
24 Informatica Economică vol. 20, no. 2/2016

DOI: 10.12948/issn14531305/20.2.2016.03

Implementation of a Test Data Generator based on DSL Files

Paul POCATILU, Alin ZAMFIROIU

Bucharest University of Economic Studies

ppaul@ase.ro, zamfiroiu@ici.ro

In software testing process, test data generation represents an important step for high quality

software, even for mobile devices. As proposed in previous works, a potential source for

random data generation is represented by the UI layout files that are used for almost all mobile

platforms (Android, iOS, Windows Phone/Mobile). This paper continues the previous work and

presents a test data generation system based on Android layout files. The test data generator

uses DSL files as input and generates test data that conform to several testing principles. The

generated test data could be stored in XML files or any format required by the testing

frameworks.

Keywords: Mobile Applications, UI Layout Files, Software Testing, Test Data Generators,

Software Quality, Unit Testing

Introduction

Software testing represents an important

step in software development [1], [2] and the

testing process is thoroughly presented in

books like [3] and [4]. Like other applications,

mobile applications require testing in order to

achieve a required level of quality. This can

be done using similar tools and frameworks

and also specific and dedicated tools,

depending on the platform. Some of the

mobile application testing types are shortly

described in [5].

During the testing process, test data

generation has its own role for testing success.

Test data generation is made using different

tools and techniques. The paper continues the

research presented in [6], [7] and [17] and

focuses on template generation for test data

based on Android layout files. Test data

templates are XML-based files written using

DSL (Data Specification Language). The

generated test data can be used by own testing

tools or frameworks or can be used as inputs

for existing testing frameworks and tools.

The paper is structured as follows. The section

Android testing frameworks and tools

presents the most important aspects related to

Android applications testing. It also make a

short presentation of the Android testing

instruments. Data Specification Language

(DSL) section describes the proposed system

for test data generator based on Android

layout files and details the XML-based

language used for test data specification. The

proposed parser for Android layout files is

presented in the last section, Android layout

files parser. The section Random test data

generator based on pragmatic testing

(RIGHT-BICEP) presents a test data

generator, based on DSL files, that allows to

generate data that conform to selected

principles. The paper ends with conclusion

and future work.

2 Android Testing Frameworks and Tools

Android applications being developed using

Java programming language, JUnit testing

framework is suitable for the automated

testing of functional issues. JUnit is a testing

framework for regressive unit testing of Java

programs [8]. The main Java classes used by

the framework are associated to test cases and

suites.

The Android platform includes several tools

and frameworks. Also, third party developers

have built such tools and framework for

Android applications testing. In [9] are

presented the fundamentals of Android

applications testing.

Table 1 summarizes the most used Android

testing tools and frameworks. Many of these

are based on JUnit.

1

Informatica Economică vol. 20, no. 2/2016 25

DOI: 10.12948/issn14531305/20.2.2016.03

Table 1. Android testing tools and frameworks
Framework/Tool Included in

Android API

Testing level Testing

approach

Type

Espresso Yes UI testing Black box Framework

Android

Instrumentation API

Yes Unit testing White box Framework

Monkey Yes UI testing Black box Tool

monkeyrunner Yes UI testing Black box Tool

Robotium No UI testing Black box Framework

Robolectric No Unit testing White box Framework

UI Automator Yes UI testing Black box Framework

Espresso is a testing framework used for UI

testing. It is based on JUnit and it is included

in Android Support Repository.

Android Instrumentation framework is

developed by Google for testing Android

applications. It allows to control the life cycle

of the Android applications and components

during the tests.

Monkey is a testing tool that runs within the

emulator or on the mobile device. It is used to

send random events to the Android device

(user or system).

monkeyrunner provides an API that can be

used to control an Android device by

installing applications, sending commands

and taking and saving screenshots.

Robotium is a testing framework for Android

and hybrid application. It is based on Android

Instrumentation and it is used to automate UI

testing.

Robolectric is framework that allows testing

on a JVM running on a computer. This will

speed-up the testing process.

UI Automator framework provides an API

that allows to control user and system

applications for UI testing.

In [10] there is a short presentation of several

other Android testing frameworks and tools:

 Mockito – a framework for testing Java

and Android applications; it allows

creation of mock objects for testing and it

is used in unit testing;

 EasyMock – a testing framework used in

unit testing; it uses mock objects;

 PowerMock – a framework based on

Mockito and EasyMock;

 Inifinitest – a testing plugin for Eclipse

and IntelliJ; it is a continuous test runner.

In order to automate the testing process, some

of these tools can run using generated data by

dedicated tools.

Specific Android testing approaches are

presented in [11], [12] and [13].

3 Data Specification Language (DSL)
In order to generate test data, test data

generators (TDG) can be based on random

functions or can use inputs related to

application under test (specifications, source

files, data constraints, list of values, layout

files etc.).

The test data will be used either for white-box

testing (as in [14]) or for functional testing.

White-box testing requires a deeper

knowledge of source code and a previous

analysis of it is required before [15].

Our proposed solution take as input an XML-

based file that includes a description of each

field for which will be generated test data.

Figure 1 depicts the architecture of the test

data generator system. Android layout files

are used as inputs for the parser. The parser

generates a DSL file that is used as input for

the test data generator. Finally, the test data

generator will provide the test data.

26 Informatica Economică vol. 20, no. 2/2016

DOI: 10.12948/issn14531305/20.2.2016.03

Fig. 1. Test data generator system

The DSL file provides required information to

test data generator and allows to generate test

data for the analyzed software under test

(SUT). The generated test data could be stored

in memory or in files (XML, binary or any

other specific format).

In [6] and [7] was proposed an XML-based

language used for test data generation. The

current version include more nodes for a

better control of data generation. The root

node any DSL file is dataset. Each field for

which data will be generated is represented by

field node. The field node include tow

attributes:

 id, associated to the identification attribute

of the current field;

 type, representing the control type

(EditText, Spinner etc.).

Each field includes the nodes:

 type, representing data type like string,

number, Boolean etc.;

 generation, showing how data will be

generated (random or a list of values);

 maxLength, with attribute fixed, used for

the required length.

The fields that require values from a list of

values will include the lov node with values

used for selection.

The XSD schema of DSL files is presented in

Listing 1.

Listing 1. DSL files XSD schema
<xs:schema attributeFormDefault="unqualified"

 elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="dataset">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="field" maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="type"/>

 <xs:element type="xs:string" name="generation"/>

 <xs:element name="maxLength" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:string" name="fixed" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="lov" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 type="xs:string" name="item" maxOccurs="unbounded" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Android

layout parser

Android

layout

file

Generated

DSL file

Test data

generator

Test data

Informatica Economică vol. 20, no. 2/2016 27

DOI: 10.12948/issn14531305/20.2.2016.03

 </xs:sequence>

 <xs:attribute type="xs:string" name="id" use="required"/>

 <xs:attribute type="xs:string" name="type" use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

If the control identifier is not present, the

system will generate one.

Data length will be deduced from the Android

UI layout files, such as android:maxLength

attribute.

Data type could be determined based on

android:inputType and initial fields values.

For input that include numbers and a specific

format (like phone numbers, date etc.), it

should be included the format also.

Also, for numeric fields, it could be added the

nodes minValue and maxValue and their

corresponding values obtained from the

layout file or specifications or could be added

later.

4 Android Layout Files Parser

The Android layout parser uses XML-based

files available in res/layout folder of the

Android project. Several sources, such as

[16], present the content and structure of

Android layout files.

In order to exemplify the DSL template

generation, the XML layout from Listing 2

was used.

Listing 2. Android layout file used as example
<?xml version="1.0" encoding="utf-8"?>

<ScrollView xmlns:android= "http://schemas. android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <!-- Author label here-->

 <EditText

 android:id="@+id/editAutor"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:inputType="textCapWords"/>

 <!--Title label here -->

 <EditText

 android:id="@+id/editTitlu"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:inputType="text"/>

 <!--Date lable here -->

 <EditText

 android:id="@+id/data"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:inputType="date"/>

 <!-- Publisher label here -->

 <EditText

 android:id="@+id/editEditura"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:inputType="text"/>

 <!--ISBN label here-->

 <EditText

 android:id="@+id/editIsbn"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"/>

 <!--Price label here -->

 <EditText

 android:id="@+id/editPret"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="0"

28 Informatica Economică vol. 20, no. 2/2016

DOI: 10.12948/issn14531305/20.2.2016.03

 android:inputType="number"/>

 <!-- -->

 <Spinner

 android:id="@+id/spinGen"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"/>

 <!--Status label here -->

 <CheckBox

 android:id="@+id/checkUzata"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <Button

 android:id="@+id/buttonSalveaza"

 android:layout_height="wrap_content"

 android:layout_width="wrap_content"

 android:layout_gravity="center"

 android:text="Salveaza" />

 </LinearLayout>

</ScrollView>

The layout includes eight controls for which

test data need to be generated: six EditText

controls, one Spinner control and one

CheckBox control. Three EditText controls

include android:inputType attributes with

values: textCapWords, text, and number.

Figure 2 presents the actual layout used as

example running on a real device.

Fig. 2. Test data generator system

The generated test data could be used by

existing tools and frameworks to fill the

controls and to activate the submission button.

Based on the layout from Listing 2, the

generated DSL file is presented in Listing 3.

Current version includes mostly random

values generation and list of values (checked

and unchecked) for CheckBox controls.

Listing 3. Generated DSL file
<dataset>

 <field type="EditText" id="editAutor">

 <type>string</type>

Informatica Economică vol. 20, no. 2/2016 29

DOI: 10.12948/issn14531305/20.2.2016.03

 <generation>random</generation>

 < maxLength fixed="No" />

 </field>

 <field type="EditText" id=" editTitlu ">

 <type>string</type>

 <generation>random</generation>

 <maxLength fixed="No">40</length>

 </field>

 <field type="EditText" id=" data ">

 <type>string</type>

 <generation>random</generation>

 < maxLength fixed="No" />

 </field>

 <field type="EditText" id=" editEditura ">

 <type>string</type>

 <generation>random</generation>

 < maxLength fixed="No" />

 </field>

<field type="EditText" id=" editIsbn ">

 <type>string</type>

 <generation>random</generation>

 < maxLength fixed="No" />

 </field>

 <field type="EditText" id=" editPret ">

 <type>number</type>

 <generation>random</generation>

 < maxLength fixed="No" />

 </field>

 <field type="Spinner" id=" spinGen ">

 <type>string</type>

 <generation>lov</generation>

 </field>

 <field type="CheckBox" id=" checkUzata ">

 <type>boolean</type>

 <generation>lov</generation>

 <lov>

 <item>checked</item>

 <item>unchecked</item>

 </lov>

 </field>

</dataset>

This DSL file represents an input for the test

data generator. In this stage, the DSL file does

not fully automate test data generators. It

could require a manual intervention or other

additional parsers or editors that need to

narrow data boundaries or add other

constraints or will provide the list of values for

list-based controls. For example, the for the

Spinner control, the list of values has to be

filled before data generation.

5 Random Test Data Generator Based On

Pragmatic Testing (RIGHT-BICEP)

The DSL files will be used for generate the

data set for testing. In order to generate these

datasets it is necessary to know what will be

tested with these datasets. The test data

generator we propose will use, for unit testing,

the Right-BICEP principle, Figure 3.

30 Informatica Economică vol. 20, no. 2/2016

DOI: 10.12948/issn14531305/20.2.2016.03

Fig. 3. Right-BICEP principle

According to this principle, for each control

must be tested and verified if the input

provided by the user comply [8]:

 RIGHT – if the provided control input is

correctly; it should be verified if the input

of the control is correct and is not

changed;

 Boundary – all limits should be checked

and if the input is correctly obtained for

these limits; it should be verified if the

control provide the correct input with

minimum length or with maximum

accepted length;

 Inverse – inverse relationship must be

verified for each control; it should be

verified by an inverse relationship if the

control provide the correct input;

 Cross-check – it must be verified by a

cross-check accuracy, using calculation

methods similar tested and validated by a

large community of programmers and

compare results;

 Error – check control behavior when

obtaining certain errors or introduce

erroneous values by the user; the control

should be forced to provide errors and to

be analyzed the reaction of the control in

these situations;

 Performance – verifying the optimal

functioning of that control, otherwise it is

strongly recommended another type of

control.

Besides this principle exist another one named

CORRECT, which should be considered in

the process of testing and in the process of

elaboration of dataset for testing.

Following the principles of testing and using

the DSL file layouts obtained for Android was

developed Random Test Data Generator

(RTDG) application. The application

generates an XML file with test data fields

described in the file DSL.

For each test data file with the desired DSL

file uploaded it is specified the number of tests

required for each field and what type of tests

to generate. The RTDG will generate test data

for three of the six categories of Right-BICEP

principle: Right, Boundary and Error. Figure

4 depicts the interface of the RTDG

application.

RIGHT

B

O

U

N

D

A

R

Y

I

N

V

E

R

S

E

C

R

O

S

S

-

C

H

E

C

K

E

R

R

O

R

P

E

R

F

O

R

M

A

N

C

E

B I C E P

Informatica Economică vol. 20, no. 2/2016 31

DOI: 10.12948/issn14531305/20.2.2016.03

Fig. 4. Random Test Data Generator Application

Based on each identified field of DSL file it is

determined the control type and what types of

test data should be generated. For example, if

the identified control type is EditText, then:

 the data type could be either String or

numeric,

 the id attribute is taken from the control

related attribute (android:id) or it is

generated;

 the maximum length of characters

accepted is determined, if it is specified. If

the maxLenght tag is not specified it is

considered a length of 20 characters. This

length is used to build test data for

Boundary principle.

After all the fields were identified, random

test data will be generated. If the field is of

type String it may also contain characters and

numbers but also special signs. If that field is

numeric, it contains only numbers.

Based on DSL file from Listing 3 it is

generated the XML file from Listing 4. The

file contains one set of test data for each

EditText control, for each category (Right,

Boundary, and Error).

Listing 4. Generated data test file
<?xml version="1.0" encoding="UTF-8"?>

<teste>

 <test control="editAutor" type="RIGHT">

 <input ERROR="false">t0l06,1/7*76</input>

 <expectedResult>t0l06,1/7*76</expectedResult>

 </test>

 <test control="editAutor" type="Boundary">

 <input ERROR="false">3o27984(9;0q73;mz8x3</input>

 <expectedResult>3o27984(9;0q73;mz8x3</expectedResult>

 </test>

 <test control="editAutor" type="Error">

 <input ERROR="true">j5gz8/!12<u<l:%)8634</input>

 </test>

 <test control="editTitlu" type="RIGHT">

 <input ERROR="false">mi6?=]8o*6bz</input>

 <expectedResult>mi6?=]8o*6bz</expectedResult>

 </test>

 <test control="editTitlu" type="Boundary">

 <input ERROR="false">mq_85&)0,s</z,<f1b3fac~_;&)o10-ts;56~09c</input>

 <expectedResult>mq_85&)0,s</z,<f1b3fac~_;&)o10-ts;56~09c</expectedResult>

 </test>

 <test control="editTitlu" type="Error">

 <input ERROR="true">c/_?67m08bbjl.z,84u3t/,-?abf+*2-+jf]vjj4&</input>

32 Informatica Economică vol. 20, no. 2/2016

DOI: 10.12948/issn14531305/20.2.2016.03

 </test>

 <test control="data" type="RIGHT">

 <input ERROR="false">u:7o2q:2tk%8a@16</input>

 <expectedResult>u:7o2q:2tk%8a@16</expectedResult>

 </test>

 <test control="data" type="Boundary">

 <input ERROR="false">h;s;{mdm%o9xy5!m]ptq</input>

 <expectedResult>h;s;{mdm%o9xy5!m]ptq</expectedResult>

 </test>

 <test control="data" type="Error">

 <input ERROR="true">6bqwlx`3=bu_;94$6&:h</input>

 </test>

 <test control="editEditura" type="RIGHT">

 <input ERROR="false">81194y8>(e</input>

 <expectedResult>81194y8>(e</expectedResult>

 </test>

 <test control="editEditura" type="Boundary">

 <input ERROR="false">i=(dg*=~js/b^.lm!g#f</input>

 <expectedResult>i=(dg*=~js/b^.lm!g#f</expectedResult>

 </test>

 <test control="editEditura" type="Error">

 <input ERROR="true">8i`b;h42._1/5&1^>3}$;tfu`i84</input>

 </test>

 <test control="editIsbn" type="RIGHT">

 <input ERROR="false">x4]<k:ez68/g(09ig.9</input>

 <expectedResult>x4]<k:ez68/g(09ig.9</expectedResult>

 </test>

 <test control="editIsbn" type="Boundery">

 <input ERROR="false">c0.0:j${g2jtel>376z_</input>

 <expectedResult>c0.0:j${g2jtel>376z_</expectedResult>

 </test>

 <test control="editIsbn" type="Error">

 <input ERROR="true">o9y_32n:.-@->u6hiu:%07!b7ey/</input>

 </test>

 <test control="editPret" type="RIGHT">

 <input ERROR="false">z7c#y&#,2t7[</input>

 <expectedResult>z7c#y&#,2t7[</expectedResult>

 </test>

 <test control="editPret" type="Boundary">

 <input ERROR="false">d&#me,6x52u5g9$kv07b</input>

 <expectedResult>d&#me,6x52u5g9$kv07b</expectedResult>

 </test>

 <test control="editPret" type="Error">

 <input ERROR="true">0-k:h/46b68yq@n$5.~v0,55ln</input>

 </test>

</teste>

Within the XML file, test data is organized by

controls. For each control, test data are

generated in order to comply with each

principle selected in the application. Each set

contains the test tag, the control id for and the

type of test that is generated. If the test is Right

or Boundary, the tag input contains the

attribute ERROR with the false value and the

value represents the input data set to achieve

for that test. If the selected test type is

Boundary or Right, expectedResult tag exists

and represent the expected result from the test.

For the Error tests, the value of the attribute

ERROR is true and the tag expectedResult

doesn’t exists, because the expected result is

the error.

The proposed Random Test Data Generator

application can be improved so as to generate

other files with test data and not only XML.

Also, the structure of the resulting file can be

customized depending on the application

framework used to automate the testing

process based on test data provided by RTDG

application.

6 Conclusions and Future Work

The proposed system can be integrated with

many testing frameworks and tools available

for Android platform. The presented format of

DSL files is a preview and it will be improved

during the future development. The proposed

application for random test data generation

demonstrates the functionality of the proposed

system.

The next steps include the further

development of the test data generator that

generate test data based on DSL files: data

output format, more testing criteria.

Informatica Economică vol. 20, no. 2/2016 33

DOI: 10.12948/issn14531305/20.2.2016.03

Acknowledgment

Parts of this research have been published in

the Proceedings of the 14th International

Conference on Informatics in Economy, IE

2015 [17].

References

[1] S. Pressman, Software Engineering: A

Practitioner’s Approach. 7th ed., New

York: McGraw-Hill, 2009

[2] I. Sommerville, Software Engineering. 9th

ed., Boston: Addison-Wesley, 2011

[3] G. J. Myers, C. Sandler, T. Badgett, The

Art of Software Testing, 3rd Edition,

Wiley, 2011

[4] M. Roper, Software Testing, McGraw-Hill

Book, 1994

[5] M. Kumar and M. Chauhan, "Best

Practices in Mobile Application Testing

(White Paper)," Infosys, Bangalore, 2013

[6] P. Pocatilu, F. Alecu and S. Capisizu, "A

Test Data Generator for Mobile

Applications," in Proc. of the IE 2014

International Conference, Bucharest,

Romania, May 15-18, 2014, pp. 116-121

[7] P. Pocatilu and F. Alecu, "An UI Layout

Files Analyzer for Test Data Generation,"

Informatica Economica, vol. 18, no.

2/2014, pp. 53-62

[8] J. Langr, A. Hunt and D. Thomas,

Pragmatic Unit Testing in Java 8 with

JUnit, The Pragmatic Programmers, 2015

[9] Testing Fundamentals | Android

Developers, available at:

http://developer.android.com/tools/testing

/testing_android.html

[10] P. Pocatilu, I. Ivan et al, Programarea

aplicațiilor Android, Bucharest: ASE

Publishing House, 2015

[11] S. Yang, D. Yan and R. Rountev,

"Testing for poor responsiveness in

Android applications," in Proc. of the 1st

International Workshop on the

Engineering of Mobile-Enabled Systems

(MOBS), 2013, pp. 1 – 6

[12] A. Gupta, Learning Pentesting for

Android Devices, Packt Publishing, 2014

[13] W. Choi, G. Necula and K. Sen, "Guided

GUI testing of Android apps with minimal

restart and approximate learning," in Proc.

of the 2013 ACM SIGPLAN international

conference on Object oriented

programming systems languages &

applications (OOPSLA '13). ACM, New

York, NY, USA, pp. 623-640

[14] S. Jiang, Y. Zhang and D. Yi, "Test Data

Generation Approach for Basis Path

Coverage," ACM SIGSOFT Software

Engineering Notes, vol. 37, no. 3, pp. 1-7,

2012

[15] A. Zamfiroiu, "Source Code Quality

Metrics Building for Mobile

Applications," in proc. of the IE 2014

International Conference, Bucharest, pp.

136-140

[16] R. Meier, Professional Android 4

Application Development, Wiley, 2012

[17] P. Pocatilu, Capisizu, " A Test Data

Generator based on Android Layout

Files," in Proc. of the IE 2015

International Conference, Bucharest,

Romania, 30 April – 3 May 2015, pp. 135-

140

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 1998. He achieved the PhD in Economics in 2003

with thesis on Software Testing Cost Assessment Models. He has published

as author and co-author over 45 articles in journals and over 40 articles on

national and international conferences. He is author and co-author of 10

books, (Mobile Devices Programming and Software Testing Costs are two of

them). He is professor at the Department of Economic Informatics and

Cybernetics within the Bucharest University of Economic Studies, Bucharest. He teaches

courses, seminars and laboratories on Mobile Devices Programming, Economic Informatics,

Computer Programming and Project Management to graduate and postgraduate students. His

34 Informatica Economică vol. 20, no. 2/2016

DOI: 10.12948/issn14531305/20.2.2016.03

current research areas are software testing, software quality, project management, and mobile

application development.

Alin ZAMFIROIU has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 2009. In 2011 he has graduated the Economic

Informatics Master program organized by the Bucharest University of

Economic Studies and in 2014 he finished his PhD research in Economic

Informatics at the Bucharest University of Economic Studies. Currently he

works like a Senior Researcher at “National Institute for Research &

Development in Informatics, Bucharest”. He has published as author and co-

author of journal articles and scientific presentations at conferences.

