
28 Informatica Economică vol. 20, no. 3/2016

DOI: 10.12948/issn14531305/20.3.2016.03

Maintenance-Ready Web Application Development

Ion IVAN, Narcis-Cosmin LUCA, Mihai Liviu DESPA, Eduard BUDACU

Bucharest University of Economic Studies, Romania

ionivan@ase.ro, narciscosmin@gmail.com, mihai.despa@yahoo.com,

eduard.budacu@gmail.com

The current paper tackles the subject of developing maintenance-ready web applications.

Maintenance is presented as a core stage in a web application’s lifecycle. The concept of

maintenance-ready is defined in the context of web application development. Web application

maintenance tasks types are enunciated and suitable task types are identified for further

analysis. The research hypothesis is formulated based on a direct link between tackling

maintenance in the development stage and reducing overall maintenance costs. A live

maintenance-ready web application is presented and maintenance related aspects are

highlighted. The web application’s features, that render it maintenance-ready, are emphasize.

The cost of designing and building the web-application to be maintenance-ready are disclosed.

The savings in maintenance development effort facilitated by maintenance ready features are

also disclosed. Maintenance data is collected from 40 projects implemented by a web

development company. Homogeneity and diversity of collected data is evaluated. A data sample

is presented and the size and comprehensive nature of the entire dataset is depicted. Research

hypothesis are validated and conclusions are formulated on the topic of developing

maintenance-ready web applications. The limits of the research process which represented the

basis for the current paper are enunciated. Future research topics are submitted for debate.

Keywords: Software maintenance, Web Development, Maintenance-ready Applications,

Maintenance Cost

 Research premises and hypothesis

Web application have to be designed to

handle a large number of users as one of the

advantages of being online is that fact that

they are accessible by anyone with an Internet

connection. The higher the number of

protective users for the web application, the

higher the probability of generating downtime

[1] or surfacing functionality issues. As web

applications grow and attract evermore user

traffic their maintenance process needs to

handle a vaster array of issues [1] thus

growing evermore complex and costly.

Maintenance is an important stage in a web

application’s lifecycle. Maintenance used to

be regarded as repair work [2] but it is now

increasingly being considered as

improvement work [3]. When developing a

web application, one might either choose to

focus on specifications, functionality and

deadlines and deal with maintenance in due

time or, thoroughly plan for the maintenance

stage even from the start. The need to keep

development costs down and meet strict

deadlines compels most development teams to

opt for the first option. Choosing the first

option will help keep development costs down

but will eventually generate cascading

maintenance costs. Increasing maintenance

costs might prove a challenge in the context of

ever-increasing efforts aimed at modifying

existing code. 50% of the global software

population is engaged in modifying existing

applications rather than writing new

applications [4].

If the maintenance stage of an application’s

life cycle is considered during its development

stage and its design and architecture are

implemented so that the end product will be

easily maintainable the result is labeled as a

maintenance-ready web application. By

developing the web application with

considerable consideration to maintenance its

complexity, cost and development time will

increase. However, maintenance costs and

development time will decrease. So, the main

focus of the current research is to determine if

building maintenance-ready web applications

1

mailto:mihai.despa@yahoo.com

Informatica Economică vol. 20, no. 3/2016 29

DOI: 10.12948/issn14531305/20.3.2016.03

generates cost savings in maintenance that

could compensate for the additional cost

generated by additional time invested in

building an easily maintainable application.

Thus the research hypothesis states that by

developing maintenance-ready applications

the time needed to implement maintenance

tasks decreases and therefore the overall

maintenance cost is considerably reduced.

According to [ISO/IEC 14764] maintenance

is focused on four main objectives:

 corrective which entails emergency fixes

and routine debugging [5] consisting of

reactive modification of a software

product performed after delivery to

correct discovered problems; corrective

maintenance tasks deal with bugs and

issues that were missed by the testing

team; reducing the number of corrective

maintenance task is rather difficult as the

testing process is error prone and no

matter how much additional effort or

resources you invest, it will always have

considerable limitations; the major

advantage in maintaining web application

is that corrective code can be released and

made available for all the users

instantaneous [6];

 adaptive concerning software or

hardware system changes [5] which

consists of modification of a software

product performed after delivery to keep a

software product usable in a changed or

changing environment; adaptive tasks

include changes made to the web

application in order to keep it up to date

with changes made to the hosting

environment, operating system, web

server, database engine or supporting

technologies; reducing the number of

adaptive maintenance tasks is difficult to

achieve as its almost impossible to foresee

future technological changes and plan for

them;

 perfective related to user enhancement,

improved documentation and

computational efficiency [5] which

implies modification of a software product

after delivery to improve performance or

maintainability; perfective maintenance

tasks often include changes requested by

the web application owner, the marketing

department or sales department; perfective

maintenance tasks can be reduced by

making the web application more

customizable;

 preventive which tackles modification of

a software product after delivery to detect

and correct latent faults in the software

product before they become effective

faults; preventive tasks include checking

the access logs and the error logs on a

regular basis, making code and database

backups, monitoring server load and

retesting core functionality as often as

possible; reducing preventive

maintenance tasks is rather hard to

accomplish as performing them more

frequently often increases their

effectiveness.

We can therefore conclude that building

maintenance-ready web applications can be

achieved through reducing the effort allocated

to perfective tasks by integrating higher levels

of customization and parametrization.

Reducing the effort invested in a particular

task translates into completing that task with

as few development hours as possible.

Perfective maintenance tasks are usually

requested by the web applications owner or

any other entity associated with the

application owner like the sales, marketing,

logistics or accounting department. An

effective way of reducing the number of

development hours, and therefore reducing

the maintenance costs, is to provide the

application owner with the tools to perform

the tasks himself in a user friendly way. Such

tools are obtained by increasing the

parametrization and customization level of the

web application.

2. Maintenance-ready web applications

Increasing parametrization and customization

translates into providing the end-user and the

web application’s administrator with the

option to change and adjust the functionality

and the layout without actually performing

code changes or by performing code changes

that only require minimum expertise. In order

30 Informatica Economică vol. 20, no. 3/2016

DOI: 10.12948/issn14531305/20.3.2016.03

to showcase the concept of maintenance-

ready web applications the ALFA application

is presented. The application name is

anonymized in order to comply with legal

constrains enforced by the application owner

on the development team.

The ALFA application was designed with

high emphasis on parametrization and

customization as initial requirements were

vague and the need to often change the content

structure was outlined by the application

owner. The solution that the development

team came up with was to allow full

customization of the structure and content by

implementing a flexible grid-like backbone

for the main pages. The grid is depicted in

Figure 1.

Fig. 1. ALFA application grid system

The grid system was manageable by row and

the application administrator was able to

decide which row was displayed to the users

by simply checking and unchecking the left

side checkboxes. Rows can be edited, deleted

or moved up and down within the application

page by using the buttons presented in the

right side of Figure 1. Each row had a unit

based structure. Each row could be built by

using one, two or three rows. The first row in

Figure 1 is built using one unit. The second

row in Figure 2 is built by using three units.

The last row in Figure 1 is built by using two

units. The content in each unit is fully

manageable by the web application’s

administrator with the help of a WYSIWYG

Informatica Economică vol. 20, no. 3/2016 31

DOI: 10.12948/issn14531305/20.3.2016.03

editor. The editor allows the administrator to

easily insert text, pictures and videos but also

facilitates introducing basic code snippets.

Each unit can be saved and used multiple

times.

The high flexibility in managing the content

and structure of the ALFA application reduces

significantly the need to involve the

development team in the maintenance

process. In the ALFA application the cost of

implementing the grid system which lead to

making the web application maintenance-

ready was 9% out of the overall development

cost. Designing the ALFA application to be

maintenance ready reduced the number of

perfective tasks sent to the development team

by approximately 70%.

3. Research hypothesis validation

In order to test the research hypothesis data

from real life web development projects was

used. All the data was collected form the same

web development company. Data totals a

number of 588 maintenance tasks from 40

different projects collected within a four-

month timespan. A sample of the data is

presented in Table 1.

Table 1. Maintenance tasks data sample.

Task Name Client Project Type Duration

(hours)

Cost ($)

PAT Interview Questions Guide David PAT perfective 3 105

Pop up box when certain email

addresses sign up

David PAT perfective 1 35

Update Value Story completion

when a Task is marked as

completed on the One Page Plan

Paul CT perfective 4 140

SOK Registration process 2 Bjorn sok2016 perfective 2 70

Monitor is UP: Saleoot com Greg saleoot corrective 2 70

Custom content preview plugin Erik Cunning

ham

corrective 3

105

Cancel profile Louise

Robinson/Taylor Alex TLT perfective 0.5 17

Add Houslow as the location of

the job as one of the sub

locations for London Alex TLT perfective 1 35

Exhibitors list-SOK2016 Bjorn sok2016 perfective 1 35

Order form Karl mealtek corrective 9 315

Saleoot Feed changes Greg saleoot adaptive 0.5 17

Infospace one off task Greg OSN perfective 3 105

Medical Malpractice Guide

template Erik

Cunning

ham perfective 6 210

32 Informatica Economică vol. 20, no. 3/2016

DOI: 10.12948/issn14531305/20.3.2016.03

Task Name Client Project Type Duration

(hours)

Cost ($)

Change devzy AWS

configuration Andy Devzy

preventiv

e 3 105

Sabres - Add checkbox to

products that appear on

homepage Sely Sabres perfective 2 70

Task name column represents the way the task

is referred internally by the development

team. The task name derives from the email

subject in which the task was requested. Client

column represents the person to which

progress on the task needs to be reported.

Project column represents the name of the

project the task belongs to. Type column refers

to the category of the maintenance task and

takes the values corrective, adaptive,

perfective and preventive. Duration column

represents the number of hours spent on a

particular task by the development team. Cost

column represents the amount billed for the

time consumed on implementing a particular

task. The standard rate is $35 per hour.

Table 2. Task duration and cost aggregated by task type.

Task Type Number of

tasks

Duration

(hours)

Cost ($)

corrective 48 73 2.555

adaptive 57 42.5 1.487

perfective 449 826 28.910

preventive 33 60.5 2.117

Corrective maintenance tasks amounted for

73 hours of development and generated a cost

of $2.555. Adaptive maintenance tasks

amounted for 42.5 hours of development and

generated a cost of $1.487. Perfective

maintenance tasks amounted for 826 hours of

development and generated a cost of $28.910.

Preventive maintenance tasks amounted for

60.5 hours of development and generated a

cost of $2.117. Perfective maintenance tasks

alone generated a maintenance cost that

exceeds the maintenance cost generated by all

the other maintenance tasks put together.

Maintenance-ready web applications are

designed to facilitate the maintenance process

and reduce the number and complexity of

perfective tasks. Assuming that the overall cut

in perfective tasks is consistent to the case of

ALFA application it would infer a cost cut in

maintenance tasks of $20.237. The cost of

developing each of the analyzed web

application is presented in Table 3.

Table 3. Project development cost

Project Cost ($)

ASA 1100

AVZ 27000

BRK 800

BD 1600

CTLS 3100

Informatica Economică vol. 20, no. 3/2016 33

DOI: 10.12948/issn14531305/20.3.2016.03

Project Cost ($)

CB 1600

CO 1300

CT 13000

CNGHM 2700

DVZ 3200

DQS 2300

DSF 1800

ELLT 1100

FITD 7000

GTW 2100

HTGVS 2300

IMM 3100

LDBB 3100

MC 1100

MCR 2700

MLTK 600

MV 1000

NGNT 1300

OSN 4800

PRTS 1500

PAT 12000

RC 8100

RMG 800

sabres 1800

SOOT 1100

SI2 5000

SOK 1600

STC 2300

TC 3200

TLT 1800

TRCTS 1400

WP 3000

WWS 1200

YWA 200

The total cost of developing the 40 web

application was $134.700. Assuming that and

additional cost of 9%, as determined for the

ALFA application, would have transformed

the 40 web applications into maintenance-

ready web applications, the total cost would

34 Informatica Economică vol. 20, no. 3/2016

DOI: 10.12948/issn14531305/20.3.2016.03

have amounted to $146.823 with $12.123

invested in making the web application

maintenance-ready. Therefore, the additional

cost of making the applications maintenance-

ready would have been $12.123 but making

the applications maintenance-ready would

have saved $20.237 in maintenance costs.

Thus the additional cost generated by

designing and building an application to be

maintenance ready is on average 60% of the

amount that will be saved within the

maintenance process by reducing the number

and complexity of perfective maintenance

tasks.

The research hypothesis stating that by

developing maintenance-ready applications

the time needed to implement maintenance

tasks decreases and therefore the overall

maintenance cost is considerably reduced is

therefore validated. Additional research needs

to be performed to determine with higher

precision the average cost of designing and

implementing an application to be

maintenance ready. The current research only

analyzed one application and data collected

form that application was used to set the

thresholds for costs in terms of building

maintenance-ready functionality and also for

determining the threshold for reducing the

number and complexity of perfective

maintenance tasks. By applying the thresholds

to a number of 40 web development projects

the research hypothesis is confirmed but

future research should focus on validating and

optimizing the thresholds for additional costs

and decrease in number and complexity of

maintenance tasks.

5. Conclusion

Maintenance is an important stage in a web

application’s lifecycle as it has the role of

ensuring proper functioning of the application

after deployment on the live environment.

Maintenance is a costly process especially

when the web application has been developed

with no regards to upcoming maintenance

operations. Building a web application that is

easily maintainable means increasing its

customization and parametrization degree,

namely making it easy to extend functionality

and change content with the least amount of

code writing. Increasing the degree of

customization and parametrization generates

an increase in development costs but induces

a decrease in maintenance costs. In the case of

the ALFA application the cost increase

generated by making the web application

maintenance ready was 9%. The decrease in

maintenance costs is achieved by reducing the

number and complexity of perfective

maintenance tasks. In the case of the ALFA

application the number of maintenance

perfective tasks was decreased by

approximately 70%. Thus building

maintenance-ready web applications can be

achieved through reducing the required

number of perfective tasks by integrating

higher levels of customization and

parametrization. The study on 40 web

applications highlighted that the costs

generated by designing and building a web

application to be maintenance ready is on

average 60% of the amount saved later in the

maintenance process due to the maintenance-

ready characteristics of the web application.

Thus building maintenance-ready web

applications is cost effective as it saves more

on maintenance than it spends on additional

development cost. The current research results

are limited by the fact that only one

application was used as a benchmark for

determining the threshold for reducing the

number and complexity of perfective

maintenance tasks and for additional costs

generated by building maintenance-ready

functionality. Future research needs to

optimize the thresholds for additional costs

and decrease in number and complexity of

maintenance tasks.

References

[1] S. Pertet and P. Narasimhan, ”Causes of

failure in web applications”, Parallel Data

Laboratory, Technical Report CMUPDL-

05-109. December 2005, available at

http://repository.cmu.edu/cgi/viewcontent

.cgi?article=1047&context=pdl

[2] S. Takata, F. Kirnura, F. J. A. M. Van

Houten, E. Westkamper, M. Shpitalni, D.

Ceglarek and J. Lee, ”Maintenance:

Informatica Economică vol. 20, no. 3/2016 35

DOI: 10.12948/issn14531305/20.3.2016.03

changing role in life cycle

management” CIRP Annals-

Manufacturing Technology, vol. 53, no. 2,

pp. 643-655, 2004.

[3] S. Eick, T. Graves, A. Karr, J. Marron and

A. Mockus, ”Does Code Decay?

Assessing Evidence from Change

Management Data”, IEEE Transactions

on Software Engineering, vol. 27, no. 1,

pp. 1-12, 2001.

[4] C. Jones. (2006). The economics of

software maintenance in the twenty first

century. Unpublished manuscript.

Available:

http://www.compaid.com/caiinternet/ezin

e/capersjones-maintenance.pdf.

[5] B. P. Lientz, E. B. Swanson and G. E.

Tompkins, ”Characteristics of application

software maintenance”, Communications

of the ACM, vol. 21, no. 6, pp. 466-471,

1978.

[6] J. Offutt, ”Quality attributes of web

software applications”, IEEE software,

vol. 19, no. 2, pp. 25-32, 2002.

Ion IVAN has graduated the Faculty of Economic Computation and

Economic Cybernetics in 1970. He holds a PhD diploma in Economics from

1978 and he had gone through all didactic positions since 1970 when he

joined the staff of the Bucharest University of Economic Studies, teaching

assistant in 1970, senior lecturer in 1978, assistant professor in 1991 and full

professor in 1993. Currently he is full Professor of Economic Informatics

within the Department of Computer Science in Economics at Faculty of

Cybernetics, Statistics and Economic Informatics from the Academy of Economic Studies. He

is the author of more than 25 books and over 75 journal articles in the field of software quality

management, software metrics and informatics audit. His work focuses on the analysis of

quality of software applications.

Narcis-Cosmin LUCA has graduated Transilvania University form Brasov

in 2007 with a diploma in Mathematics - Informatics. He is vice-president

and founding member of the ASURA Association and has extensive

experince as a frelance software developer, collaborating with various

companies in Romania, Austalia and France. His main field of interest is

software development with a focus on building and maintaining web

applications.

Mihai Liviu DESPA has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics from the Bucharest University of Economic Studies in

2008. He has graduated a Master’s Program in Project Management at the

Faculty of Management from the Bucharest Academy of Economic Studies

in 2010. He has a PHD in Managing innovation oriented software

development projects obtained in 2015 at the Economic Informatics PHD

School and he is currently Project Manager at GDM Webmedia SRL. His

main field of interest is project management for software development

36 Informatica Economică vol. 20, no. 3/2016

DOI: 10.12948/issn14531305/20.3.2016.03

Eduard Budacu and has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics from the Bucharest University of Economic Studies

in 2010. He has graduated the SIMPRE - ERP oriented Master's Program

from the Bucharest Academy of Economic Studies in 2012. He is currently

a PHD Student at the Economic Informatics PHD School. His main field of

interest is Agile software development. He is an Agile coach and helps

software development teams produce positive change in order to achieve

high performance using agile principles and practices. He works with companies to define

learning and development strategies for agile transformation.

