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As data centric approach, Business Intelligence (BI) deals with the storage, integration, pro-

cessing, exploration and analysis of information gathered from multiple sources in various for-

mats and volumes. BI systems are generally synonymous to costly, complex platforms that re-

quire vast organizational resources. But there is also an-other face of BI, that of a pool of data 

sources, applications, services developed at different times using different technologies. This is 

“democratic” BI or, in some cases, “fragmented”, “patched” (or “chaotic”) BI. Fragmenta-

tion creates not only integration problems, but also supports BI agility as new modules can be 

quickly developed. Among various languages and tools that cover large extents of BI activities, 

SQL and R are instrumental for both BI platform developers and BI users. SQL and R address 

both monolithic and democratic BI. This paper compares essential data processing features of 

two languages, identifying similarities and differences among them and also their strengths and 

limits. 
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Introduction 

Often seen as a reincarnation of Decision Sup-

port Systems [1] and sometimes referred as 

Business Intelligence and Analytics [2], Busi-

ness intelligence (BI) is a broad category of 

applications, technologies, and processes for 

gathering, storing, accessing, and analyzing 

data to help business users make better deci-

sions [3]. Figure 1 displays a classical BI ar-

chitecture [4]. 

  

 
Fig. 1. Typical BI architecture [4] 

 

Common business intelligence related tasks 

are: 

 data storage 

 data extraction-transformation-load 

from various sources in a different for-

mats, more or less structured, to the stor-

age layer 

 data processing 

 information integration 

 visualization 

 exploratory analysis 

 data mining/data science etc. 

Slightly outdated, the schema in figure 1 is 

still valid in suggesting the vast array of tech-

nologies, processes and tools gathered (or re-

branded) within BI umbrella. Chen et al [Chen 

2012] identified three generations of BI and 

1 
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Analytics (BI&A) systems whore core tech-

nologies have been: 

 data management and warehousing [5] 

[6]  

 text and web analytics for unstructured 

web contents [7] 

 mobile technologies [8]. 

Implementation of BI platforms requires vast 

quantity of organizational resources. Some of 

the most important current BI solutions are 

shown in figure 2 [9]. As with Enterprise Re-

source Planning applications, BI systems im-

plementation requires extensive organiza-

tional changes and business expertise and 

sometimes it requires full vendor participa-

tion. 

 
Fig. 2. BI platforms [9] 

 

Apart from impressive costs, BI platforms 

have the drawback of keeping captive the cus-

tomer. Every organizational change and also 

new or updated external data source and ser-

vice must be negotiated with BI platform pro-

vider, which usually attracts new costs and 

also delays. 

In this paper we scrutinize two languages, 

SQL and R, involved not only in BI applica-

tion development but especially in the “de-

mocratization” of BI as they allow various 

types of data professionals and users to access 

and process vast quantity of data in an inter-

active, ad-hoc, way. Using two reliable 

sources, their role and popularity in current BI 

market will be outlined, taking into account 

job demand and a survey concerning BI tools 

and languages usage. Next the range of BI ac-

tivities that can be supported by each SQL and 

R will be presented. The main section will 

compare SQL and R features syntax for the 

most common data processing/reporting prob-

lems, particularly important for BI users. 

 

2 Languages and Tools for Business Intel-

ligence 

There is a vast array of tools, languages and 

technologies covering large extents of BI 

tasks. Some of them target regular users who 

are unable to write code and scripts in any pro-

gramming language. Others are BI application 

developer’s toolbox. But there some technol-

ogies that serve both users and developers in 

data processing, integration, visualization and 

analysis. Comparison of BI tools and lan-

guages is also problematic because they can 

be available as programming languages, de-

velopment environments, ecosystems or inte-

grated platforms. 

In evaluating the popularity of Business Intel-

ligence languages and tools, we gather infor-

mation from two reliable sources. Search en-

gine www.indeed.com provides data about 
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job trends. Figure 3 compares job demand in 

2012-2016 interval for some of the most im-

portant data processing and analysis lan-

guages [10].  

 

 
Fig. 3. Demand for main BI languages/tools [10] 

 

SQL and R share most of the job postings. In 

2012 SQL was by far the most demanded data 

language. Its share decreased slightly and 

seems to have stabilized since the end of 2014. 

R grew spectacularly in 2012-2014 interval, 

overpass SQL in 2014 for a brief period, and 

then fell back. Since 2014 it has fluctuated 

around 2% share. After SQL and R, the next 

popular is Python followed by SAS, SPSS, 

Stata and Julia. Currently there is still a visible 

lag between SQL-R group and the rest of the 

languages/tools, although Python seems to in-

crease steadily and might catch up with the 

leading group. SAS is not only a language, but 

also an integrated platform covering large sec-

tions of BI applications, whereas low figures 

for SPSS and Stata suggest they are used 

mainly in academia/research. Julia is a new-

comer and it is unsure if it will reach the criti-

cal mass adoption for being an important 

player. 

 
Fig. 4. Top Analytics Tools and Trends in 2015 [11] 
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The second source is annual KDnuggets Soft-

ware Poll [11]. In the most recent edition, the 

16th (2015), nearly 3000 voters choose from 

93 different analytics and data mining tools. 

Results are displayed in figure 4. Survey re-

vealed that R is the most popular overall tool 

among data miners, and Python is gathering 

traction steadily. RapidMiner continues to be 

most popular suite for data mining/data sci-

ence. Hadoop/Big Data increased to 29%, up 

from 17% in 2014, and the fastest growth is 

for Spark whose usage share grew over 3-fold. 

KDnuggets Software Poll and indeed.com job 

trends confirm the centrality of both SQL and 

R as tools for BI users and developers. 

  

3 SQL vs. R. The extent of analysis  

As a data centric approach, BI heavily relies 

on various advanced data collection, extrac-

tion, and analysis technologies, from Data 

Warehouse, extract – transform –load (ETL) 

tools, analytical processing (OLAP), ad-

vanced reporting to advanced knowledge dis-

covery tools and techniques [2][12]. 

SQL and R languages are pivotal in BI data 

processing, as will be detailed in section 4. 

SQL and R are not only contenders, but also 

partners, especially when accessing and pro-

cessing huge volumes of data stored in data-

bases, data warehouses and Hadoop ecosys-

tems. Feature comparison of table 1 is not in-

tended to rank the first of two languages, but 

to outline the main areas SQL and R can be 

analyzed and compared, and also some areas 

where they do not really match, so the com-

parison is fruitless. 

 

Table 1. Main similarities and differences between SQL and R 

Content 

 

SQL R 

 

Origin High Level Language for IBM 

System R [13] [14] 

Derived from S language 

(J.Chambers, 1976).  Creators: R. 

Ihaka and R.Gentleman (1991) 

[15] 

Main target High level language for database 

creation, update and query 

Open-source language for data 

processing, visualization, analysis 

Standardization ANSI/ISO [16] [17] https://www.r-project.org 

Implementation Not a product per se, but layer 

available on all relational DBMSs 

Product per se downloadable from 

https://www.r-project.org 

Dialects Main DBMSs providers imple-

ment the standard with slight dif-

ferences [17] 

More compact; just a few (com-

mercial) dialects, such as Mi-

crosoft (Revolution) R 

Modularization Compact (no independent librar-

ies). Implementation is available 

only along with new DBMSs ver-

sions  

Extensible through thousands of 

packages, available on cran, 

github etc. [18] 

Data Storage Originally targeting only relational 

databases. Currently expanded to 

various Hadoop and NoSQL sys-

tems. [19] [20] [21] 

Not available (except .RData for-

mat that is not suitable for large 

volume of data) 

Massiveness of 

data to be pro-

cessed 

Theoretically unlimited. In prac-

tice it depends on the data base, 

data warehouse  of big data archi-

tecture 

Limited to computer’s RAM. 

Available packages for managing 

larger volumes data of data, such 

as data.table [22], parallel [23], 

bigmemory [24], ff [25] 
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Data Sources Not related to the language, but 

dependent of DBMs. Usually lim-

ited to databases created with a 

couple of SQL/relational DBMSs 

Almost every data source (.csv, 

.xlsx, xml/html tables, relational 

databases, NoSQL data stores, Ha-

doop etc.)  

 

Table 1 (continued). Main similarities and differences between SQL and R 

Content 

 

SQL R 

 

Procedularity Implemented through section Per-

sistent Stored Modules of the SQL 

standards; big differences among 

procedural extensions (PL/SQL, T-

SQL, SQL PL, etc.) [17] 

Native 

Data Processing Best known language for pro-

cessing data 

Various features included in base 

R and especially a large number of 

packages. 

SQL queries can be run with pack-

age sqldf [26].  

Two workhorses  – packages dplyr 

[27] and tidyr [28] 

OLAP Functions Implemented since SQL:2009 

standard [16] [17] [29] 

Implemented in dplyr package 

Pivoting “Manual” [16], with recursive que-

ries, or with pivot or model clauses 

[29] [30] 

Package tidyr 

Data Visualiza-

tion 

Simple (text-only) histograms [29] Excellent features and packages 

[31]: ggplot2 [32], lattice [33], 

ggvis [34], googleVis [35] 

Data Analysis Initially only basic descriptive sta-

tistics [16] 

Limited to some ANOVA, t-tests 

and basic non-parametric tests in 

some dialects (e.g. Oracle) [6] 

Unlimited 

Dynamics Mature. 

Slow pace of implementing new 

features because of multitude of in-

stitutions and companies involved 

in the standardization process 

(Still) young. 

Accelerate evolution, dozens of 

new packages every week. 

Worries of becoming out of control 

Learning curve Easy to learn Steep 

 

Due to its processing power and accessibility, 

SQL has become the lingua franca of data pro-

cessing. Its leading position seemed many 

times in jeopardy by the launch of languages 

like OQL and, more recently, NoSQL data 

stores and Hadoop systems [19]. But currently 

there is visible trend for adapting SQL even 

for NoSQL and Hadoop ecosystems [6] [19] 

[20]. That will reinforce SQL ubiquity since it 

can process data stored on every data plat-

form. 

The main drawback of SQL is a direct conse-

quence of its maturity. SQL standard is hard 

to update. The process takes years and various 

dialects can implement, at least in the initial 

phase, quite differently the same features. 

By contrast, one the most import strengths of 

R is its dynamics and the enthusiasm of R 

community. Until dpyr and tidyr packages, R 
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had been no match to the expressive power of 

SQL in terms of data processing options. 

Things are going to change, as seen in the next 

section. R is a vast endeavor. Data processed 

in R or within R but with SQL queries are 

ready to be explored, visualized, analyzed, 

and mined for patterns. In this respect, SQL 

cannot compete with R. Also R provides many 

other tools such as reporting (R Markdown), 

or even application development (Shiny) [36]. 

 

4 Main Data Processing Features in SQL 

and R 

The main area for a proper comparison be-

tween SQL and R is data processing. This sec-

tion will compare SQL and R features for 

some of the most frequent types of queries re-

quired in BI. All the queries below were run 

on the database schema proposed by TPC-H 

benchmark [37], whose schema is depicted in 

figure 5. Tables were created in PostgreSQL 

and populated with random data using freely 

available dbgen tool [38]. 

 

 
Fig. 5. TPC-H benchmark database schema [37] 

 

As in the current paper we did not test the per-

formances of two systems, data were gener-

ated just for scale factor of 0.1 with the fol-

lowing number of records:  

 5 in table REGION 

 25 in table NATION 

 15000 in table CUSTOMER 

 1000 in table SUPPLIER 

 20000 in table PART 

 80000 in table PARTSUPP 

 150000 in table ORDERS 

 600572 in table LINEITEM 

From PostgreSQL tables were imported as 

data frames using package RPostgreSQL [39]. 

Because for almost every problem both SQL 

and R provide a large number of solutions, we 
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selected the shortest or the most readable. As 

SQL is a mature technology, we will provide 

some details just for the R queries. 

Base R options are no match for SQL in terms 

or querying power. For displaying basic infor-

mation about the quantity and prices of items 

sold within orders of January 1996 (second 

simple query in section 4.1), base R solution 

(with a little help from lubridate package) is: 
library(lubridate) # package needed for 

functions "year" and "month" 

t1 <- merge(orders, lineitem, by.x = 

"o_orderkey", by.y = "l_orderkey") 

t2 <- subset(t1, year(o_orderdate) == 

1996 & month(o_orderdate) == 1, 

          select = c(o_orderkey, l_lin-

enumber, l_partkey, l_quantity,  

          l_extendedprice, l_discount)) 

t2 <- transform(t2, line_amount = 

l_quantity * (l_extendedprice - l_dis-

count)) 

t3 <- t2[order(t2$o_orderkey, t2$l_lin-

enumber),]  

 

The query is divided into a number of steps. 

The result of each step is a table that is pro-

cessed by subsequent steps. The operating 

logic might be obvious, but the solution is 

cumbersome by any standard.  

A series of packages, mainly dplyr and tidyr 

injected elegance and power into data pro-

cessing in R. It is the main reason that on the 

subsequent examples, SQL syntax will be 

matched to syntax of (mainly) these two pack-

ages). 

 

4.1 Basic Queries (Selection, Projection, 

Join) 

First simple query requires a few basic opera-

tion: selection, projection, computed column, 

and sort - Display some basic information 

about the quantity and prices of items sold 

within orders 1284 and 1731. Below is the 

syntax for both SQL and R: 

SQL: R (dplyr): 
select l_or-

derkey, l_lin-

enumber, 

 l_partkey,       

l_quantity, 

 l_extend-

edprice, l_dis-

count,  

 l_quantity * 

(l_extend-

edprice – 

lineitem %>%  

filter(l_orderkey 

%in% c(1284, 1731)) 

%>% 

select (l_orderkey, 

l_linenumber, 

 l_partkey, l_quan-

tity, l_extend-

edprice, 

 l_discount) %>%  

mutate(line_amount = 

l_quantity * 

    l_discount) 

as line_amount       

from lineitem   

where l_or-

derkey  in 

(1284, 1731)  

order by l_or-

derkey, l_lin-

enumber  

  (l_extendedprice - 

l_discount)) %>% 

arrange(l_orderkey, 

l_linenumber) 

 

The “pipe” operator (%>%) passes current op-

eration result to the next operation within the 

same query so there is no need to save inter-

mediary results in separate data frames. Main 

predicate.   Dplyr provides functions for each 

basic verb of data manipulation [27], from 

which in the query just 

 filter() for selection of records 

 arrange() for sorting records 

 select() for (attributes) projection 

 mutate() for adding computed columns. 

 

The second simple query joins tables (data 

frames) orders and lineitem - Display basic in-

formation about the quantity and prices of 

items sold within orders of January 1996: 

SQL: R (lubridate and 

dplyr): 
select o_or-

derkey, o_order-

date,  

  l_linenumber, 

l_partkey, 

l_quantity 

  l_extend-

edprice, l_dis-

count, 

  l_quantity * 

(l_extendedprice 

– 

     l_discount) 

as line_amount      

from orders in-

ner join linei-

tem  

  on o_orderkey 

= l_orderkey 

where extract 

(year from o_or-

derdate) 

  = 1996 and ex-

tract (month 

from  

  o_orderdate) = 

1 

order by o_or-

derkey, l_lin-

enumber 

library(lubridate) 

orders %>%  

inner_join(lineitem, 

by = c('o_orderkey'= 

  'l_orderkey' )) 

%>% 

filter(year(o_order-

date) == 1996 & 

  month(o_orderdate) 

== 1) %>% 

select (o_orderkey, 

l_linenumber, 

  l_partkey, l_quan-

tity,  

  l_extendedprice, 

l_discount) %>%  

mutate(line_amount = 

l_quantity * 

  (l_extendedprice - 

l_discount)) %>% 

arrange(o_orderkey, 

l_linenumber) 
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Syntax for the inner join is close enough to 

that of SQL. Similarly dplyr implements outer 

joins and semi joins, but also the anti-join, 

which is not available in too many SQL dia-

lects. 

 

4.2 Aggregate Queries 

Similar to SQL, dplyr offers group_by() func-

tion. It breaks down a dataset into specified 

groups of rows so that when applying a verb 

to the resulting object, the verb will be per-

formed for each group. Grouping affects the 

verbs as follows: 

 grouping variables are always retained 

in the result 

 grouped arrange() orders first by the 

grouping variables (which is not the 

case in SQL) 

mutate() and filter() are most useful in 

conjunction with window functions  

 slice() extracts rows within each 

group. 

 summarise() allows defining aggre-

gate variables 

First problem requiring basic aggregation 

with group filter is Display monthly sales for 

years 1996-2000 that are greater than one bil-

lion: 

 

SQL: R (lubridate and 

dplyr): 
select extract 

(year from o_or-

derdate) 

   as year, ex-

tract (month 

from 

   o_orderdate) 

as month,         

  sum( l_quan-

tity * (l_ex-

tendedprice – 

    l_discount)) 

as monthly_sales    

from orders in-

ner join linei-

tem  

  on o_orderkey 

= l_orderkey  

where extract 

(year from o_or-

derdate) 

  between 1996 

and 2000  

group by year, 

month  

orders %>%  

inner_join(lineitem, 

by = c('o_orderkey' 

 = 'l_orderkey' )) 

%>% 

filter(year(o_order-

date) >= 1996 & 

  year(o_orderdate) 

<= 2000) %>% 

group_by(year = 

year(o_orderdate),  

 cmonth 

=cmonth(o_order-

date)) %>% 

summa-

rise(monthly_sales = 

sum(l_quantity 

  *(l_extendedprice 

- l_discount)) ) %>% 

filter 

(monthly_sales > 

1000000000) %>%         

arrange(year, month) 

 

having sum( 

l_quantity *  

  (l_extend-

edprice - l_dis-

count))  > 

    1000000000 

order by year, 

month 

 

Here there is a slight advantage of dplyr due 

to the pipe operation, so that the expression for 

group filtering does not have to define repeat-

edly the expression for aggregation.  

 

Second aggregate queries answers a problem 

with subtotals - Display monthly sales for 

years 1996-2000 with subtotals on each year: 

SQL: R (lubridate and 

dplyr): 
select extract 

(year from o_or-

derdate) as 

   year, extract 

(month from 

o_orderdate) 

   as month, 

sum( l_quantity 

*  

   (l_extend-

edprice - l_dis-

count)) as 

   monthly_sales      

from orders in-

ner join linei-

tem on 

   o_orderkey = 

l_orderkey 

where extract 

(year from o_or-

derdate)  

   between 1996 

and 2000 

group by year, 

month 

 union 

select extract 

(year from o_or-

derdate) as 

   year, null as 

month,  sum( 

l_quantity * 

   (l_extend-

edprice - l_dis-

count))       

from orders in-

ner join linei-

tem  

   on o_orderkey 

= l_orderkey 

where extract 

(year from o_or-

derdate)  

   between 1996 

and 2000 

bind_rows (orders 

%>%  

  inner_join(linei-

tem, by = 

   c('o_orderkey' = 

'l_orderkey' )) %>% 

  filter(year(o_or-

derdate) >= 1996 & 

   year(o_orderdate) 

<= 2000) %>% 

  group_by(year = 

year(o_orderdate), 

   month = 

month(o_orderdate)) 

%>% 

  summa-

rise(monthly_sales = 

    sum(l_quantity * 

(l_extendedprice – 

      l_discount)) 

),  

orders %>%  

  inner_join(linei-

tem, by c( 

    'o_orderkey' = 

'l_orderkey' )) %>% 

  filter(year(o_or-

derdate) >= 1996 & 

      year(o_order-

date) <= 2000) %>% 

  group_by(year = 

year(o_orderdate), 

      month = NA) 

%>% 

  summa-

rise(monthly_sales = 

sum( 

    l_quantity * 

(l_extendedprice – 

      l_discount)) )     

) %>%      

arrange(year, month) 



56  Informatica Economică vol. 20, no. 1/2016 

DOI: 10.12948/issn14531305/20.1.2016.05 

group by year 

order by year, 

month 

 

Pipe operator was no useful in this case, so 

SQL query is shorter. Function bind_rows() in 

dplyr is the equivalent of UNION SQL opera-

tor. 

 

4.3 Subqueries  

There are numerous problems to be answered 

using what is SQL are called as subqueries. In 

SQL queries can be part of  WHERE, HAV-

ING, FROM, SELECT and WITH clauses. In 

dplyr there are no such differences. 

First problem answered in SQL with a 

subquery placed into WHERE clause is Re-

trieve orders issues in the same day as the or-

der 3271: 

SQL: R (lubridate and 

dplyr): 
select o_orderkey, 

o_custkey, 

  o_orderstatus, 

o_orderdate, 

  o_orderpriority 

from orders  

where o_orderdate 

in 

 (select 

o_orderdate  

        from or-

ders 

        where 

o_orderkey = 3271) 

orders %>% 

filter (o_order-

date %in% ( 

   orders %>% fil-

ter (o_orderkey ==  

     3271)) 

[['o_orderdate']]) 

%>% 

select (o_or-

derkey:o_order-

priority)   

 

 

Here required attributes were consecutive. 

That shortened the projection clause (select) 

in the dplyr query. Also notice %in% opera-

tor, which is the counterpart of SQL IN.  

The second problem for illustrating 

subqueries implies group filtering is Extract 

day (or days, if there are more than one) with 

the maximum number of orders. Three SQL 

solutions and two dplyr “counterparts” will be 

provided as follows: 

 

SQL – solution 

based on a subquery 

in  

HAVING clause: 

R (lubridate and 

dplyr): 

select o_order-

date, count(*) as 

n_of_orders 

from orders  

orders %>% 

     

group_by(o_order-

date) %>% 

group by o_order-

date 

having count(*) =  

     (select 

count(*) as 

n_of_orders 

      from orders 

      group by 

o_orderdate 

      order by 

n_of_orders desc 

      limit 1) 

     summa-

rize(n_of_orders = 

n()) %>% 

     filter 

(n_of_orders >= 

max(n_of_orders)) 

 

 

SQL – solution 

based on a subquery 

in  

FROM clause 

 

R (lubridate and 

dplyr): 

select 

dates_n_of_or-

ders.*  

from       

 (select o_order-

date, count(*) as 

    n_of_orders       

  from orders        

  group by o_or-

derdate) 

dates_n_of_orders 

inner join        

  (select count(*) 

as n_of_orders 

   from orders        

   group by o_or-

derdate        

   order by 

n_of_orders desc 

   limit 1) 

max_n_of_orders 

on dates_n_of_or-

ders.n_of_orders = 

   max_n_of_or-

ders.n_of_orders  

orders %>% 

group_by(o_order-

date) %>% 

summarize(n_of_or-

ders = n()) %>% 

     inner_join( 

  orders %>% 

  group_by(o_or-

derdate) %>% 

  summa-

rize(n_of_orders = 

n()) %>% 

  arrange 

(desc(n_of_orders) 

                ) 

%>% 

  top_n(1)) 

 

 

 

SQL – solution 

based on table ex-

presssion 

 

R (lubridate and 

dplyr) – repeated: 

with 

dates_n_of_orders 

as  

     (select o_or-

derdate,  

       count(*) as 

n_of_orders 

     from orders  

     group by 

o_orderdate),  

select * 

from 

dates_n_of_orders 

where n_of_orders 

=  

     (select 

max(n_of_orders) 

      from 

dates_n_of_orders) 

orders %>% 

     

group_by(o_order-

date) %>% 

     summa-

rize(n_of_orders = 

n()) %>% 

     filter 

(n_of_orders >= 

max(n_of_orders)) 
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Now dplyr syntax looks more powerful and 

elegant. Second dplyr solution contains an 

OLAP (window) function – top_n(). 

The third problem involves group comparison 

- Extract dates with at least the number of or-

ders issued on 1993-04-21: 

SQL – solution 

based on table ex-

presssion 

R (dplyr): 

with 

dates_n_of_orders 

as  

  (select o_order-

date, count(*) as 

        n_of_or-

ders 

   from orders  

   group by o_or-

derdate)  

select * 

from 

dates_n_of_orders 

where n_of_orders 

>=  

     (select 

n_of_orders 

      from 

dates_n_of_orders 

      where o_or-

derdate =  

         

DATE'1993-04-21') 

orders %>% 

group_by(o_order-

date) %>% 

summarize(n_of_or-

ders1 = n()) %>% 

mutate( 

 n_of_orders2 = 

    ifelse(o_or-

derdate == '1993-

04-21', 

        n_of_or-

ders1, 0), 

 n_of_orders3 = 

sum(n_of_orders2) 

      )  %>% 

filter (n_of_or-

ders1 >= n_of_or-

ders3)      

 

 

Here a dplyr trick was needed in order the 

groups to be compared. After computing the 

number of orders for each date (n_of_or-

ders1), we create a variable (n_of_orders2), 

which is zero for all of the dates except the 

date of reference (1993-04-21). Only for this 

date n_of_orders2 has the same value as 

n_of_orders1. The third new variable 

(n_of_orders3) stores the number of orders for 

the reference date and it was used for filtering 

the groups. 

 

4.4 Pivoting  

Pivot tables is one the key features in BI re-

porting and analysis. Many relational/SQL 

DMBSs have implemented PIVOT clause for 

answering this type of problems [29] [30]. Un-

fortunately, currently PostgreSQL does not 

support dynamic pivoting. Function CROSS-

TAB requires explicit definition of all column 

of the pivoting operation. This is acceptable 

from small number of columns and awkward 

for the rest of the cases. Consequently, for the 

problem Display product sales for sales years 

between 1991 and 2000 only dplyr solution 

will be presented: 
orders %>%  

inner_join(lineitem, by = c('o_orderkey' 

= 'l_orderkey' )) %>% 

filter(year(o_orderdate) >= 1991 & 

year(o_orderdate) <= 2000) %>% 

inner_join(part, by = c('l_partkey' = 

'p_partkey' )) %>% 

group_by(products = p_name, year = 

year(o_orderdate)) %>% 

     summarise(sales = sum(l_quantity * 

(l_extendedprice - l_discount))) %>% 

spread (year, sales, fill=0) 

 

4.5 Recursivity  

Introduced by ANSI SQL:1999 standard and 

implemented almost all major relational 

DBMSs, recursive queries (WITH RECUR-

SIVE) are extremely powerful tools for data-

base processing and remains largely un-

derused by database professional. Recursivity 

is needed, for example, when the number of 

levels in tree (hierarchical structure) varies 

from one organization to another and there is 

a need to display, for each employee, the en-

tire managerial path (from she/he until the top 

manager). 

TPC-H schema does not contain a proper hi-

erarchical structure. Nevertheless, the are 

types of problems that require recursivity. For 

example, Display, for each product, a string 

with the list of first 5 customers (in alphabetic 

order) that have purchased it: 

 

 

SQL – solution based 

on recursive query  

built with a table ex-

presssion 

R (dplyr and tidyr): 

with recursive 

prod__cus-

tomer_list  

 (p_name, p_part-

key, cust_no, 

cust_list) 

   as ( 

select pc.p_name, 

pc.p_partkey,  

   pc.cust_no,  

  cast 

(pc.c_name 

    as var-

char(100000) ) 

  

from pc   

part %>% 

  inner_join(lin-

eitem, by =  

    c('p_partkey' 

= 'l_partkey')) 

%>% 

  inner_join(or-

ders, by = c(  

    'l_orderkey' 

= 'o_orderkey')) 

%>% 

  inner_join(cus-

tomer, by = c( 

    'o_custkey' = 

'c_custkey')) %>% 
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where cust_no = 1 

  

 union all 

  

select pc.p_name, 

pc.p_partkey, 

    prod__cus-

tomer_list.cust_no 

+ 1,   

   cast 

(prod__cus-

tomer_list.cust_li

st || 

    ', ' || 

pc.c_name AS var-

char(100000) ) 

from pc  inner 

join prod__cus-

tomer_list  

   on pc.cust_no = 

  prod__cus-

tomer_list.cust_no 

+ 1   ), 

 

pc as (select *         

       from ( se-

lect p_name, 

p_partkey, 

               

c_name, row_num-

ber() over  

              

(partition by 

p_name  

               or-

der by c_name) as 

cust_no 

   from 

part inner join  

                

lineitem on 

p_partkey = 

                 

l_partkey 

    

 inner join 

orders on 

                   

l_orderkey = 

                     

o_orderkey 

   inner 

join customer on 

                

o_custkey = c_cus-

tkey) x   

where cust_no <= 

5)  

select p_name, 

cust_list  

from prod__cus-

tomer_list  

order by p_name  

select (p_name, 

c_name) %>% 

group_by(p_name) 

%>%  

slice(1:5) %>%           

group_by(p_name) 

%>%  

summa-

rise(five_cust_li

st =  

     

paste(c_name, 

collapse=", "))           

      

 

 

From this example one might conclude that 

dplyr syntax is considerable more elegant in 

solving problems requiring recursive queries.  

 

4.6 OLAP functions  

In SQL OLAP functions, labeled also as ana-

lytic or window functions were added in 

SQL:1999 standard. In R dplyr provides a 

large number of window functions  such as:  

 lead - to copy with values shifted by 1 

 lag  - to copy with values lagged by 1 

 dense_rank  - to rank with no gaps 

 min_rank – ranks; ties get min rank 

 percent_rank - ranks rescaled to [0, 1] 

 row_number - ranks; ties got to first value 

 ntile - bin vector into n buckets 

 cume_dist - cumulative distribution 

 cumall - cumulative all. 

An example of such analytic function was in-

cluded in a previous query. Because the logic 

of these functions is quite similar to their SQL 

counterparts, no additional example will be 

provided. 

 

5 Conclusions 

For Business Intelligence SQL and R are core 

technologies. Addressing all the range of pro-

fessionals between BI application developers 

and qualified users, both languages support BI 

decentralization, modularization, flexibility 

and, ultimately, the BI democratization. 

SQL is the real Esperanto of the data pro-

cessing languages. Since now, all the chal-

lengers (OQL, NoSQL and some Hadoop sys-

tems) ended in adopting a more SQL look or 

face extinction. 

Various information sources show that both 

SQL and R have leading positions in profes-

sional BI professionals and job market de-

mand. 

Covering different segments of BI activities, 

both languages share data processing and re-

porting segment. This paper argues that, with 

new packages like dplyr and tidyr, R can com-

pete with SQL in terms of processing power 

and syntax elegance. 
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