
68 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.06

Standard Interfaces for Open Source Infrastructure as a Service Platforms

Andrei IONESCU

Bucharest University of Economic Studies

andrei.ionescu@antiferno.ro

To reduce vendor lock-in and fragmentation and to evolve into a transparent platform, IaaS

platforms must adhere to open standards. All the major open source IaaS Platforms offer

interfaces compatible with the de facto standards but mostly lacks support for the de jure, open

efforts of standardization. Available implementations of open standards are not part of their

main development efforts. More development resources as well as consolidation of open

standards are needed to achieve increased portability and interoperability.

Keywords: Cloud Computing, RESTful API, interfaces, Open Cloud Computing Interface,

Cloud Data Management Interface, Cloud Infrastructure Management Interface, Open

Virtualization Format

Introduction

Cloud Computing is an already

established technology, already having lost its

aura as one of the hottest and most rapid

developing topics in the industry. At the base

of its services stack, Infrastructure as a

Service (IaaS) model utilizes well understood

architectures, providing access, mostly, to the

same type of computing and storage resources

across all platform providers. New topics

entered the spotlight, such as integrated

management of IaaS platforms, selection of an

IaaS platform, vendor lock-in, interoperability

and identity in the Cloud and efforts were

made to address them by defining and using

standardized interfaces. Standard data models

and technologies compatible with both the

IaaS platforms and the existing Internet

Infrastructure had to be used. This led to

adoption of established standards and

technologies such as XML web services or

JSON over RESTful services.

2 Open Cloud Computing Interface

Open Cloud Computing Interface (OCCI) is a

collection of community generated open

specifications built through Open Grid Forum

[1]. Intended to be an open and interoperable

RESTful protocol and an API for all cloud-

related management activities, it started with

a focus on the Infrastructure-as-a-Service

layer but later extended to include all the other

layers in the Cloud stack.

The specifications are broken into several

modules in order to achieve a greater

flexibility and extensibility. Separate modules

describe

 the core models, defines an abstract

representation of real-world resources

intended to be manipulated through OCCI

renderings [1].

 the rendering of the code model using

HTTP/REST, describes the interactions

available for an OCCI implementation

with the resources built using the core

models [2].

 the extensions to the code models specific

to implementation of an Infrastructure as a

Service API [3], defining its parameters

for compute, storage and network.

The main reasons behind the development of

OCCI were identified in [4] and [5] as:

 Interoperability, demanding a

standardized API and protocol.

 Integration, allowing different service

providers to bring together and

interconnect platforms based on different

technologies.

 Portability, providing standardized data

formats understood by different providers,

allowing porting between them.

 Innovation, considering that established

standards can be a driver for innovation.

 Reusability, Figure 1, working on two

levels, first allowing reuse of code through

basic standardized APIs and, second,

promoting reuse of standards in different

1

Informatica Economică vol. 19, no. 4/2015 69

DOI: 10.12948/issn14531305/19.4.2015.06

technology fields.

Fig. 1. Open Cloud Computing Interface

3 Cloud Data Management Interface

Cloud Data Management Interface (CDMI)

describes a functional interface allowing

applications to create, retrieve, update and

delete data elements from the Cloud [6]. The

standard is developed by SNIA, a global

organization of storage solution providers.

Using a CDMI compatible interface, cloud

data consumers are able to discover the

storage features offered by IaaS platforms.

Along with data elements, the standard also

allows the management of containers,

accounts and retrieval of monitoring and

billing information, Figure 2.

CDMI is not designed to replace other object

access protocols but to complement them. The

standard uses RESTful protocol for building

its interfaces, to keep it as simple as possible

and to encourage its adoption. Adding

discovery functions, it allows future

extensions to the standard without breaking

client compatibility.

Fig. 2. Cloud Data Management Interface

70 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.06

CDMI serves as both a storage protocol while,

at the same time, offering a layer of client to

cloud management and cloud to cloud

standardized interactions. Clients can manage

credentials to domains defined in the cloud

forming a hierarchical structure that have

objects attached to them and building a path

for accessing and controlling these objects.

For cloud to cloud interaction it introduces

globally unique identifiers linked to objects

for the whole of their lifetime to persist their

identity if moved or replicated between

clouds. Serialization and deserialization into

and from JSON format can be used to transfer

objects and their metadata. Primitives are

defined which permit the clients to build

transfer request indicating source and

destination cloud for objects, along with the

credentials required for accessing them.

4 Cloud Infrastructure Management

Interface

Cloud Infrastructure Management Interface

(CIMI) is an open standard providing an API

for administering Cloud Computing

infrastructures. The standard is maintained by

Distributed Management Task Force (DMTF)

Cloud Management Working Group, a non

profit organization of industry members.

CIMI describes the model and the protocol

used by Infrastructure as a Service consumers

to interact with the cloud [7], addressing the

runtime maintenance and provisioning of

cloud services. It uses both JavaScript Object

Notation (JSON) and eXtensible Markup

Language (XML) to encode communication.

The model described by the standard can be

mapped to any existing cloud infrastructure

and it provides the means for the clients to

discover which feature are provided by the

cloud implementations.

There are not many CIMI implementations

but the Apache Deltacloud is one of them and

having drivers for almost all the major

Infrastructure as a Service platforms means

that any CIMI compatible client is able to

interact with most of the deployed clouds.

5 Open Virtualization Format

Another standard maintained by DMTF, Open

Virtualization Format (OVF) describe the

means to package and distribute software

appliances to be run in virtual machines in a

hypervisor independent way. Packages

distributed using OVF consist of one XML

descriptor containing the meta-data which

describes the appliance along with its disk

images, certificates and auxiliary files.

In the lifecycle of a virtual appliance, Figure

3, OVF covers the packaging, distribution and

deployment phases.

Fig. 3. Open Virtualization Format scope, adapter after [8]

6 Apache Deltacloud

Started in 2010 by Red Hat as a solution for

an increasingly heterogeneously cloud

interfaces environment, the project intended

to be a vendor neutral openly developed API.

To escape worries that it will only ever be a

single vendor effort, it was proposed as an

Apache Software Foundation project and

graduated to top level status in 2012.

Deltacloud provides a cloud abstraction,

standard REST API. It is not another library

but a web service covering functions for

management of compute and storage

resources. It exposes three different APIs,

wrapping their functionalities for 15

Infrastructure as a Service platforms and 7

storage engines [9]:

 Deltacloud classic API.

Informatica Economică vol. 19, no. 4/2015 71

DOI: 10.12948/issn14531305/19.4.2015.06

 DMTF Cloud Infrastructure Management

Interface (CIMI) API.

 Amazon Web Services Elastic Cloud

Computing (EC2) compatible API.

7 OpenStack

OpenStack is an open source operating system

for the cloud, a collection of projects used to

setup and run compute and storage services.

Initially developed by Rackspace Hosting and

NASA, OpenStack Consortium, the

maintainer of the platform with the same

name has more than 150 members, including

AT&T, Canonical, HP, IBM, Intel and

Rackspace.

There are several service families under

OpenStack, each with its own API for

interfacing with the cloud clients and with the

other services, Figure 4.

Fig. 4. Basic OpenStack architecture, adapted after [10]

Nova manages the complete lifecycle of

virtual machine instances in an OpenStack

deployment. It manages the compute and

network resources along with the required

authorizations for starting, scheduling and

stopping virtual machines. Its exposes all its

functions through its own web services API as

well as a layer compatible with Amazon Web

Services EC2. Its API server is the only

OpenStack component interacting directly

with the outside world.

Glance is the service responsible with storage

and retrieval of machine disk images. It can

use local file systems, OpenStack’s own

Object Store services or any storage exposing

its functions through an AWS S3 compatible

interface.

Swift provides object store services for

OpenStack, storing and retrieves data using a

RESTful API. It is one of the most mature

modules, providing the base services on

which Rackspace’s Cloud Files services is

built [11]. The Swift API is compatible with

AWS S3.

Keystone provides authentication and

authorization services for OpenStack,

managing domains, users and roles. It’s a

crucial system used by all the other modules

using its own REST API (Identiy API).

Horizon provides a web portal for interacting

and administering OpenStack. It uses APIs

provided by the other services to build the

cloud’s administrative interface.

Standards

Amazon Web Services EC2 and S3 APIs are

natively supported by Nova and Swift

modules. Third party Python components

provides support for OCCI and CDMI while

having an Apache Deltacloud driver offers

support for CIMI also. There is no native

support for OVF in OpenStack, in order to be

executed, virtual machines image files must

be manually extracted from OVF packages.

72 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.06

8 Apache CloudStack

Apache CloudStack is an open-source

Infrastructure as a Service platform used to

build public and private clouds. It is designed

to allow the deployment and administration of

big networks of virtual machines while

providing the highest availability and

scalability. One of its main advantages resides

in the fact that it is hypervisor agnostic. It is

compatible with Bare Metal, Vmware, KVM,

XenServer, Xen Cloud Platform (XCP),

vSphere, LXC and Hyper-V [12].

There are multiple ways of administering an

Apache CloudStack deployment: through a

Web interface, using a full set of command

line utilities or using an RESTful API. The

platform also provides Amazon Web Services

Elastic Cloud Computing (EC2) and Simple

Storage Server (S3) compatible API

implementations, one of the main reasons

behind its development. This allows an easy

porting of cloud applications to Apache

CloudStack as well as hybrid and federated

cloud deployments.

Architecture

Apache CloudStack features a hierarchical

architecture, which allows centralized

management of a big number of servers

through a unique interface, Figure 5.

Integration with public clouds implementing

Amazon Web Services interfaces is also

possible.

In its simplest form, the Apache CloudStack

architecture consists of a single central server,

optionally having a CloudDB instance

running on it. The server’s function is to

manage the virtual machine instances by

collaborating with the hypervisors installed on

the Cloud’s nodes. These nodes (physical

machines) may be located or not in the same

data-center and, for ease of administration, are

grouped in several levels: regions, zones, pods

and clusters.

Fig. 5. Apache CloudStack architecture

Regions are linked to the geographical

distribution of the physical servers within the

cloud. A Region is the highest organizational

unit available in an Apache CloudStack

deployment. Its administration is made by a

server cluster physically located within the

region. Virtual machines can be deployed by

users in different zones providing a certain

level of geographical redundancy. Cloud

reactivity is also increased by having the

administration server physically closed to the

cluster stations as well as deploying virtual

machine instances as close as possible to the

final end users.

Zones corresponds, usually, to data-centers

while still being possible to define multiple

zones within the same data-center where they

can have separate energy supplies and data

lanes, providing a certain level of physical

redundancy.

Zones are the highest organizational units

available to the users. Starting a virtual

machine instance involves selecting a target

zone explicitly or having a default one

Informatica Economică vol. 19, no. 4/2015 73

DOI: 10.12948/issn14531305/19.4.2015.06

selected by default. Images and configurations

are not shared between different zones.

A zone has one or more pods which consists

of one ore more server clusters and at least one

storage servers. Pods can be assimilated with

racks within the data-center and all its servers

are running in the same subnet. Pods are

hidden from the end users as the main reason

behind grouping servers into pods is the ease

of administration.

Clusters are built from servers sharing single

hardware specifications and using the same

hypervisor. They are using the same subnet, as

part of a pod, and use a shared storage space

available at pod level. Virtual machine

instances can be migrated between servers

within the same cluster at runtime.

Hosts are individual physical machines

sharing their CPUs, memory, storage and

network access for running virtual machine

instances. Virtual machine hypervisors are

installed on each host. Just as the clusters and

pods, they are hidden to the end user. There is

no possibility to select a specific host on

which a virtual machine instance is to be

started.

Storage space

Storage space is segregated between primary

and secondary storage. Primary storage is a

critical resource, used for executing virtual

machine instances along with the application

running on them, and its format is dependent

on the used hypervisor. Both local (part of

VM) and external storage (seen as external

volumes mounted by VMs) are part of the

primary storage. Secondary storage is used for

storing virtual machines’ images and

snapshots, ISO images, etc.

Resource management

An Apache CloudStack deployment uses a

management server to administer its

resources. Its base functions, as described in

[13] are:

 Web user interface available for both

cloud administrators and end users.

 CloudStack APIs, both native and

compatible with AWS EC2 and S3, using

both JSON and XML for data transfer.

 Dispatch virtual machine instances to

physical hosts.

 Manage public and private IP account

addresses.

 Manage storage space during virtual

machines start-up procedure.

 Manage snapshots, disk and ISO images.

 Single point of access for cloud

configuration.

74 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.06

Fig. 6. Apache CloudStack component interfacing, adapted after [14]

The CloudStack APIs, Figure 6 uses three

roles [15]:

 Root admin: has access to all the cloud

functions, including management of

physical and virtual resources.

 Domain admin: has access to all the

virtual resources available for the

administered domain.

 User: access only to its own virtual

machines, attached storage space and

network configurations.

An optional component of the resource

management stack is the usage server,

providing aggregate billing data. It also allows

the defining of limits and quotas at domain

level for the available number of virtual

CPUs, RAM, primary and secondary storage

space.

Standards

Apache CloudStack implements an estimated

60% of the de facto Amazon EC2 API

standard [16]. It has an OCCI implementation

through the rOCCI project but no new

developments were submitted from the end of

2013. There is no CIMI implementation or

translation layer for CloudStack. Open

Virtualization Format is also not supported as

CloudStack uses native disk images. There is

no Apache Deltacloud driver available for

Apache CloudStack.

10 Eucalyptus

Eucalyptus is a Linux based software

architecture for implementing private and

hybrid clouds using in place enterprise

architecture [17]. Its name is an acronym for

Elastic Utility Computing Architecture for

Linking Your Programs to Useful Systems.

The main objectives behind its development

were [18]:

 Designed from the start for a lean and not

intrusive install. It can coexist with other

software applications on the same

physical machine.

 It has a modular structure.

Communication between its modules is

language independent and based on open

standards. It encourages building of

communities centered on the platform.

Informatica Economică vol. 19, no. 4/2015 75

DOI: 10.12948/issn14531305/19.4.2015.06

 Amazon Web Services EC2 and S3 API

compatibility for external interfaces.

 Network virtualization which allows

isolation of user generated traffic while

also having multiple clusters on the same

local network.

Architecture

Eucalyptus was designed to allow interactions

using the same tools that were used for

Amazon EC2. Each component is

implemented as a stand-alone web service

exposing its functionalities using WSDL.

Each Eucalyptus installation deploys five

major components (Fig. 7):

 Cloud controller, administrator’s interface

with the cloud

 Cluster controller, schedule virtual

machines deployment on node and

manages the virtual networks.

 Node controller, manages starting,

querying shutting-down of virtual

machines on the physical machines.

 Storage controller, manages block storage

providing the same functions as Amazon

Elastic Block Storage.

 Walrus, manages persistent storage of

data, organized in buckets and objects,

compatible with Amazon S3.

Fig. 7. Eucalyptus Basic Architecture

Cloud controller is a collection of web

services exposing cloud administration

functions. It is the entry point for the whole

Eucalyptus system. It also implements a Web

interface for cloud’s services management.

These services are grouped in:

 Resource services, processing requests

related to virtual machines, accepting or

rejecting them based on the global system

status. Service Level Agreements are

monitored and enforced at this level.

 Data services, manage creation and

retrieval of user and system generated

data.

 Interface services allow user access to web

interfaces and cloud services. It provides

interfaces compatible with Amazon Web

Services.

Cluster controller manages cloud nodes

(physical machines). It schedules and

dispatches virtual machine instance creation

requests to the nodes, it manages the virtual

network overlay. Data about node status is

gathered and aggregated at this level. By

default, the cluster controller is executed on a

different server than the nodes and it requires

direct connection also with the cloud

controller.

The Node controller is executed on each

server designated to execute virtual machines.

It gathers information regarding the hardware

configuration of each machine on which is run

and report them to the cluster controller. The

node controllers do not start or stop the virtual

machines, this being the function of the cluster

controller.

76 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.06

Storage controllers manage network block

devices. Exported volumes (elastic block

storages) can be attached to virtual machines

but cannot be shared between multiple

instances. Data stored on these volumes is

persistent after virtual machines are stopped.

Snapshots of the volumes can be created and

stored using Walrus.

Walrus is a put/get service for storing

persistent objects. It is compatible with

Amazon S3 and provides SOAP and REST

interfaces to its functions. Eucalyptus uses

Walrus for virtual machine image storing.

Standards

Eucalyptus was designed from the start as

Amazon Web Service compatible, it

implements large parts (but not all) of EC2

API through Euca2ools, a set of command line

tools, and S3 API through Walrus component.

There is no OCCI API support though an

implementation was defined as a target of

“Flexible Services for the Support of

Research”, a 2010 project, without a palpable

outcome. There is no CDMI or OVF

support/implementation for Eucalyptus.

While not providing native support, Apache

DeltaCloud has a Eucalyptus driver giving it

indirect access to interfaces using CIMI API.

11 OpenNebula

OpenNebula was designed to offer a simple

and flexible solution offering a complete set

of functionalities for installing and managing

enterprise clouds and virtualized data centers

[19]. Started in 2006 as a research project, its

first version was published in 2008,

OpenNebula is now an open-source project.

OpenNebula offers four type of interfaces for

interacting with and administering the cloud:

 For the consumers of cloud resources,

there is an interactive web interface as

well as APIs compatible with Amazon

Web Services EC2, EBS and S3.

 Administrators have access to a full set of

command line utilities as well as to a

dedicated web interface.

 Service integrators can use low level APIs

written in Ruby, Java and XMLRPC API.

 A catalogue of third party appliances,

ready to be used in the OpenNebula

environments.

Fig. 8. OpenNebula Architecture

OpenNebula has a modular architecture

Figure 8 offering the possibility to use off-the-

shelf as well as enterprise grade hardware and

software components as hypervisors, for

monitoring, storage or network

communications. Any OpenNebula

deployment will feature:

 A front-end executing the OpenNebula

services.

 Hosts with hypervisors providing the

resources for executing virtual machines.

 Data stores for the virtual machines

images.

 Physical networks linking the cloud

components.

The front end is a server having OpenNebula

installed on it. It is connected with all the

cloud’s hosts. The management daemons, the

scheduler and the administration web

interface are running on this machine.

Any deployment consists of at least a zone

Figure 9: a group of interconnected physical

hosts with hypervisors controlled by

OpenNebula [20], typically no more than 500

in a zone. More than one zone can be managed

using OpenNebula oZones component and

Informatica Economică vol. 19, no. 4/2015 77

DOI: 10.12948/issn14531305/19.4.2015.06

can be combined to form a Virtual Data center

(VDC). Using zones guarantees complete

users and domains isolation, increased

scalability, centralized management [21].

Fig. 9. OpenNebula Zones Architecture

Hosts are physical machines on which virtual

machines are executed. A supported

hypervisor must be installed on them (Xen,

KVM or VMware) under one of the operating

systems certified for OpenNebula (RedHat

Enterprise Linux, Ubuntu Server, SUSE

Linux Enterprise, CentOS, openSUSE,

Debian.

Virtual machine images are managed through

datastores, usually a SAN/NAS, always

available to the front-end server. System

datastores are those used for running virtual

machine images. Image datastores store disk

images. These are copied/cloned from/to the

system datastores when virtual machines are

started/stopped or when snapshots are taken.

An image datastore can be [22]:

 A filesystem, when the images are stores

as files on volumes mounted from a

NAS/SAN.

 Vmfs, specialized datastore using VMFS

format for the use or VMware

hypervisors. It is not UNIX-comptabile

and cannot be mounted on the front-end

server.

 LVM: LVM volumes can be used instead

of file systems

 Ceph, specialized for use with Ceph block

devices.

Interfaces

OpenNebula was designed as an expandable,

modular system, allowing deployment of

customized Cloud Computing architecture

and easy interaction with data-center services.

Its interfaces are subdivided as cloud

interfaces, targeted against cloud resource

consumers, and system interfaces (Fig. 10).

Cloud interfaces provide an abstraction layer

above OpenNebula’s services, allowing

software tools and components to be build for

cloud interaction. System interfaces provide

access to all the cloud’s services and are used

to adapt the cloud to the targeted

infrastructure.

78 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.06

Fig. 10. OpenNebula Interfaces, adapted after [23]

Cloud interfaces manage virtual machines,

networks and images using standard APIs

such as AWS EC2 and OGF OCCI. System

interfaces use XML-RPC or OpenNebula’s

own API, having bindings for Ruby and Java

programming languages.

Standards

As all the other open source Infrastructure as

a Service platforms, OpenNebula implements

the de facto standard: Amazon Web Services

EC2 and S3 APIs. OCCI has a native

implementation through a pluggable

component and another one by using the

rOCCI project. OVF is supported by using a

separate Java component. No direct CIMI

interface is available but Apache Deltacloud

provides a driver for OpenNebula using its

OCCI server component.

12 Conclusion

As the Cloud Computing industry matures,

the Infrastructure as a Service platforms tend

to implement a homogenized set of functions.

Choosing a platform might depend on its

openness and adherence to standards,

exposing the cloud or the appliance to the

greatest number of clients. While

implemented open standards might look as a

sure way to achieve this goal, in practice, even

the major open-source platforms offer limited

support in this area. Portability and

interoperability can only be assured for now

by using the de facto standard, Amazon Web

Services APIs. Putting Apache Deltacloud

aside, there is no native or third party support

for Cloud Infrastructure Management

Interface on any of the studied IaaS platforms.

At the same time Apache Deltacloud adds its

own API and cannot ignore AWS EC2/S3

compatibility.

Informatica Economică vol. 19, no. 4/2015 79

DOI: 10.12948/issn14531305/19.4.2015.06

Table 1. Main standards support in major open source IaaS platforms.

Standard

Platform OCCI CDMI CIMI OVF AWS

Apache

Deltacloud

driver

OpenStack
3rd party

component

3rd party

component

for CDMI

1.0.2

Apache

Deltacloud
- EC2, S3 Yes

Apache

CloudStack
rOCCI - - -

EC2, S3,

60%
No

OpenNebula

rOCCI,

native

OCCI 1.1

-

Apache

Deltacloud

through

OCCI

3rd party

Java

component

EC2, S3 Yes

Eucalyptus - -
Apache

Deltacloud
- EC2, S3 Yes

Cloud Standards Coordination, an initiative

launched by the European Commission and

The European Telecommunications Standards

Institute, identified in an October 2015 report

no less than 16 standardization organizations

and 114 documents related to cloud standards

(94 with the status “Published”, 14 “Draft”

and 6 “In Progress”) [24]. None of these are

likely to enjoy in the near future the massive

adoption displayed by AWS APIs but lessons

from it could and are learned and, as the Cloud

enabled applications become ubiquitous, we

can only hope that an open, vendor neutral,

Cloud interfacing specification gains more

traction and becomes both a de facto and a de

jure standard.

References

[1] "Open Cloud Computing Interface | Open

Standard | Open Community," [Online].

Available: http://occi-wg.org/. [Accessed

2015].

[2] "Open Cloud Computing Interface -

Core," 2011.

[3] T. Metsch and A. Edmonds, "OGF

Published Documents," June 2011.

[Online]. Available:

http://www.ogf.org/documents/GFD.185.

pdf.

[4] T. Metsch and A. Edmonds, "Open Cloud

Computing Interface - Infrastructure,"

2011.

[5] A. Edmonds, T. Metsch, A. Papaspyrou

and A. Richardson, "Open Cloud

Computing Interface: Open Community

Leading Cloud Standards," [Online].

Available: http://ercim-

news.ercim.eu/en83/special/open-cloud-

computing-interface-open-community-

leading-cloud-standards. [Accessed

2015].

[6] S. Fiore and G. Aloisio, Grid and Cloud

Database Management, Springer-Verlag

Berlin Heidelberg, 2011, pp. 25,26.

[7] "Cloud Data Management Interface

(CDMI)," [Online]. Available:

http://www.snia.org/cdmi. [Accessed

2015].

[8] "Cloud Infrastructure Management

Interface Model and RESTful HTTP-

based Protocol," 2013.

[9] VMware, "The Open Virtual Machine

Format Whitepapre for OVF

Specification," 2007. [Online]. Available:

https://www.vmware.com/pdf/ovf_white

paper_specification.pdf.

[10] "Deltacloud drivers," [Online].

Available:

http://deltacloud.apache.org/drivers.html#

drivers. [Accessed October 2015].

[11] J. Atul, D. Johnson, M. Kiran, R.

Murthy, C. Vivek and G. Yogesh,

OpenStack Beginner's Guide, CSS Corp,

2012.

[12] K. Pepple, Deploying OpenStack,

O'Reilly Media, 2011, p. 88.

80 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.06

[13] "Apache CloudStack: Open Source

Cloud Computing," [Online]. Available:

https://cloudstack.apache.org/. [Accessed

5 2015].

[14] N. Sabharwal and R. Shankar, Apache

CloudStack Cloud Computing,

Birmingham: Packt Publishing, 2013, p.

24.

[15] D. Nalley and S. Eizadi,

"Development 101," 2013. [Online].

Available:

https://cwiki.apache.org/confluence/displ

ay/CLOUDSTACK/Development+101.

[16] "Programmer Guide - Apache

CloudStack 4.5.1. documentation," 6

2015. [Online]. Available:

http://docs.cloudstack.apache.org/en/lates

t/dev.html.

[17] D. Nalley, "Apache CloudStack and

the cloud API wars," December 2013.

[Online]. Available:

http://www.comparethecloud.net/opinion

s/apache-cloudstack-and-the-cloud-api-

wars/.

[18] Y. Wadia, "The Eucalyptus Open-

Source Private Cloud," Cloudbook, vol. 3,

no. 1, pp. 29-32, 2012.

[19] D. Nurmi, R. Wolski, C. Grzegorczyk,

G. Obertelli, S. Soman, L. Youseff and D.

Zagorodnov, "The Eucalyptus Open-

source Cloud-computing System," in

Proceedings of 2009 ACM/IEEE

International Conference on Grid

Computing, 2009.

[20] "An Overview of OpenNebula -

OpenNebula 4.12.1 documentation," 5

2015. [Online]. Available:

http://docs.opennebula.org/4.12/design_a

nd_installation/building_your_cloud/intro

.html.

[21] "OpenNebula Documentation,"

[Online]. Available:

http://archives.opennebula.org/document

ation:archives:rel3.4:zonesmngt.

[Accessed 2015].

[22] "OpenNebula Zones Overview 4.4," 4

2015. [Online]. Available:

http://archives.opennebula.org/document

ation:rel4.4:ozones.

[23] "OpenNebula Storage Overview 4.4,"

[Online]. Available:

http://archives.opennebula.org/document

ation:rel4.4:sm. [Accessed 2015].

[24] "OpenNebula," [Online]. Available:

http://archives.opennebula.org/document

ation:archives:rel4.2:introapis. [Accessed

2015].

[25] "Cloud Standards Coordination - A

deeper look at Cloud Computing,"

October 2015. [Online]. Available:

http://csc.etsi.org/phase2/snapshot2/Stand

ardsOrganizations.html.

Andrei IONESCU obtained his Master of Science diploma in Economic

Informatics in 2014. He has more than 10 years of experience as a software

developer, currently working as an independent contractor. Since 2014 he is a

PhD candidate at the Bucharest Unviersity of Economic Studies with a thesis

in the field of Resource Management in Cloud Computing.

