
48 Informatica Economică vol. 20, no. 1/2016

DOI: 10.12948/issn14531305/20.1.2016.05

Data Processing Languages for Business Intelligence. SQL vs. R

Marin FOTACHE

Al.I. Cuza University of Iasi, Romania

fotache@uaic.ro

As data centric approach, Business Intelligence (BI) deals with the storage, integration, pro-

cessing, exploration and analysis of information gathered from multiple sources in various for-

mats and volumes. BI systems are generally synonymous to costly, complex platforms that re-

quire vast organizational resources. But there is also an-other face of BI, that of a pool of data

sources, applications, services developed at different times using different technologies. This is

“democratic” BI or, in some cases, “fragmented”, “patched” (or “chaotic”) BI. Fragmenta-

tion creates not only integration problems, but also supports BI agility as new modules can be

quickly developed. Among various languages and tools that cover large extents of BI activities,

SQL and R are instrumental for both BI platform developers and BI users. SQL and R address

both monolithic and democratic BI. This paper compares essential data processing features of

two languages, identifying similarities and differences among them and also their strengths and

limits.

Keywords: Business Intelligence, Data Processing, SQL, R

Introduction

Often seen as a reincarnation of Decision Sup-

port Systems [1] and sometimes referred as

Business Intelligence and Analytics [2], Busi-

ness intelligence (BI) is a broad category of

applications, technologies, and processes for

gathering, storing, accessing, and analyzing

data to help business users make better deci-

sions [3]. Figure 1 displays a classical BI ar-

chitecture [4].

Fig. 1. Typical BI architecture [4]

Common business intelligence related tasks

are:

 data storage

 data extraction-transformation-load

from various sources in a different for-

mats, more or less structured, to the stor-

age layer

 data processing

 information integration

 visualization

 exploratory analysis

 data mining/data science etc.

Slightly outdated, the schema in figure 1 is

still valid in suggesting the vast array of tech-

nologies, processes and tools gathered (or re-

branded) within BI umbrella. Chen et al [Chen

2012] identified three generations of BI and

1

Informatica Economică vol. 20, no. 1/2016 49

DOI: 10.12948/issn14531305/20.1.2016.05

Analytics (BI&A) systems whore core tech-

nologies have been:

 data management and warehousing [5]

[6]

 text and web analytics for unstructured

web contents [7]

 mobile technologies [8].

Implementation of BI platforms requires vast

quantity of organizational resources. Some of

the most important current BI solutions are

shown in figure 2 [9]. As with Enterprise Re-

source Planning applications, BI systems im-

plementation requires extensive organiza-

tional changes and business expertise and

sometimes it requires full vendor participa-

tion.

Fig. 2. BI platforms [9]

Apart from impressive costs, BI platforms

have the drawback of keeping captive the cus-

tomer. Every organizational change and also

new or updated external data source and ser-

vice must be negotiated with BI platform pro-

vider, which usually attracts new costs and

also delays.

In this paper we scrutinize two languages,

SQL and R, involved not only in BI applica-

tion development but especially in the “de-

mocratization” of BI as they allow various

types of data professionals and users to access

and process vast quantity of data in an inter-

active, ad-hoc, way. Using two reliable

sources, their role and popularity in current BI

market will be outlined, taking into account

job demand and a survey concerning BI tools

and languages usage. Next the range of BI ac-

tivities that can be supported by each SQL and

R will be presented. The main section will

compare SQL and R features syntax for the

most common data processing/reporting prob-

lems, particularly important for BI users.

2 Languages and Tools for Business Intel-

ligence

There is a vast array of tools, languages and

technologies covering large extents of BI

tasks. Some of them target regular users who

are unable to write code and scripts in any pro-

gramming language. Others are BI application

developer’s toolbox. But there some technol-

ogies that serve both users and developers in

data processing, integration, visualization and

analysis. Comparison of BI tools and lan-

guages is also problematic because they can

be available as programming languages, de-

velopment environments, ecosystems or inte-

grated platforms.

In evaluating the popularity of Business Intel-

ligence languages and tools, we gather infor-

mation from two reliable sources. Search en-

gine www.indeed.com provides data about

50 Informatica Economică vol. 20, no. 1/2016

DOI: 10.12948/issn14531305/20.1.2016.05

job trends. Figure 3 compares job demand in

2012-2016 interval for some of the most im-

portant data processing and analysis lan-

guages [10].

Fig. 3. Demand for main BI languages/tools [10]

SQL and R share most of the job postings. In

2012 SQL was by far the most demanded data

language. Its share decreased slightly and

seems to have stabilized since the end of 2014.

R grew spectacularly in 2012-2014 interval,

overpass SQL in 2014 for a brief period, and

then fell back. Since 2014 it has fluctuated

around 2% share. After SQL and R, the next

popular is Python followed by SAS, SPSS,

Stata and Julia. Currently there is still a visible

lag between SQL-R group and the rest of the

languages/tools, although Python seems to in-

crease steadily and might catch up with the

leading group. SAS is not only a language, but

also an integrated platform covering large sec-

tions of BI applications, whereas low figures

for SPSS and Stata suggest they are used

mainly in academia/research. Julia is a new-

comer and it is unsure if it will reach the criti-

cal mass adoption for being an important

player.

Fig. 4. Top Analytics Tools and Trends in 2015 [11]

Informatica Economică vol. 20, no. 1/2016 51

DOI: 10.12948/issn14531305/20.1.2016.05

The second source is annual KDnuggets Soft-

ware Poll [11]. In the most recent edition, the

16th (2015), nearly 3000 voters choose from

93 different analytics and data mining tools.

Results are displayed in figure 4. Survey re-

vealed that R is the most popular overall tool

among data miners, and Python is gathering

traction steadily. RapidMiner continues to be

most popular suite for data mining/data sci-

ence. Hadoop/Big Data increased to 29%, up

from 17% in 2014, and the fastest growth is

for Spark whose usage share grew over 3-fold.

KDnuggets Software Poll and indeed.com job

trends confirm the centrality of both SQL and

R as tools for BI users and developers.

3 SQL vs. R. The extent of analysis

As a data centric approach, BI heavily relies

on various advanced data collection, extrac-

tion, and analysis technologies, from Data

Warehouse, extract – transform –load (ETL)

tools, analytical processing (OLAP), ad-

vanced reporting to advanced knowledge dis-

covery tools and techniques [2][12].

SQL and R languages are pivotal in BI data

processing, as will be detailed in section 4.

SQL and R are not only contenders, but also

partners, especially when accessing and pro-

cessing huge volumes of data stored in data-

bases, data warehouses and Hadoop ecosys-

tems. Feature comparison of table 1 is not in-

tended to rank the first of two languages, but

to outline the main areas SQL and R can be

analyzed and compared, and also some areas

where they do not really match, so the com-

parison is fruitless.

Table 1. Main similarities and differences between SQL and R

Content

SQL R

Origin High Level Language for IBM

System R [13] [14]

Derived from S language

(J.Chambers, 1976). Creators: R.

Ihaka and R.Gentleman (1991)

[15]

Main target High level language for database

creation, update and query

Open-source language for data

processing, visualization, analysis

Standardization ANSI/ISO [16] [17] https://www.r-project.org

Implementation Not a product per se, but layer

available on all relational DBMSs

Product per se downloadable from

https://www.r-project.org

Dialects Main DBMSs providers imple-

ment the standard with slight dif-

ferences [17]

More compact; just a few (com-

mercial) dialects, such as Mi-

crosoft (Revolution) R

Modularization Compact (no independent librar-

ies). Implementation is available

only along with new DBMSs ver-

sions

Extensible through thousands of

packages, available on cran,

github etc. [18]

Data Storage Originally targeting only relational

databases. Currently expanded to

various Hadoop and NoSQL sys-

tems. [19] [20] [21]

Not available (except .RData for-

mat that is not suitable for large

volume of data)

Massiveness of

data to be pro-

cessed

Theoretically unlimited. In prac-

tice it depends on the data base,

data warehouse of big data archi-

tecture

Limited to computer’s RAM.

Available packages for managing

larger volumes data of data, such

as data.table [22], parallel [23],

bigmemory [24], ff [25]

52 Informatica Economică vol. 20, no. 1/2016

DOI: 10.12948/issn14531305/20.1.2016.05

Data Sources Not related to the language, but

dependent of DBMs. Usually lim-

ited to databases created with a

couple of SQL/relational DBMSs

Almost every data source (.csv,

.xlsx, xml/html tables, relational

databases, NoSQL data stores, Ha-

doop etc.)

Table 1 (continued). Main similarities and differences between SQL and R

Content

SQL R

Procedularity Implemented through section Per-

sistent Stored Modules of the SQL

standards; big differences among

procedural extensions (PL/SQL, T-

SQL, SQL PL, etc.) [17]

Native

Data Processing Best known language for pro-

cessing data

Various features included in base

R and especially a large number of

packages.

SQL queries can be run with pack-

age sqldf [26].

Two workhorses – packages dplyr

[27] and tidyr [28]

OLAP Functions Implemented since SQL:2009

standard [16] [17] [29]

Implemented in dplyr package

Pivoting “Manual” [16], with recursive que-

ries, or with pivot or model clauses

[29] [30]

Package tidyr

Data Visualiza-

tion

Simple (text-only) histograms [29] Excellent features and packages

[31]: ggplot2 [32], lattice [33],

ggvis [34], googleVis [35]

Data Analysis Initially only basic descriptive sta-

tistics [16]

Limited to some ANOVA, t-tests

and basic non-parametric tests in

some dialects (e.g. Oracle) [6]

Unlimited

Dynamics Mature.

Slow pace of implementing new

features because of multitude of in-

stitutions and companies involved

in the standardization process

(Still) young.

Accelerate evolution, dozens of

new packages every week.

Worries of becoming out of control

Learning curve Easy to learn Steep

Due to its processing power and accessibility,

SQL has become the lingua franca of data pro-

cessing. Its leading position seemed many

times in jeopardy by the launch of languages

like OQL and, more recently, NoSQL data

stores and Hadoop systems [19]. But currently

there is visible trend for adapting SQL even

for NoSQL and Hadoop ecosystems [6] [19]

[20]. That will reinforce SQL ubiquity since it

can process data stored on every data plat-

form.

The main drawback of SQL is a direct conse-

quence of its maturity. SQL standard is hard

to update. The process takes years and various

dialects can implement, at least in the initial

phase, quite differently the same features.

By contrast, one the most import strengths of

R is its dynamics and the enthusiasm of R

community. Until dpyr and tidyr packages, R

Informatica Economică vol. 20, no. 1/2016 53

DOI: 10.12948/issn14531305/20.1.2016.05

had been no match to the expressive power of

SQL in terms of data processing options.

Things are going to change, as seen in the next

section. R is a vast endeavor. Data processed

in R or within R but with SQL queries are

ready to be explored, visualized, analyzed,

and mined for patterns. In this respect, SQL

cannot compete with R. Also R provides many

other tools such as reporting (R Markdown),

or even application development (Shiny) [36].

4 Main Data Processing Features in SQL

and R

The main area for a proper comparison be-

tween SQL and R is data processing. This sec-

tion will compare SQL and R features for

some of the most frequent types of queries re-

quired in BI. All the queries below were run

on the database schema proposed by TPC-H

benchmark [37], whose schema is depicted in

figure 5. Tables were created in PostgreSQL

and populated with random data using freely

available dbgen tool [38].

Fig. 5. TPC-H benchmark database schema [37]

As in the current paper we did not test the per-

formances of two systems, data were gener-

ated just for scale factor of 0.1 with the fol-

lowing number of records:

 5 in table REGION

 25 in table NATION

 15000 in table CUSTOMER

 1000 in table SUPPLIER

 20000 in table PART

 80000 in table PARTSUPP

 150000 in table ORDERS

 600572 in table LINEITEM

From PostgreSQL tables were imported as

data frames using package RPostgreSQL [39].

Because for almost every problem both SQL

and R provide a large number of solutions, we

54 Informatica Economică vol. 20, no. 1/2016

DOI: 10.12948/issn14531305/20.1.2016.05

selected the shortest or the most readable. As

SQL is a mature technology, we will provide

some details just for the R queries.

Base R options are no match for SQL in terms

or querying power. For displaying basic infor-

mation about the quantity and prices of items

sold within orders of January 1996 (second

simple query in section 4.1), base R solution

(with a little help from lubridate package) is:
library(lubridate) # package needed for

functions "year" and "month"

t1 <- merge(orders, lineitem, by.x =

"o_orderkey", by.y = "l_orderkey")

t2 <- subset(t1, year(o_orderdate) ==

1996 & month(o_orderdate) == 1,

 select = c(o_orderkey, l_lin-

enumber, l_partkey, l_quantity,

 l_extendedprice, l_discount))

t2 <- transform(t2, line_amount =

l_quantity * (l_extendedprice - l_dis-

count))

t3 <- t2[order(t2$o_orderkey, t2$l_lin-

enumber),]

The query is divided into a number of steps.

The result of each step is a table that is pro-

cessed by subsequent steps. The operating

logic might be obvious, but the solution is

cumbersome by any standard.

A series of packages, mainly dplyr and tidyr

injected elegance and power into data pro-

cessing in R. It is the main reason that on the

subsequent examples, SQL syntax will be

matched to syntax of (mainly) these two pack-

ages).

4.1 Basic Queries (Selection, Projection,

Join)

First simple query requires a few basic opera-

tion: selection, projection, computed column,

and sort - Display some basic information

about the quantity and prices of items sold

within orders 1284 and 1731. Below is the

syntax for both SQL and R:

SQL: R (dplyr):
select l_or-

derkey, l_lin-

enumber,

 l_partkey,

l_quantity,

 l_extend-

edprice, l_dis-

count,

 l_quantity *

(l_extend-

edprice –

lineitem %>%

filter(l_orderkey

%in% c(1284, 1731))

%>%

select (l_orderkey,

l_linenumber,

 l_partkey, l_quan-

tity, l_extend-

edprice,

 l_discount) %>%

mutate(line_amount =

l_quantity *

 l_discount)

as line_amount

from lineitem

where l_or-

derkey in

(1284, 1731)

order by l_or-

derkey, l_lin-

enumber

 (l_extendedprice -

l_discount)) %>%

arrange(l_orderkey,

l_linenumber)

The “pipe” operator (%>%) passes current op-

eration result to the next operation within the

same query so there is no need to save inter-

mediary results in separate data frames. Main

predicate. Dplyr provides functions for each

basic verb of data manipulation [27], from

which in the query just

 filter() for selection of records

 arrange() for sorting records

 select() for (attributes) projection

 mutate() for adding computed columns.

The second simple query joins tables (data

frames) orders and lineitem - Display basic in-

formation about the quantity and prices of

items sold within orders of January 1996:

SQL: R (lubridate and

dplyr):
select o_or-

derkey, o_order-

date,

 l_linenumber,

l_partkey,

l_quantity

 l_extend-

edprice, l_dis-

count,

 l_quantity *

(l_extendedprice

–

 l_discount)

as line_amount

from orders in-

ner join linei-

tem

 on o_orderkey

= l_orderkey

where extract

(year from o_or-

derdate)

 = 1996 and ex-

tract (month

from

 o_orderdate) =

1

order by o_or-

derkey, l_lin-

enumber

library(lubridate)

orders %>%

inner_join(lineitem,

by = c('o_orderkey'=

 'l_orderkey'))

%>%

filter(year(o_order-

date) == 1996 &

 month(o_orderdate)

== 1) %>%

select (o_orderkey,

l_linenumber,

 l_partkey, l_quan-

tity,

 l_extendedprice,

l_discount) %>%

mutate(line_amount =

l_quantity *

 (l_extendedprice -

l_discount)) %>%

arrange(o_orderkey,

l_linenumber)

Informatica Economică vol. 20, no. 1/2016 55

DOI: 10.12948/issn14531305/20.1.2016.05

Syntax for the inner join is close enough to

that of SQL. Similarly dplyr implements outer

joins and semi joins, but also the anti-join,

which is not available in too many SQL dia-

lects.

4.2 Aggregate Queries

Similar to SQL, dplyr offers group_by() func-

tion. It breaks down a dataset into specified

groups of rows so that when applying a verb

to the resulting object, the verb will be per-

formed for each group. Grouping affects the

verbs as follows:

 grouping variables are always retained

in the result

 grouped arrange() orders first by the

grouping variables (which is not the

case in SQL)

mutate() and filter() are most useful in

conjunction with window functions

 slice() extracts rows within each

group.

 summarise() allows defining aggre-

gate variables

First problem requiring basic aggregation

with group filter is Display monthly sales for

years 1996-2000 that are greater than one bil-

lion:

SQL: R (lubridate and

dplyr):
select extract

(year from o_or-

derdate)

 as year, ex-

tract (month

from

 o_orderdate)

as month,

 sum(l_quan-

tity * (l_ex-

tendedprice –

 l_discount))

as monthly_sales

from orders in-

ner join linei-

tem

 on o_orderkey

= l_orderkey

where extract

(year from o_or-

derdate)

 between 1996

and 2000

group by year,

month

orders %>%

inner_join(lineitem,

by = c('o_orderkey'

 = 'l_orderkey'))

%>%

filter(year(o_order-

date) >= 1996 &

 year(o_orderdate)

<= 2000) %>%

group_by(year =

year(o_orderdate),

 cmonth

=cmonth(o_order-

date)) %>%

summa-

rise(monthly_sales =

sum(l_quantity

 *(l_extendedprice

- l_discount))) %>%

filter

(monthly_sales >

1000000000) %>%

arrange(year, month)

having sum(

l_quantity *

 (l_extend-

edprice - l_dis-

count)) >

 1000000000

order by year,

month

Here there is a slight advantage of dplyr due

to the pipe operation, so that the expression for

group filtering does not have to define repeat-

edly the expression for aggregation.

Second aggregate queries answers a problem

with subtotals - Display monthly sales for

years 1996-2000 with subtotals on each year:

SQL: R (lubridate and

dplyr):
select extract

(year from o_or-

derdate) as

 year, extract

(month from

o_orderdate)

 as month,

sum(l_quantity

*

 (l_extend-

edprice - l_dis-

count)) as

 monthly_sales

from orders in-

ner join linei-

tem on

 o_orderkey =

l_orderkey

where extract

(year from o_or-

derdate)

 between 1996

and 2000

group by year,

month

 union

select extract

(year from o_or-

derdate) as

 year, null as

month, sum(

l_quantity *

 (l_extend-

edprice - l_dis-

count))

from orders in-

ner join linei-

tem

 on o_orderkey

= l_orderkey

where extract

(year from o_or-

derdate)

 between 1996

and 2000

bind_rows (orders

%>%

 inner_join(linei-

tem, by =

 c('o_orderkey' =

'l_orderkey')) %>%

 filter(year(o_or-

derdate) >= 1996 &

 year(o_orderdate)

<= 2000) %>%

 group_by(year =

year(o_orderdate),

 month =

month(o_orderdate))

%>%

 summa-

rise(monthly_sales =

 sum(l_quantity *

(l_extendedprice –

 l_discount))

),

orders %>%

 inner_join(linei-

tem, by c(

 'o_orderkey' =

'l_orderkey')) %>%

 filter(year(o_or-

derdate) >= 1996 &

 year(o_order-

date) <= 2000) %>%

 group_by(year =

year(o_orderdate),

 month = NA)

%>%

 summa-

rise(monthly_sales =

sum(

 l_quantity *

(l_extendedprice –

 l_discount)))

) %>%

arrange(year, month)

56 Informatica Economică vol. 20, no. 1/2016

DOI: 10.12948/issn14531305/20.1.2016.05

group by year

order by year,

month

Pipe operator was no useful in this case, so

SQL query is shorter. Function bind_rows() in

dplyr is the equivalent of UNION SQL opera-

tor.

4.3 Subqueries

There are numerous problems to be answered

using what is SQL are called as subqueries. In

SQL queries can be part of WHERE, HAV-

ING, FROM, SELECT and WITH clauses. In

dplyr there are no such differences.

First problem answered in SQL with a

subquery placed into WHERE clause is Re-

trieve orders issues in the same day as the or-

der 3271:

SQL: R (lubridate and

dplyr):
select o_orderkey,

o_custkey,

 o_orderstatus,

o_orderdate,

 o_orderpriority

from orders

where o_orderdate

in

 (select

o_orderdate

 from or-

ders

 where

o_orderkey = 3271)

orders %>%

filter (o_order-

date %in% (

 orders %>% fil-

ter (o_orderkey ==

 3271))

[['o_orderdate']])

%>%

select (o_or-

derkey:o_order-

priority)

Here required attributes were consecutive.

That shortened the projection clause (select)

in the dplyr query. Also notice %in% opera-

tor, which is the counterpart of SQL IN.

The second problem for illustrating

subqueries implies group filtering is Extract

day (or days, if there are more than one) with

the maximum number of orders. Three SQL

solutions and two dplyr “counterparts” will be

provided as follows:

SQL – solution

based on a subquery

in

HAVING clause:

R (lubridate and

dplyr):

select o_order-

date, count(*) as

n_of_orders

from orders

orders %>%

group_by(o_order-

date) %>%

group by o_order-

date

having count(*) =

 (select

count(*) as

n_of_orders

 from orders

 group by

o_orderdate

 order by

n_of_orders desc

 limit 1)

 summa-

rize(n_of_orders =

n()) %>%

 filter

(n_of_orders >=

max(n_of_orders))

SQL – solution

based on a subquery

in

FROM clause

R (lubridate and

dplyr):

select

dates_n_of_or-

ders.*

from

 (select o_order-

date, count(*) as

 n_of_orders

 from orders

 group by o_or-

derdate)

dates_n_of_orders

inner join

 (select count(*)

as n_of_orders

 from orders

 group by o_or-

derdate

 order by

n_of_orders desc

 limit 1)

max_n_of_orders

on dates_n_of_or-

ders.n_of_orders =

 max_n_of_or-

ders.n_of_orders

orders %>%

group_by(o_order-

date) %>%

summarize(n_of_or-

ders = n()) %>%

 inner_join(

 orders %>%

 group_by(o_or-

derdate) %>%

 summa-

rize(n_of_orders =

n()) %>%

 arrange

(desc(n_of_orders)

)

%>%

 top_n(1))

SQL – solution

based on table ex-

presssion

R (lubridate and

dplyr) – repeated:

with

dates_n_of_orders

as

 (select o_or-

derdate,

 count(*) as

n_of_orders

 from orders

 group by

o_orderdate),

select *

from

dates_n_of_orders

where n_of_orders

=

 (select

max(n_of_orders)

 from

dates_n_of_orders)

orders %>%

group_by(o_order-

date) %>%

 summa-

rize(n_of_orders =

n()) %>%

 filter

(n_of_orders >=

max(n_of_orders))

Informatica Economică vol. 20, no. 1/2016 57

DOI: 10.12948/issn14531305/20.1.2016.05

Now dplyr syntax looks more powerful and

elegant. Second dplyr solution contains an

OLAP (window) function – top_n().

The third problem involves group comparison

- Extract dates with at least the number of or-

ders issued on 1993-04-21:

SQL – solution

based on table ex-

presssion

R (dplyr):

with

dates_n_of_orders

as

 (select o_order-

date, count(*) as

 n_of_or-

ders

 from orders

 group by o_or-

derdate)

select *

from

dates_n_of_orders

where n_of_orders

>=

 (select

n_of_orders

 from

dates_n_of_orders

 where o_or-

derdate =

DATE'1993-04-21')

orders %>%

group_by(o_order-

date) %>%

summarize(n_of_or-

ders1 = n()) %>%

mutate(

 n_of_orders2 =

 ifelse(o_or-

derdate == '1993-

04-21',

 n_of_or-

ders1, 0),

 n_of_orders3 =

sum(n_of_orders2)

) %>%

filter (n_of_or-

ders1 >= n_of_or-

ders3)

Here a dplyr trick was needed in order the

groups to be compared. After computing the

number of orders for each date (n_of_or-

ders1), we create a variable (n_of_orders2),

which is zero for all of the dates except the

date of reference (1993-04-21). Only for this

date n_of_orders2 has the same value as

n_of_orders1. The third new variable

(n_of_orders3) stores the number of orders for

the reference date and it was used for filtering

the groups.

4.4 Pivoting

Pivot tables is one the key features in BI re-

porting and analysis. Many relational/SQL

DMBSs have implemented PIVOT clause for

answering this type of problems [29] [30]. Un-

fortunately, currently PostgreSQL does not

support dynamic pivoting. Function CROSS-

TAB requires explicit definition of all column

of the pivoting operation. This is acceptable

from small number of columns and awkward

for the rest of the cases. Consequently, for the

problem Display product sales for sales years

between 1991 and 2000 only dplyr solution

will be presented:
orders %>%

inner_join(lineitem, by = c('o_orderkey'

= 'l_orderkey')) %>%

filter(year(o_orderdate) >= 1991 &

year(o_orderdate) <= 2000) %>%

inner_join(part, by = c('l_partkey' =

'p_partkey')) %>%

group_by(products = p_name, year =

year(o_orderdate)) %>%

 summarise(sales = sum(l_quantity *

(l_extendedprice - l_discount))) %>%

spread (year, sales, fill=0)

4.5 Recursivity

Introduced by ANSI SQL:1999 standard and

implemented almost all major relational

DBMSs, recursive queries (WITH RECUR-

SIVE) are extremely powerful tools for data-

base processing and remains largely un-

derused by database professional. Recursivity

is needed, for example, when the number of

levels in tree (hierarchical structure) varies

from one organization to another and there is

a need to display, for each employee, the en-

tire managerial path (from she/he until the top

manager).

TPC-H schema does not contain a proper hi-

erarchical structure. Nevertheless, the are

types of problems that require recursivity. For

example, Display, for each product, a string

with the list of first 5 customers (in alphabetic

order) that have purchased it:

SQL – solution based

on recursive query

built with a table ex-

presssion

R (dplyr and tidyr):

with recursive

prod__cus-

tomer_list

 (p_name, p_part-

key, cust_no,

cust_list)

 as (

select pc.p_name,

pc.p_partkey,

 pc.cust_no,

 cast

(pc.c_name

 as var-

char(100000))

from pc

part %>%

 inner_join(lin-

eitem, by =

 c('p_partkey'

= 'l_partkey'))

%>%

 inner_join(or-

ders, by = c(

 'l_orderkey'

= 'o_orderkey'))

%>%

 inner_join(cus-

tomer, by = c(

 'o_custkey' =

'c_custkey')) %>%

58 Informatica Economică vol. 20, no. 1/2016

DOI: 10.12948/issn14531305/20.1.2016.05

where cust_no = 1

 union all

select pc.p_name,

pc.p_partkey,

 prod__cus-

tomer_list.cust_no

+ 1,

 cast

(prod__cus-

tomer_list.cust_li

st ||

 ', ' ||

pc.c_name AS var-

char(100000))

from pc inner

join prod__cus-

tomer_list

 on pc.cust_no =

 prod__cus-

tomer_list.cust_no

+ 1),

pc as (select *

 from (se-

lect p_name,

p_partkey,

c_name, row_num-

ber() over

(partition by

p_name

 or-

der by c_name) as

cust_no

 from

part inner join

lineitem on

p_partkey =

l_partkey

 inner join

orders on

l_orderkey =

o_orderkey

 inner

join customer on

o_custkey = c_cus-

tkey) x

where cust_no <=

5)

select p_name,

cust_list

from prod__cus-

tomer_list

order by p_name

select (p_name,

c_name) %>%

group_by(p_name)

%>%

slice(1:5) %>%

group_by(p_name)

%>%

summa-

rise(five_cust_li

st =

paste(c_name,

collapse=", "))

From this example one might conclude that

dplyr syntax is considerable more elegant in

solving problems requiring recursive queries.

4.6 OLAP functions

In SQL OLAP functions, labeled also as ana-

lytic or window functions were added in

SQL:1999 standard. In R dplyr provides a

large number of window functions such as:

 lead - to copy with values shifted by 1

 lag - to copy with values lagged by 1

 dense_rank - to rank with no gaps

 min_rank – ranks; ties get min rank

 percent_rank - ranks rescaled to [0, 1]

 row_number - ranks; ties got to first value

 ntile - bin vector into n buckets

 cume_dist - cumulative distribution

 cumall - cumulative all.

An example of such analytic function was in-

cluded in a previous query. Because the logic

of these functions is quite similar to their SQL

counterparts, no additional example will be

provided.

5 Conclusions

For Business Intelligence SQL and R are core

technologies. Addressing all the range of pro-

fessionals between BI application developers

and qualified users, both languages support BI

decentralization, modularization, flexibility

and, ultimately, the BI democratization.

SQL is the real Esperanto of the data pro-

cessing languages. Since now, all the chal-

lengers (OQL, NoSQL and some Hadoop sys-

tems) ended in adopting a more SQL look or

face extinction.

Various information sources show that both

SQL and R have leading positions in profes-

sional BI professionals and job market de-

mand.

Covering different segments of BI activities,

both languages share data processing and re-

porting segment. This paper argues that, with

new packages like dplyr and tidyr, R can com-

pete with SQL in terms of processing power

and syntax elegance.

References

[1] B. Hosack, D. Hall, D. Paradice, J.F.

Courtney - A Look Toward the Future:

Decision Support Systems Research is

Alive and Well, Journal of the Association

Informatica Economică vol. 20, no. 1/2016 59

DOI: 10.12948/issn14531305/20.1.2016.05

for Information Systems, vol. 13, Special

Issue, pp. 315-340, May 2012

[2] H. Chen, R.H.L. Chiang, and V.C. Storey,

“Business Intelligence and Analytics:

From Big Data to Big Impact,” MIS Quar-

terly, vol. 36, no. 4, pp. 1165-1188, De-

cember 2012

[3] H.J. Watson (2009). Tutorial: Business In-

telligence – Past, Present, and Future,"

Communications of the Association for In-

formation Systems [Online]. Vol. 25, Ar-

ticle 39. Available: http://ai-

sel.aisnet.org/cais/vol25/iss1/39

[4] S. Chaudhuri, U. Dayal, and V. Narasayya,

“An overview of business intelligence

technology,“ Communications of the

ACM, vol. 54, no. 8, pp. 88-98 (August

2011)

[5] C. Strimbei. (2012). OLAP Services on

Cloud Architecture. Journal of Software &

Systems Development [Online]. 2012, Ar-

ticle ID 840273. Available:

http://www.ibimapublishing.com/jour-

nals/JSSD/2012/840273/840273.pdf

[6] M. Fotache and C. Strîmbei, “SQL and

Data Analysis. Some Implications for

Data Analysts and Higher Education,” in

Proc. of the Globalization and Higher Ed-

ucation in Economics and Business Ad-

ministration (GEBA 2013), Al.I.Cuza

University, Iasi, 2013, published in Proce-

dia Economics and Finance, 20 (2015),

pp. 243 – 251.

[7] G. Zheng and S. Peltsverger. Web Analyt-

ics Overview in Encyclopedia of Infor-

mation Science and Technology, Third

Edition, Chapter: 756, IGI Global, 2014.

Available: https://www.re-

searchgate.net/publica-

tion/272815693_Web_Analytics_Over-

view

 [8] O. Dospinescu and M. Perca. (2013). Web

Services in Mobile Applications. Infor-

matica Economică Journal [Online].

17(2), pp.17-26. Available: http://re-

vistaie.ase.ro/content/66/02%20-

%20Dospinescu,%20Perca.pdf

 [9] B. Evelson (2015, September 25). The

Forrester Wave: Agile Business Intelli-

gence Platforms, Q3 2015. Available:

http://go.sap.com/docs/download/2015/09

/541ccd61-437c-0010-82c7-

eda71af511fa.pdf

[10] *** (2016, April 30). Python, SQL, R,

SPSS, SAS, Stata, Julia Job Trends. Avai-

lable: http://www.indeed.com/job-

trends/q-Python-q-SQL-q-R-q-SPSS-q-

SAS-q-Stata-q-Julia.html

[11] *** (2015, December 20). Analytics,

Data Mining, Data Science software/tools

used in the past 12 months. Available:

http://www.kdnuggets.com/polls/2015/an

alytics-data-mining-data-science-soft-

ware-used.html

[12] E.P. Lim, H. Chen, G. Chen, "Business

Intelligence and Analytics: Research Di-

rections," ACM Transactions on Manage-

ment Information Systems, Vol. 3, No. 4,

Article 17, January 2013.

[13] D. Chamberlin, R.F. Boyce (1974). SE-

QUEL. A Structured English Query Lan-

guage. Available: http://www.alma-

den.ibm.com/cs/people/chamberlin/se-

quel-1974.pdf

[14] D.D. Chamberlin, M.M. Astrahan, M.W.

Blasgen, J.N. Gray, W.F. King, B.G. Lind-

say, R. Lorie, J.W. Mehl, T.G. Price, F.

Putzolu, P. Griffiths Selinger, M. Schkol-

nick, D.R. Slutz, I.L. Traiger, B.W. Wade,

and R.A. Yost, “A history and evaluation

of System R,” Communications of the

ACM, vol. 24, no.10 , pp.632-646, October

1981

[15] R. Ihaka, R. Gentleman, "R: A Language

for Data Analysis and Graphics," Journal

of Computational and Graphical Statis-

tics, vol. 5, no. 3, pp.299–314, 1996

[16] J. Celko, SQL for Smarties. Advanced

SQL Programming (3rd edition). San Fran-

cisco: Morgan Kaufmann, 2005

[17] A. Kriegel and B.M. Trukhnov, SQL Bi-

ble (2nd edition). Indianapolis: Wiley, 2008

[18] A. Decan, T. Mens, M. Claes, and P.

Grosjean, “On the Development and Dis-

tribution of R Packages: An Empirical

Analysis of the R Ecosystem,” in Proceed-

ings of the 2015 European Conference on

Software Architecture Workshops

(ECSAW '15). Dubrovnik/Cavtat, Croatia,

2015, Article 41, 6 pages

60 Informatica Economică vol. 20, no. 1/2016

DOI: 10.12948/issn14531305/20.1.2016.05

[19] I. Hrubaru and M. Fotache, “On a Ha-

doop Cliché: Physical and Logical Models

Separation,” in Proc. of the 14th Interna-

tional Conference on Informatics in Econ-

omy (IE 2015), Bucharest, Romania, 2015,

pp. 357-363

[20] M. Armbrust, R. S. Xin, C. Lian, Y. Huai,

D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M.J. Franklin, A. Ghodsi, and M. Zaharia,

“Spark SQL: Relational Data Processing

in Spark,“ in Proc. of the 2015 ACM SIG-

MOD International Conference on Man-

agement of Data (SIGMOD '15). Mel-

bourne, Victoria, Australia, pp. 1383-

1394.

[21] Y.N. Silva, I. Almeida, and M. Queiroz,

“SQL: From Traditional Databases to Big

Data,” in Proc. of the 47th ACM Technical

Symposium on Computing Science Educa-

tion (SIGCSE '16). Memphis, Tennessee,

USA, pp. 413-418.

[22] M. Dowle, A. Srinivasan, T. Short, S. Li-

anoglou, R. Saporta and E. Antonyan

(2015). data.table: Extension of

Data.frame. R package version 1.9.6.

Available: https://CRAN.R-pro-

ject.org/package=data.table

[23] R Core Team (2016). R: A language and

environment for statistical computing. R

Foundation for Statistical Computing, Vi-

enna, Austria. Available: https://www.R-

project.org/

[24] M.J. Kane, J. Emerson, and S. Weston,

“Scalable Strategies for Computing with

Massive Data,” Journal of Statistical Soft-

ware, vol. 55 no. 14, pp.1-19, 2013.

[25] D. Adler, C. Gläser, O. Nenadic, J.

Oehlschlägel and W. Zucchini (2014).

ff:memory-efficient storage of large data

on disk and fast access functions. R pack-

age version 2.2-13. Available:

https://CRAN.R-project.org/package=ff

[26] G. Grothendieck (2014). sqldf: Perform

SQL Selects on R Data Frames. R package

version 0.4-10. Available:

https://CRAN.R-project.org/pack-

age=sqldf

[27] H. Wickham and R. Francois (2015).

dplyr: A Grammar of Data Manipulation.

R package version 0.4.3. Available:

https://CRAN.R-project.org/pack-

age=dplyr

[28] H. Wickham (2016). tidyr: Easily Tidy

Data with `spread()` and `gather()` Func-

tions. R package version 0.4.1. Available:

https://CRAN.R-project.org/pack-

age=tidyr

[29] A. Molinaro, SQL Cookbook. Sebastopol

(CA): O’Reilly, 2006

[30] S. Faroult, The Art of SQL. Sebastopol

(CA): O’Reilly, 2006

[31] W. Cho, Y. Lim, H. Lee, M. K. Varma,

M. Lee, and E. Choi, “Big Data Analysis

with Interactive Visualization using R

packages,“ in Proc. of the 2014 Interna-

tional Conference on Big Data Science

and Computing (BigDataScience '14),

Beijing, China, 2014, Article 18, 6 pages

[32] H. Wickham, ggplot2: Elegant Graphics

for Data Analysis. New York: Springer-

Verlag, 2009.

[33] Sarkar, Deepayan, Lattice: Multivariate

Data Visualization with R. New York:

Springer Verlag, 2009

[34] W. Chang and H. Wickham (2015).

ggvis: Interactive Grammar of Graphics. R

package version 0.4.2. Available:

https://CRAN.R-project.org/pack-

age=ggvis

[35] M. Gesmann and D. de Castillo, “Using

the Google Visualisation API with R,” The

R Journal, vol 3, no. 2, pp. 40-44, Decem-

ber 2011.

[36] A. Cirillo, RStudio for R Statistical Com-

puting Cookbook, Birmingham, UK:

Packt Publishing, 2016

[37] TPC BENCHMARK H (Decision Sup-

port) Standard Specification Revision

2.17.1, 2014, Available:

http://www.tpc.org/tpc_documents_cur-

rent_versions/pdf/tpc-h_v2.17.1.pdf

[38] T. Kejser (2014).Tpch-dbgen Overview,

Internet: https://bit-

bucket.org/tkejser/tpch-dbgen

[39] J. Conway, D. Eddelbuettel, T.

Nishiyama, S. K. Prayaga and N. Tiffin

(2013). RPostgreSQL: R interface to the

PostgreSQL database system. R package

version 0.4. Available: https://CRAN.R-

project.org/package=RPostgreSQL

https://cran.r-project.org/package=RPostgreSQL
https://cran.r-project.org/package=RPostgreSQL

Informatica Economică vol. 20, no. 1/2016 61

DOI: 10.12948/issn14531305/20.1.2016.05

Marin FOTACHE has graduated (long time ago) the Faculty of Economics at

Alexandru Ioan Cuza University of Iasi, Romania. He holds a PhD diploma in

Business Informationn Systems (Business Informatics) from 2000 and he had

gone through all didactic positions since 1990 when he joined the staff of

Alexandru Ioan Cuza University, from teaching assistant in 1990, to full pro-

fessor in 2002. Currently he is professor within the Department of Accounting,

Business Informatics and Statistics in the Faculty of Economics and Business

Administration at Alexandru Ioan Cuza University. He is the (co)author of books and journal

articles in the fields of SQL, database design, NoSQL, big data, Information Systems curric-

ula/market and knowledge management.

