With respect to the general architecture of a

RIA application (Figure 1), a prototype for

controlling and monitoring specific hardware

resources was developed.

The demarche was developed within an

Adobe Flex framework, a just-in-time

deployment model being employed.

2 Agile Approach for Developing the RIA

Prototype

Based on the author's results obtained in the

agile development of portals [10], [11], the

demarche was applied for developing the

proposed RIA application. The main

functionalities of the RIA application for

controlling and monitoring specific hardware

resources are described by the use cases

diagram (Figure 2).

The agile development framework proposed

in [10], [11] recommends the use of prototype

technique enriched with MDA (Model Driven

Architecture) specific attributes and is based

on the following phases:

 Conception: the PIM model elaboration is

targeted, according to the requirements;

 Design: targets the elaboration of the PSM

model specific for the RIA prototype, i.e.

the finalization of the architecture of this

model, taking into account all details

1

16 Informatica Economică vol. 20, no. 4/2016

DOI: 10.12948/issn14531305/20.4.2016.02

regarding the IT infrastructure, which must

sustain the unitary, integrating vision of the

PIM model; the building of the PSM

model will take into account the future

implementation solution of the RIA, by

relating the model to certain developing

technologies and frameworks;

 I.T.I (Implementing -Testing- Installation)

phase has the goal to implement the RIA

prototype according to the PSM model,

followed by the testing of the prototype;

often, as a result of testing its functionality,

the prototype invalidation leads to the

revision of the PSM model and aims at

correcting some aspects related to

technologies and implementing

frameworks.

With respect to the RIA general architecture,

the PIM and further the corresponding PSM

models have been elaborated: model for data

layer; model for business & services layer;

model for presentation layer; model for

communication schema; model for security

schema; model for general management and

maintenance of the RIA application.

Fig. 1. RIA general architecture [14]

Both PIM and PSM models were described

with the help of the UML language, al kind of

specific diagrams being developed. The

advantage of using UML modeling language

is obvious [6], [7], and in RIA development

approaches consolidates the agile

development desiderata.

Functionalities like

 reading temperature, voltage, video sensors

values, inputs and outputs,

 changing the sensors' configuration and

properties,

 changing the current outputs values, and

 managing user accounts (Figure 2)

are sustained both by PIM and further by PSM

models with concrete implementations within

the multi - tier architecture of the RIA.

It is always a challenge to choose the suitable

technologies and IT frameworks to transform

the PIM model into the PSM model of the

Informatica Economică vol. 20, no. 4/2016 17

DOI: 10.12948/issn14531305/20.4.2016.02

future RIA and after that to implement the

prototype.

For implementation of the RIA prototype the

following technologies and frameworks have

been used: Java, Adobe Flex, Adobe

BlazeDS, Apache Tomcat, Servlet technology

and SQLite.

Fig. 2. Modeling the main functionalities

3 Technologies Used for Implementation of

the RIA Prototype

3.1 SQLite and DAO

Managing data is a critical part of app

development. The PSM model of the data

layer include implementation aspects specific

to SQLite databases. Best practices

recommend the use of SQLite in situations

like Embedded devices and Internet of

Things, Websites, Data analysis, etc. The

database diagram is presented in Figure 3.

The access mechanism used to access the data

layer from the above layers is DAO (Data

Access Object). The DAO pattern is a widely

accepted mechanism to abstract away the

details of persistence in an application,

including in the proposed RIA prototype. The

idea is that instead of having the business

layer and/or service layer communicate

directly with the database (Figure 3), file

system, or whatever persistence mechanism

the application uses, the business layer speaks

to a DAO layer instead (Figure 4). This DAO

layer then communicates with the underlying

data layer.

18 Informatica Economică vol. 20, no. 4/2016

DOI: 10.12948/issn14531305/20.4.2016.02

Fig. 3. Database diagram

Data Access Objects as a design concept can

be implemented in a number of ways (Code

sequence 1).

Code sequence 1. SQLManager class

public class SqlManager {

private Connection connection = null;

public void connect() {

String url = null;

String driver = null;

try {

driver = "org.sqlite.JDBC";

Class.forName(driver).newInstance();

url = "jdbc:sqlite:" +

SqlConfig.databaseName;

connection =

DriverManager.getConnection(url);

if(connection != null)

connection.setAutoCommit(true);

else

System.out.println("failed to connect");

} catch (SQLException sqle) {

sqle.printStackTrace();

connection = null;

} catch (Exception e) {

e.printStackTrace();

connection = null;

}

}

public void disconnect() {

try {

if (connection != null)

connection.close();

} catch (Exception e) {

System.out.println("Error: " +

e.getLocalizedMessage());

} finally {

connection = null;

}

public Connection getConnection() {

return this.connection;

}

}

public void

updateState(RpcInputOutputState state) {

synchronized (DbLock.getInstance()) {

SqlManager sqlManager = new

SqlManager();

sqlManager.connect();

Connection connection =

sqlManager.getConnection();

Statement statement = null;

try {

statement =

connection.createStatement();

statement.executeUpdate("UPDATE " +

SqlConfig.IOState.tablename + " SET " +

SqlConfig.IOState.name + "='" +

state.name + "', " +

SqlConfig.IOState.location + "='" +

state.location + "', " +

SqlConfig.IOState.description + "='" +

state.description + "', " +

SqlConfig.IOState.site + "='" +

state.site + "', " +

SqlConfig.IOState.logic + "='" +

state.logic + "' WHERE " +

SqlConfig.IOState.id + "=" + state.id);

NotificationManager.getInstance().sendEv

entToClients(new

RemoteEvent(RemoteEvent.STATE_UPDATED));

Informatica Economică vol. 20, no. 4/2016 19

DOI: 10.12948/issn14531305/20.4.2016.02

} catch (SQLException e) {

e.printStackTrace();

} finally {

try {

statement.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

sqlManager.disconnect();

}

}

}

Fig. 4. DAO layer. Class diagram

3.2 Java. Multithreaded Programming and

the Servlet Technology

Java is pure OOP language and provides

integrated support for multithreaded

programming [2], [5].

Java supports cross-platform code through the

use of Java bytecode, that can be interpreted

on any platform by JVM.

Implementing the business & services model

of the RIA prototype involves creating classes

(Figure 5), creating objects from those classes,

and developing executable program(s) for the

considered functionalities that use those

objects [9].

Monitoring the specific hardware resources,

meaning reading temperature, voltage, video

sensors values, inputs and outputs has been

implemented by using multithreaded

programming. A multi-threaded program

contains two or more parts that can run

concurrently and each part can handle

different task at the same time making optimal

use of the available resources especially when

your computer has multiple CPUs. Below is

the code for monitoring temperature, by

reading the sensor values (Code sequence 2).

The threads have been created by extending

the Thread class, approach that provides more

flexibility in handling multiple threads.

The request-response programming model

uses servlets (Code sequence 3) for extending

the capabilities of the RIA application. Java

Servlet technology defines HTTP-specific

servlet classes.

Javax.servlet and javax.servlet.http package

provide interfaces and classes for writing

servlets. All servlets must implement

the Servlet interface, which defines lifecycle

methods. When implementing a generic

service, you can use or extend

the GenericServlet class provided with the

Java Servlet API. The HttpServlet class

provides methods, such as doGet and doPost,

for handling HTTP-specific services (Code

sequence 3).

Code sequence 2. Create Thread
class TemperatureReaderThread extends

Thread {

private static int secondsResolution;

public static int getResolution() {

RpcConfiguration configuration =

SensorConfigurationDao.getInstance()

.getConfigurationForSensorType(SensorTyp

e.TEMPERATURE);

Date today = new Date();

if (configuration.oldResolution != 0

&& configuration.endCurrentResolution !=

null &&

configuration.endCurrentResolution.compa

reTo(today) <= 0) {

configuration.currentResolution =

configuration.oldResolution;

configuration.oldResolution = 0;

20 Informatica Economică vol. 20, no. 4/2016

DOI: 10.12948/issn14531305/20.4.2016.02

configuration.endCurrentResolution =

null;

SensorConfigurationDao.getInstance().upd

ateConfiguration(configuration);

}

return configuration.currentResolution;

}

public static String getEmail() {

RpcConfiguration configuration =

SensorConfigurationDao.getInstance()

.getConfigurationForSensorType(SensorTyp

e.TEMPERATURE);

return configuration.emailAddress;

}

public void init() {

secondsResolution = getResolution();

}

public void run() {

while (true &&

!HardwareReaderThread.finished) {

try {

System.out.println("TEMPERATURE");

Thread.sleep(secondsResolution * 1000);

HardwareReader hardwareReader = new

HardwareReader(

secondsResolution, getEmail());

hardwareReader.readRequests();

hardwareReader.readTemperatures();

hardwareReader.deleteOldLogs();

hardwareReader.sendMail();

// at the end: read again the

resolution, maybe it has been

// changed

secondsResolution = getResolution();

NotificationManager.getInstance().sendEv

entToClients(

new

RemoteEvent(RemoteEvent.HARDWARE_OK));

} catch(OneWireException oneException) {

oneException.printStackTrace();

if(oneException.getMessage().contains("n

ot available"))

NotificationManager.getInstance().sendEv

entToClients(

new

RemoteEvent(RemoteEvent.HARDWARE_NOT_FOU

ND));

} catch (Exception e) {

e.printStackTrace();

}

}

}

}

Fig. 5. Business logic. Class diagram

Cod sequence 3. Servlet
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SomeServlet extends

HttpServlet {

Informatica Economică vol. 20, no. 4/2016 21

DOI: 10.12948/issn14531305/20.4.2016.02

public void doGet(HttpServletRequest

request, HttpServletResponse response)

throws ServletException, IOException {

...

}

public void doPost(HttpServletRequest

request, HttpServletResponse response)

throws ServletException, IOException {

... }
}

3.3 Adobe Flex Framework

Interactivity, responsiveness and richness are

three general characteristics of RIAs. Adobe

Flex provides development tools, user

interface and connectivity components that

simplify the development of RIA applications

(Figure 6). Common used for implementing

the presentation layer, the flex framework

manages a good communication with the

underlying layers of business logic & services

[4].

Fig. 6. Adobe Flex framework [15]

Flex can dynamically change views and send

and retrieve data asynchronously to the server

in the background, updating but never leaving

the single application interface (similar to the

functionality provided by the

XMLHttpRequest API with JavaScript). The

Flex framework has three remote procedure

call APIs that communicate with the server

over HTTP: HTTPService, WebService, and

RemoteObject. Best practices in building Flex

and Java client-server applications make

substantial referees to Blade DS or LiveCycle

Data Services (Figure 7).

Fig. 7. Flex remoting architecture [16]

For implementing the proposed RIA

application for controlling and monitoring

specific hardware resources, it was necessary

to configure the BladeDS and to establish, in

the <server_location>\webapps\blazeds

\WEB-INF\flex\services_config.xml file, the

communication with the Java server (Code

sequence 4).

Code sequence 4. Flex - Java server

communication

<service id="remoting-service"

class="flex.messaging.services.Remoting

Service"

messageTypes="flex.messaging.messages.R

motingMessage">

<adapters><adapter-definition id="java-

object"

class="flex.messaging.services.remoting.

adapters.JavaAdapter"

default="true"/>

</adapters>

<destination id="StatusApplication">

<properties>

<source>com.statusApp.interface.StatusAp

plication</source>

</properties>

<channels>

<channel ref="my-amf"/>

</channels>

</destination>

</service>

<channel-definition

class="mx.messaging.channels.AMFChannel

id="my-amf" >

<endpoint

uri=http://localhost:8400/blazeds/messag

ebroker/amf

class="flex.messaging.endpoints.AMFEnd

point"/>

</channel-definition>

Also, in the <server_location>\webapps\

blazeds\WEB-INF\flex\messages_ config.xml

file, the following specifications are needed.

22 Informatica Economică vol. 20, no. 4/2016

DOI: 10.12948/issn14531305/20.4.2016.02

<destination

id="ServiceAdapterDestination">

<channels>

<channel ref="my-streaming-amf"/>

</channels>

<adapter

ref="NotificationManagerServiceAdapter"/

>

</destination>

<default-channels>

<channel ref="my-streaming-amf"/>

</default-channels>

3.4 Some User Views for Controlling and

Monitoring Specific Hardware Resources

One of the main functionalities of the

proposed RIA prototype is reading the

temperature, voltage, video sensors values,

inputs and outputs. It is an ongoing process,

the values being stored into the database and

concomitant displayed in different screens

(Figure 8, 9).

Fig. 8. Current values of temperature sensor

and analogic sensor

Fig. 9. Current values of the sensors, of the inputs and outputs

The second main functionality, changing the

sensors' configuration and properties, allows

to adapt these devices in order to optimize the

controlling process (Figure 10). When

necessary, it is possible to change the outputs

values (Figure 11).

Managing user accounts, the fourth mentioned

functionality is viable for the application

administrator, that is responsible for creating

accounts and controlling the user access to the

system.

Informatica Economică vol. 20, no. 4/2016 23

DOI: 10.12948/issn14531305/20.4.2016.02

Fig. 10. Modification of the temperature sensor's characteristics

Fig. 11. Current value and location of video outputs

4 Conclusions

Based on the author's experience in portal

development frameworks, and the results

obtained in the agile development of portals

[10], [11], the theoretical considerations

where transposed to the quick development of

RIA applications. The proposed scenario in

paragraph 2 was applied for developing an

application for controlling and monitoring

specific hardware resources. The PIM and

PSM models were designed for each tier of the

RIA multi-tier prototype: data model, business

logic & services model, presentation model,

communication model; security aspects were

also taken into consideration.

Based on the identified requirements, the

functionalities of the application were

designed and were transposed into the tiers'

PIMs, which have been coagulated into the

unitary application PIM model. Further, the

PSM model was developed.

Practically, the final version of the RIA

prototype is obtained by an iterative process

which regards the adjustment of the PSM, its

implementation and the testing of the

prototype solutions for verifying the imposed

requirements.

The validation of the prototype leads to the

application installation and its transfer to the

users [11].

The implementation demarche is based on the

following technologies: SQlite and DAO, Java

multithreaded programming and the servlet

technology, Apache Tomcat and Adobe Flex

framework. In paragraph 3, the main

technological aspects are presented; the

approach makes direct referees to the

developed tiers.

Finally, some controlling and monitoring

screens have been exemplified.

References

[1] J. Allaire, ColdFusion MX, JRun 4 and

Rich Internet Applications - Interview in

Java Developer's Journal, 2002

[2] J. Block, Effective Java, 2rd Ed, Addison

Wesley, 2008

[3] M. Busch, N. Koch, Rich Internet

Applications. State-of-the-Art, Technocal

Report 0902, Ludwig-Maximilian

Universität München, 2009

[4] A. Cole, Learning Flex 3. Getting up to

Speed with Rich Internet Applications,

O’Reilly Media, Inc., 2008

24 Informatica Economică vol. 20, no. 4/2016

DOI: 10.12948/issn14531305/20.4.2016.02

[5] B. Eckel, Thinking in Java, 4th ed.,

Prentice-Hall PTR, 2006

[6] M. Fowler, Refactoring: Improving the

Design of Existing Code, Addison-Wesley,

1999

[7] M. Fowler, UML Distilled: A Brief Guide

to the Standard Object Modeling

Language, 3rd Edition, Addison-Wesley,

2003

[8] C. D. Granbäck, Rich Internet Applications

(RIAs). A Comparison between Adoble

Flex, JavaFX and Microsoft Silverlight,

Chalmers University of Technology Ed.,

2009

[9] W. Hasselbring, S. Giesecke, Trustworthy

Software Systems, Research Methods in

Software Engineering, 2006

[10] M. Muntean, Abordări ale unor sisteme

colaborative în medii bazate pe cunoaştere,

Editura Mirton, Timişoara, 2010

[11] M. Muntean, “Considerations Regarding

the Agile Development of Portals,” Journal

of Applied Computer Science &

Mathematics, no. 10 (5) /2011

[12] J.C. Preciado, M. Linaje, S. Comai, F.

Sanches-Figueroa, Designing Rich Internet

Application with Web Engineering

Methodologies, 2008,

https://www.pst.ifi.lmu.de/~kochn/preciad

o-et-al_icwe2008.pdf

[13] R. Valdes, Key Issues in Rich Internet

Applications Platforms and User

Experience, Gartner Inc., 2009

[14] Microsoft, Microsoft Application

Architecture Guide, 2nd Edition, Chapter

23: Designing Rich Internet Applications,

October 2009, Available at:

https://msdn.microsoft.com/en-

us/library/ee658083.aspx

[15] S. Laxmi Kata, Developing rich Internet

applications for SAP using Adobe Flex,

2010, Available at:

http://www.mouritech.com/documents/sap

_with_flex.pdf

[16] J. Stallons, The architecture of Flex and

Java applications, 2010, Available at:

http://www.adobe.com/devnet/flex/articles

/flex_java_architecture.html

With a background in Computer Science and a Ph.D. obtained both in

Technical Science and in Economic Science (Economic Informatics), professor

Mihaela I. MUNTEAN focused her research activity on topics like

information technology, knowledge management, business intelligence,

business information systems. Over 70 papers in indexed reviews and

conference proceedings and the involvement with success in 7 multi - annual

national research grants/projects are sustaining her contributions in the

research fields mentioned above. Currently, professor Mihaela I. Muntean is the chair of the

Business Information Systems at the West University of Timişoara and an IT independent

consultant.

Gabriela MIRCEA received her degree on Informatics from the West

University of Timisoara, Faculty of Mathematics and Informatics, in 1993 and

her doctoral degree in Mathematics in 2003. Since 1993 she is teaching at West

University of Timisoara, Faculty of Economics and Business Administration,

Department of Business Information System. Her research activity is focused

on web technologies, computer networks and on interdisciplinary topics

implying various numerical simulations. The scientific research results have

been published in eight books/chapters at national and international publishing houses and 65

articles appearing in journals and proceedings of international conferences from Romania or

abroad. Her involvement can be measured in one international and eight national research

grants/projects that she took part in.

Informatica Economică vol. 20, no. 4/2016 25

DOI: 10.12948/issn14531305/20.4.2016.02

Andreea POP is a senior software developer, currently working as a

development consultant for one of the largest software companies in the world.

She holds a Bachelor degree in Computer Science and a Master degree in

Business Information Systems. She is passionate about software design and

architecture, best practices and solution architecture.

