
Informatica Economică vol. 19, no. 4/2015 13

DOI: 10.12948/issn14531305/19.4.2015.02

Software Architectures – Present and Visions

Cătălin STRÎMBEI, Octavian DOSPINESCU, Roxana-Marina STRAINU,

Alexandra NISTOR
 Faculty of Economics and Business Administration, AL.I.Cuza University, Iasi

linus@uaic.ro, doctav@uaic.ro,

roxana.strainu@gmail.com, alexandra.anichitoaei@yahoo.com

Nowadays, architectural software systems are increasingly important because they can deter-

mine the success of the entire system. In this article we intend to rigorously analyze the most

common types of systems architectures and present a personal opinion about the specifics of

the university architecture. After analyzing monolithic architectures, SOA architecture and

those of the micro- based services, we present specific issues and specific criteria for the uni-

versity software systems. Each type of architecture is rundown and analyzed according to spe-

cific academic challenges. During the analysis, we took into account the factors that determine

the success of each architecture and also the common causes of failure. At the end of the article,

we objectively decide which architecture is best suited to be implemented in the university area.

Keywords: System Architectures, Monolithic Architecture, SOA, Micro-Services Architecture,

University System Architecture

Introduction

The software systems currently face a

multitude of challenges resulting from differ-

ent factors such as high complexity, changing

technology and the need for interoperability of

heterogeneous data. All these factors have led

to the emergence of various architectural

models that have tried to address these chal-

lenges. Chronologically speaking, we believe

that the most important steps are those fo-

cused on monolithic architectures and service

oriented architectures. We estimate that the

new wave will have in the forefront the micro-

services based architectures in response to the

challenges of interoperability. For example, in

the last 10 years the market of the solutions

dedicated to the interoperability [1] has

grown from $3.4 billion (2004) to $11 billion

(2008) and over $20 billion in 2015. The mon-

olithic architectures focused on a traditional

approach; although some authors consider

them outdated, many current systems are de-

signed in this style. Their integration is

achieved mostly through SOA, but SOA limi-

tations and challenges have prompted the

emergence of a new vision: micro-services. In

this paper we will try to make a comparison of

these approaches and highlight their specific

in the academic field.

2 Monolithic Architecture

When referring to monolithic architecture, the

literature in this field avoids defining the term.

According to Aoyama [2] this type of archi-

tecture is considered to be conventional and

belongs to the older styles adopted during the

development of new software. Having as

starting point the idea promoted by Aoyama,

Lake [3] considers that the monolithic name

refers to the organizing of the fundamental ap-

plication elements together in a single compo-

nent or unit. In other words, the monolithic ap-

proach can be viewed as an integrated archi-

tecture design in comparison to a modular

one. In general, the expression “monolithic” is

used for lack of a better term, to indicate that

all different types of the foundational architec-

tural elements of the application can be used

together in one block.

In fact, the subject has been approached by the

researchers especially when referring to other

categories of architecture. Arguing the im-

portance of the codebase architecture in the

development of an open source program,

Baldwin & Clark [4] underline the differences

between monolithic and modular architec-

tures. While in the first case the participants

have no access to other co-workers codes, in

the second case the developers can join their

efforts when writing the code. A similar idea

1

mailto:linus@uaic.ro
mailto:doctav@uaic.ro
mailto:roxana.strainu@gmail.com

14 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.02

has been stated by Carbonell et al. [5] when

discussing the solving capabilities of PROD-

IGY architecture, which is modular. As a re-

sult, in comparison with SOAR (a monolithic

architecture), the authors consider that PROD-

IGY is superior in terms of engineering prin-

ciples.

Starting from some relevant articles concern-

ing monolithic architecture, we notice that this

concept is considered to be obsolete, the need

of architectural restructuration being sug-

gested by other researchers of the field. As an

example, Mens et al. [6] propose the architec-

tural restructuration of a monolithic model

into a client-server or a three-tiered one,

through which the user interface, business

logic, and data layer can be clearly separated.

Using a monolithic architecture, the user in-

terface elements can be mixed with the busi-

ness logic, and the data management code. It

doesn’t mean that all elements will always be

present in all software classes of the code, but

the design allows them to be mixed together

into one unit. The positive aspect of a mono-

lithic approach regards a lower complexity of

interaction between parts when multiple com-

ponents or modules can be gathered into a sin-

gle unit. Another positive is the ease of seeing

a whole process in one place. For example, the

user interface code can be seen along with the

processing of data from the interface and the

persisting of it to a database in a single class

and file. The ability to use logic to manipulate

the user interface, which is typically less dy-

namic, is another benefit of using a monolithic

approach to the architecture [7].

A short characterization of the concept is

made by David A. Penny [8], summarizing the

main features of a monolithic architecture as:

• Normally, the programming language

used is single;

• The code is compiled and linked through

a unique (monolithic) program.

• When is operating, it can be both in: batch

mode and GUI mode.

• Data used can be load into memory and to

write all back on explicit save. No simul-

taneous data sharing.

Concerning the data used in this kind of archi-

tecture, we noticed that it is manipulated and

read directly into the memory of the program.

In order to save it, there are two option, first

to use the same source and, secondly, to select

a different one.

Regarding the changes which can be made

into the programs developed using this archi-

tecture, the issue of visibility occurs. In this

case, there are two options for seeing the

changes done by a user by others. Because a

multi-user access is not possible in this type of

application, only sequential access is granted.

As a result, changes made cannot be seen if

the data is read into the memory by each copy

of the program. In our opinion, the improve-

ment of a monolithic architecture requires ex-

tra cost in order to: offer access to multiple us-

ers, connect to relational databases, update

simultaneously volatile data etc.

Some example of applications using mono-

lithic architectures could be some office and

communication (e-mail) applications, ac-

counting packages, business reporting, pay-

rolls.

Table 1. Monolithic – advantages and disadvantages [8]

Advantages Disadvantages

 Performance improvements  Impossibility to be accessed by multiples

users

 Simplicity in writing and other tasks  Problems when processing large data

In terms of advantages, the performance is the

first feature evoked by specialists when refer-

ring to this type of architecture. Concerning

specifically the capability to data access from

the applications developed using the mono-

lithic model, this kind of operations are highly

optimized considering that: (1) data is read di-

rectly from disk through the file system and

(2) the user has also the possibility to cache

and pre-fetch built-in data. When taking into

account data update operations, in-memory is

Informatica Economică vol. 19, no. 4/2015 15

DOI: 10.12948/issn14531305/19.4.2015.02

massively quicker, while caching is not an op-

tion for shared data systems because of the de-

lays encountered while committing changes to

a record.

Simplicity, the second advantage of this kind

of architecture, is due to the fact that there is

less code to write and also by the fewer issues

to deal with, such as: locking, integrity, per-

formance, transactions, geographic distribu-

tion etc.

Regarding disadvantages, the most obvious is

the impossibility of using the system by multi-

ple users in the same time (multiuser is not

quite an option). As a solution, several

measures can be enforced, such as: (1) allow-

ing datasets to merge multiple files or (2) a hy-

brid approach, using complex monolithic

analysis software and a simple data cli-

ent/server update software.

The second biggest concern refers to the im-

possibility of processing a large amount of

data, which could led to increase the time

amount required to load data into memory or

to increase virtual memory amount used. So-

lutions to this kind of problems could consider

sequential or selective access can be granted

into the application.

Likewise, other disadvantages could me men-

tioned, related to other specific needs of the

users. In this regard, Roschelle et al. [9] dis-

cuss the negative aspects of monolithic archi-

tecture systems when referring to the educa-

tional software. According to the same au-

thors, the monolithic architecture used to de-

velop various software applications could af-

fect five types of organization roles as:

1. Funders, through the money wasted on re-

dundant coding;

2. Developers, whose wide purpose of re-

quired functions lead to a decrease of

quality;

3. Researchers, which cannot perform a viable

systematic comparison between pro-

grams;

4. Authors, which are incapable of customiz-

ing, integrating or extending different

products; and, finally,

5. Schools, which develop and / or use incom-

patible, expensive or fragmentary soft-

ware.

Considering the increased disadvantages in

comparison to the benefits of monolithic ar-

chitectures, the research trends in the field are

justified as are the main opinions formulated

in the detriment of this type of model.

3 Service Oriented Architecture

Service Oriented Architecture is a way to

build a technology-independent architecture.

According to [10] Service Oriented Architec-

ture is an architectural style for building sys-

tems based on interactions of loosely coupled,

coarse-grained and autonomous components

called services. Each service exposes pro-

cesses and behavior through contracts, which

are composed of messages and discoverable

addresses called endpoints. A service’s behav-

ior is governed by policies that are external to

the service itself. The contracts and messages

are used by external components called ser-

vice consumers.

The SOA basic architecture contains 3 main

components [11]:

 Service provider;

 Service consumer;

 Service registry.

These components interact in order to publish,

find, bind and invoke specific services, as we

can see in the following figure.

16 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.02

Fig. 1. The general components of SOA [11]

Some authors [12] consider that SOA is not

just an architecture of services seen from a

technological perspective, but the policies,

practices, and frameworks by which we en-

sure the right services are provided and con-

sumed.

There are some characteristics of SOA [13]:

 Services communicate with messages that

are defined by XML schemas. The mes-

sages go through heterogeneous environ-

ments and they have the information

needed in order to run an action.

 Web Services Description Languages

(WSDL) is the language for describing the

interfaces of SOA services.

 The services in SOA are managed by a

registry that acts as a directory listing. The

applications must “read” the registry, find

the specific service and invoke it.

The advantages of using SOA are described

by the specialized literature [14]:

 Reduction in development time and cost;

 Lower maintenance cost;

 High-quality services;

 Lower integration costs;

 Reduced risk.

A model of a general business SOA is pre-

sented in the following image.

Fig. 2. A model of SOA integration [15]

Informatica Economică vol. 19, no. 4/2015 17

DOI: 10.12948/issn14531305/19.4.2015.02

In the SOA model we have one or more adapt-

ers that manage the interaction between the

consumer, the services and the provider, using

standards like Remote Procedure Call or Rep-

resentational State Transfer as described in

[16].

From different points of view, SOA has many

challenges in real business [17]: lack of ex-

perts, service identification roadmap, SOA

delivery strategy, business IT alignment, eco-

nomic issues, lack of long-term planning and

strategy, stability, complexity, service bound-

aries, interoperability.

4 Micro-Services Architecture

Micro-services came out as a relative new ap-

proach from some practitioners which were

looking for an architectural style even “more”

democratic than the one traditional SOA could

provide. Being in its infancy, micro-services

architecture is still in search for a widely-

adopted definition, still evolving and un-

proven over the long term.

J. Thönes sees micro-services as software

apps (how small, how big?) independently de-

veloped, managed and maintained: “deployed

independently, scaled independently, and

tested independently and that has a single re-

sponsibility” [18].

Galen Gruman and Alan Morrison see micro-

services architecture (MSA) as those service-

components with “greater modularity, loose

coupling, and reduced dependencies all hold

promise in simplifying the integration task”

[19]. One of the most compelling points of

view comes from Martin Fowler that consid-

ers micro-service architecture [20] as a

method “to describe a particular way of de-

signing software applications as suites of in-

dependently deployable services”. Fowler de-

fine micro-service architectural style as “an

approach to developing a single application as

a suite of small services, each running in its

own process and communicating with light-

weight mechanisms, often an HTTP resource

API. These services are built around business

capabilities and independently deployable by

fully automated deployment machinery.”

Fig. 3. Monoliths vs. micro-services

Sam Newman wrote some of the few books

about MSA [21] for practitioners where he

identified micro-service emerging base com-

ing from Domain-Driven Design, Continuous

18 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.02

delivery, On-demand virtualization, Infra-

structure automation, Small autonomous

teams, Systems at scale. Sam Newman sees

micro-services as “small, autonomous ser-

vices that work together. Small, and focused

on doing one thing well” and brings out “The

Single Responsibility Principle“ defined by

Robert C. Martin: “Gather together those

things that change for the same reason, and

separate those things that change for different

reasons”.

The last point of view in defining micro-ser-

vices architecture that we will expose is the

one of H. Kurhinen: “Usually micro-services

are quite standalone, they have their own pro-

cess, manage their own dependencies and pos-

sibly manage their own database connection.

Micro-services may also have their own API

for communication” and “it will be better to

wrap micro-services inside a lightweight com-

munication layer” [22].

J.Thönes characterizes the micro-services ar-

chitecture as a lightweight stack ready to be

deployed using lightweight container

runtimes as [23]: embedded Jetty, embedded

Tomcat, SimpleWeb or WebIt. To picture this

statement, this author opposes them to the

heavyweight category of centralized ESB. He

remarks that another defining feature of mi-

cro-services is the movement of the complex-

ity from the monolith into the networking

layer. To model micro-services architecture it

is proposed the domain-driven design ap-

proach (of Eric Evans) with a “service” label.

Also, Galen Gruman, Alan Morrison in their

effort to characterize micro-services approach

underlines the following features [24]:

● web-scale development: software that

must evolve quickly, whose functionality

is subject to change or obsolescence in a

couple of years—even months—and

where the level of effort must fit a com-

pressed and reactive schedule;

● dependencies: pre-SOA tight coupling,

traditional SOA loose coupling, MSA de-

coupled;

● simple parts with clean, messaging-style

interfaces;

● simpler messaging systems such as

Apache Kafka;

● fine-grained, stateless, self-contained na-

ture: easy to update, replace, remove, or

augment.

Fig. 4. The evolution of services orientation [24]

Galen Gruman and Alan Morrison proposed a

comparison between Service-Oriented-Archi-

tectures and Micro-services-Architecture tak-

ing into account some technical criteria like

messaging type, programming style, applica-

tion session state and databases.

Informatica Economică vol. 19, no. 4/2015 19

DOI: 10.12948/issn14531305/19.4.2015.02

Table 2. SOA vs. MSA

Criteria SOA MSA

Messaging style Smart, but dependency-laden ESB Dumb, fast messaging (Apache Kafka)

Programming

style

Imperative model Reactive actor programming model that ech-

oes agent-based systems

State Stateful Stateless

Messaging type Synchronous: wait to connect Asynchronous: publish and subscribe

Databases Large relational databases NoSQL or micro-SQL databases blended

with conventional databases

Martin Fowler - one of the most respected au-

thor in the architecture patterns domain - re-

views an extensive set of characteristics of a

Micro-service Architecture emphasizing the

following aspects [25]:

● componentization via Services (rather

than libraries): services meaning out-of-

process components that communicate

through mechanisms as web-requests or

RPC using explicit component-published-

interface (interface outside the code-base

where is defined, published vs. public and

not public vs. private);

● organized around Business Capabilities:

implementation around business area,

from UIX to persistent storage to external

service integration;

● products not projects: the development

team owns the product during its full life-

time (quoting Amazon: “you built it you

run it”);

● smart endpoints and dumb pipes: “micro-

services aim to be as decoupled and as co-

hesive as possible”; cohesive meaning that

they encapsulate their own (complete)

business logic, decoupled meaning to

communicate through simple messaging

or lightweight messaging bus (no inter-

process communication);

● decentralized governance: avoid standard-

ization and overhead, use patterns like tol-

erant reader and consumer-driven con-

tracts (service evolution pattern);

● decentralized data management: decen-

tralized conceptual level supposing “con-

ceptual model of the world will differ be-

tween systems” involving concept of

Bounded Context Domain-Driven Design

(Evans); decentralized data storage taking

into account polyglot persistence: each

service - each database using different da-

tabase systems - and distributed transac-

tions problem, eventually consistency

could be tolerated;

● infrastructure automation covering contin-

uous delivery, continuous integration, au-

tomated deployments, automated tests and

service versioning management (espe-

cially in production);

● design for failure: tolerate the failure of

services; manage failures: detect and re-

store faulty services;

● evolutionary design: service decomposi-

tion (from SOA design principles) seen as

a tool to enable control of changes in soft-

ware applications at the pace of business

changes. The micro-services architecture

must have the property of service inde-

pendent replacement and upgradeability.

Sam Newman also made a compelling analy-

sis of the most defining feature list [26] to con-

sistently describe software architecture as be-

ing micro-services-based. He starts with

“small enough and no smaller” and small ser-

vice for small teams (agile-scrum approach)

then continues with:

● autonomy: “The golden rule: can you

make a change to a service and deploy it

by itself without changing anything

else?”;

● technology heterogeneity;

20 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.02

Fig. 5. Technology heterogeneity [26]

● resilience: single-component failure does

not break down (tear apart) the whole sys-

tem;

● (fine-grained) service scaling: scaling in-

dividual services by node-sharing;

● ease of deployment: deploy each service

independently by the rest of the system;

● organizational alignment: smaller teams

to better alignment to a distributed archi-

tecture;

● composability: as SOA attribute for reuse

of functionality;

● optimizing for replaceability: “small in

size, the cost to replace them with a better

implementation, or even delete them alto-

gether, is much easier to manage“.

Micro-service architectural style is not a uni-

versal panacea, as monolithic and SOA are

not. Also, being an emerging approach, mi-

cro-services assume some inherent risks in de-

velopment, implementation and production

process. In this regard, Galen Gruman and

Alan Morrison summarized some key attrib-

utes that favor MSA [27]:

● fast applications and not quite elegant in

the first place;

● (very) frequent changes in business func-

tionality;

● functional isolation and simple integration

are more important than module cohesive-

ness;

● functionality could be easily separated

into simple, isolatable components;

They note that in MSA, integration could be

the problem, and not the final solution: if you

need complex integration, you shouldn’t use

MSA for that part of your software develop-

ment. Instead, their opinion is to use MSA

where broad integration is not a key need.

MSA implementations already took place, so

micro-services exceeded the theoretical or

conceptual discourse. In this regard, Matthias

Vianden, Horst Lichter, Andreas Steffens de-

scribed their experience with one practical mi-

cro-service-based reference architecture in an

actual enterprise [28]. They approached the

core problems of Enterprise Measurement In-

frastructures (EMIs) using dedicated micro-

services to implement business features like

measurement, calculation and visualization.

They managed to build and reuse micro-ser-

vices that worked fluently without any major

issue in an architecture that allowed very easy

to add additional functionality by simply add-

ing new augmented services.

5 Challenges for the Integration of Soft-

ware Systems in the University Environ-

ment

Universities are special types of institutions

which can have different structures depending

on country or geographical area. According to

the specialized literature [29], the competition

that exists among the higher education institu-

tions involves great efforts to adapt to the new

requirements of the modern society. The edu-

cational offers must face the new challenges

that require flexibility, rapidity, complexity

and provide students both with specific habits

and efficient work tools. Starting from this,

there can be identified some common features

inside these types of institutions, but also

some differentiations. The identified common

features that any university worldwide share

are listed below:

● university employees and assets;

● students;

● study cycles;

Informatica Economică vol. 19, no. 4/2015 21

DOI: 10.12948/issn14531305/19.4.2015.02

● curricula;

● specializations;

● evaluations;

● scholarship programs.

Those common features also share some dif-

ferent features depending on the country, lan-

guage or geographical area. Regarding the

software and hardware implementations, the

challenges become more obvious. These chal-

lenges concern the software implementations

on more levels, delimited by the scope they

serve and the usage frequency in the following

categories:

● learning management systems;

● evaluation and admission systems;

● administrative oriented systems.

The most used and well known tools are the

Learning Management Systems (LMS). The

Learning Management System (LMS) is a set

of software tools (toolbox of programs) in-

tended to support teaching, learning and

course administration in order to deliver, to

track and to managing education and online

training [30]. These types of systems are ori-

ented on delivering learning materials. By ed-

ucational software we understand a “software

designed for educational purposes” [31], so

we can consider a LMS as an educational soft-

ware. These types of software require a lot of

attention, because the design and architecture

can differ by more aspects like: the curricula,

the number of students, the language, the tech-

nology, the connectivity, the hardware. If a

LMS intends to encompass and an evaluation

system, its design and architecture will grow

in complexity and a poor designing can lead to

a jam.

An important factor and problem in designing

software architecture for this type of system is

the scalability as a solution to the given ques-

tion “How well a solution to some problem

will work when the size of the problem in-

creases” [32]. Of course this leads us to one of

the conclusion that the storage space and stor-

age location are very important.

Evaluation and admission systems are special

types of processes that take place inside any

university. They are used with a low fre-

quency but have a higher workload than the

ones special designed for learning, because

the number of connections or users increases

in and for a short period of time. Admissions

take place twice a year, while the evaluation

can happen from four times per year, depend-

ing on the rules and laws each university has

adopted.

The challenge in designing a software archi-

tecture for those two processes stands in pre-

dict a maximum workload, using a hardware

architecture suited for this types of operations.

The performance and the response time are the

main important factors in this case. The re-

sponse time defined as “a measure of the la-

tency an application exhibits in processing a

business transaction. Response time is most

often (but not exclusively) associated with the

time an application takes to respond to some

input” [33] is very important when we associ-

ate it with the evaluation process, because all

evaluations are timed.

The evaluation process is much more complex

than it looks. The second concern about eval-

uation is the equalization process. This can

differ from each university, country or area

and this can raise a problem when scholarship

programs are involved in evaluation and

equalization.

The performance factor “defines a metric that

states the amount of work an application must

perform in a given time, and/or deadlines that

must be met for correct operation” [34]. When

an admission deadline is on the field, the cru-

cial factor concerns the performance of the

system, along with the number of simultane-

ous connections.

Administrative oriented systems, or systems

associated with administrative processes like

financial and economical operations, the staff,

organizational activities are dedicated soft-

ware tools used by any type of institution.

There can be met some big differences design-

ing this type of software architecture and im-

plementation. Each administrative or financial

software is dedicated or associated with finan-

cial or economical laws each country has

adopted. There can be a lot of discrepancies

in each system implementation and architec-

ture, depending on this main differentiation

factor. The globalization is an important fac-

tor in eliminating this problem, but in a little

22 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.02

measure. A solution to eliminate this problem

is adapting the software to accept different

types of indicators, depending on the type of

required operations.

In this context the biggest challenge is to build

a system that can accept and convert data from

different sources and to transform it into usa-

ble data into the existing or new system. Of

course every university already have imple-

mented software solutions for almost all the

processes identified before. One of the biggest

challenges leaving from this point of view will

be adapting or improving the old software so-

lutions.

The main asset in the university is the data.

Data must reside in a secured place. Data con-

fidentiality is very important for each student.

Any system must forbid unauthorized access

to confidential data about students. This goes

to the importance of hardware improvements,

as long as technology evolves rapidly. In the

same time, the world wide technological im-

provements must be taken very serious and

embedded into the system. This should be an

opportunity and not a problem, for each sys-

tem involved in the universities work.

Another important aspect is the internet. Each

country and continent has different speeds of

the Internet. The software solutions designed

for campuses can be used with an intranet so-

lution to avoid bad Internet connections, but

not every university has the funds to imple-

ment this, so internet dependence must be

taken very serious when the software has the

purpose to share the data externally via Inter-

net. The connections via mobile devices and

mobile networks can create issues in sending

and receiving the data.

As discussed in the LMS, other important lim-

itation or thing should be carefully analyzed

when implementing a software solution is the

language. Every application has versions in

more languages; every international used

website allows reading an interface in a de-

sired language. This is a concern when the old

solutions already use data designed in specific

language, which isn’t globally used, or when

the alphabet is different than the one used in

designing the software solution. Evaluation

and admission systems can also be affected by

the language and alphabet barrier if we talk

about grades validations between universities

in scholarships programs.

Another challenge regarding any implementa-

tion is the internal regulation of each univer-

sity. While the specializations differ by curric-

ula, and each discipline differs by university,

also evaluation criteria are different. This

challenges the designers to consider a solution

to convert different evaluation criteria and

scoring systems, between them and inside the

same system. This requires a strong

knowledge and documentation about grading

systems worldwide. The grading system is

again important in an evaluation system when

data validation between universities is neces-

sary in scholarships programs, highlighting

the importance of data conversion in this type

of system.

Different admission systems are also a chal-

lenge, because each university has its own ad-

mission system. When trying to implement a

software solution to automate this process, the

task is difficult, because this software solution

can change from year to year, depending on

many predictable or unpredictable factors. In

an educational institution “the admission pro-

cess is [either] centrally coordinated (i.e., ex-

amination scores are submitted to a central en-

tity, which determines student placements) or

the university system as a whole is centrally

planned (i.e., the number of spaces available

in each institution is determined by the na-

tional government).” [35]

The curricula is important in designing a soft-

ware solution specialized on delivering learn-

ing material, because each discipline differs

by the other in information or type of learning

material. In the same time, another important

factor is again data storage. Each university

must choose the way data is stored, where it

resides, who can access it. Different levels of

data access are a challenge when the univer-

sity or the country regulation allows only spe-

cialized server solutions which are not owned

by the university. The access to existing data

can also represent a problem and a challenge.

The number of students influences the number

of concurrent connections which can be sim-

ultaneously active to the server, and this is

Informatica Economică vol. 19, no. 4/2015 23

DOI: 10.12948/issn14531305/19.4.2015.02

why a hardware architecture suited to the size

of the university is important. Private univer-

sities with a limited number of students don’t

necessary have this problem. But a solution

which is scalable to any size or any number of

connections is preferred regarding the course

access, the admission and evaluation.

The technological challenge is the main factor

that influences the whole system. First of all

the technological evolution from desktop to

mobile devices is a big step and an important

shift in any software architecture. The soft-

ware solutions for any area of interest must

take into account and are almost dependent on

mobile devices, as long as the number of mo-

bile devices continues to grow. Hardware im-

provements are a key point to the success of

any type of software implementation.

The classifications and issues identified above

suppose that the system can be designed from

the beginning. A big challenge is migrating

from monoliths to micro services, or redesign-

ing the structure, using heterogeneous data

sources and converting existing data into valid

data for the new system. If each process iden-

tified in the first part would have a special

software solution which only allows data ex-

ports or owns an API to allow connection to

other software solution the problem would be-

come a great opportunity. Because each pro-

cess has different behavior, each process

shares information with the other, an efficient

way to communicate data between those pro-

cesses could be the key factor to improve the

workflow into activities that take place inside

each university and to avoid gaps or bottle-

necks. The degree of technical interdependen-

cies involved can be a significant break on in-

novation [36], so this is one of the main as-

pects that should receive more attention, also

for the future existence and adaptation of the

system.

6 Conclusions on Architectural Styles and

Challenges of University Environment

Summarizing the critical challenges and prob-

lems from within an actual business context

(as of university environment) that has to be

addressed by nowadays evolutionary architec-

tures, we could divide them in two categories:

 business challenges as:

o education processes with common fea-

tures but also with specific implemen-

tations;

o specific educational processes having

functional differentiations;

o regional settings: country, language or

geographical area;

o financial or economical laws differen-

tiations;

o internal regulation differentiations;

 technical challenges:

o growing in complexity;

o scalability;

o workload management;

o short response time;

o minimizing latency;

o simultaneous connections;

o legacy implemented solutions;

o adapting or improving the old software

solutions;

o different speeds of the internet;

o connections via mobile devices and

mobile networks;

o specialized server solutions;

o technological evolution from desktop

to mobile devices;

o sharing information;

o efficient way to communicate data.

Our analysis on monolithic, service-oriented

and micro-services architectures, from previ-

ous sections, emphasizes some critical differ-

ences between those three architectural styles.

In short, taking into consideration their layer-

ing approaches, monoliths include and closely

integrate all levels and functional modules:

UIX, business logic and database access.

Also, service oriented architecture focuses on

integration and loose-coupling of components

within three or more vertical layers and on

multiple functional horizontal layers. These

horizontal layers could share infrastructure

components (e.g. for database access) so they

could not be entirely autonomous. Autonomy

and extreme functional flexibility (as replace-

ability) are the distinguished features of mi-

cro-services architecture. These kinds of ar-

chitectures have to support a set of criteria (as

those from Table 3) based on those different

business and technical problems previously

24 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.02

outlined.

Table 3. Architectures and criteria

Criteria Monolithic

Architecture

Service Oriented

Architecture

Micro-services

Architecture

Business Criteria Support

Adaptive business (edu-

cational) process

Yes* Yes Yes

Regional Settings Yes Yes Yes

Integration: regional dif-

ferentiations - heteroge-

neity

No Yes* Yes

Orchestration: global

business features - homo-

geneity

No Yes* Yes*

Technical Criteria Support

Integration : legacy au-

tonomous systems

No Yes Yes*

Integration: platform het-

erogeneity

No Yes Yes

Integration: maximize

functional flexibility

No Yes* Yes

Controlled integration

complexity

No Yes Yes*

Functional autonomy Yes Yes* Yes

Scalability Yes* Yes Yes

Multiuser access Yes* Yes Yes*

Web and mobile access No Yes Yes

Data Integration and in-

tercommunication

No Yes Yes*

Adaptive software solu-

tions

No Yes* Yes

Performance: minimize

response time

Yes Yes Yes*

Performance: minimize

latency

Yes Yes Yes

Offline and online pro-

cessing (specific internet

availability)

No No Yes

(Yes* means that the current criteria is not quite fully supported, but could be but under special circumstances or

taking into consideration some exceptions)

Our opinion is that none of the above architec-

ture could be entirely avoided in a scenario

where a development team tries to build a

global software system (as in an university en-

vironment in the European context) where

legacy systems (mostly being irreplaceable

and having monolithic architecture) has to be

integrated within global business processes,

and where new adaptive features have to be

added and accommodated on a constant (or

even growing) change rate.

Consequently, our “best fit” approach as-

sumes:

 treating already in place business systems

as a set of services that could participate

into a micro-services architecture: each

Informatica Economică vol. 19, no. 4/2015 25

DOI: 10.12948/issn14531305/19.4.2015.02

external system might be considered as a

monolith that could be integrated by using

a proxy-autonomous service (supporting

functional autonomy and flexibility);

 building additional functional and infra-

structure services using an evolutionary

SOA architecture where the developing

team could control complexity and cou-

pling aspects. If the development team is

homogeneous and is already committed to

an infrastructure of services (as persis-

tence or database access) that will guaran-

tee a certain level of performance, then a

proven SOA architecture could take place,

otherwise, in order to offer a more demo-

cratic environment, micro-services archi-

tecture could be at least an exploratory so-

lution.

Acknowledgments:

„This work was supported by a grant of the

Romanian National Authority for Scientific

Research and Innovation, CNCS –

UEFISCDI, project number PN-II-RU-TE-

2014-4-0748”.

References
[1] O. Dospinescu and D. Popescul, „The

Adoption of Electronic Banking Services

in Developing Countries – the Romanian

Case”, Future of Banking after the Year

2000 in the World and in the Czech Re-

public, 2005, pp. 1609-1616.

[2] M. Aoyama, „New age of software devel-

opment: How component-based software

engineering changes the way of software

development”, in 1998 International

Workshop on CBSE, pp. 1-5.

[3] B. Lake, „An empirical evaluation of an

agile modular software development ap-

proach: A case study with Ericsson”, In-

dependent Thesis, Stockholm University,

2012.

[4] C. Y. Baldwin and K. B. Clark. "The ar-

chitecture of participation: Does code ar-

chitecture mitigate free riding in the open

source development model?", Manage-

ment Science, 2006, pp. 1116-1127.

[5] J. Carbonell, O. Etzioni, Y. Gil, R. Joseph,

C. Knoblock, S. Minton and M. Veloso,

„Prodigy: An integrated architecture for

planning and learning”, ACM SIGART

Bulletin, 1991, 2(4), pp. 51-55.

[6] T. Mens, J. Magee and B. Rumpe, „Evolv-

ing software architecture descriptions of

critical systems”, IEEE Computer Society,

2010, vol. 43, issue 5, pp.42-48.

[7] B. Lake, „An empirical evaluation of an

agile modular software development ap-

proach: A case study with Ericsson”, In-

dependent Thesis, Stockholm University,

2012.

[8] D. A. Penny, „Software Architecture &

Design Course Notes”, University of To-

ronto, available at: http://www.cs.to-

ronto.edu/~penny/teaching/csc407/lec-

tures/13monolithic.pdf.

[9] J. Roschelle and J. Kaput, „Educational

software architecture and systemic im-

pact: The promise of component soft-

ware”, Journal of Educational Computing

Research, 1996, 14(3), pp. 217-228.

[10] R. Arnon, „SOA Patterns”, Manning

Shelter Island, USA, 2012, pp. 4-6.

[11] A. M., Karande, V. Chunekar and B. B.

Meshram, „Working of Web Services us-

ing SOA”, International Journal of Ad-

vanced Research in Computer Science,

Vol. 1, No. 4, nov-dec. 2010, pp. 292-296.

[12] D. Sprot and L. Wilkes, „Understanding

Service Oriented Architecture”, Microsoft

Developer Network, 2004, available at:

https://msdn.microsoft.com/en-us/li-

brary/aa480021.aspx#aj1soa_topic5

[13] R.R. Kodali, „What is Service Oriented

Architecture?”, Javaworld, june 2005,

available at: http://www.java-

world.com/article/2071889/soa/what-is-

service-oriented-architecture.html

[14] A. M., Karande, V. Chunekar and B. B.

Meshram, „Working of Web Services us-

ing SOA”, International Journal of Ad-

vanced Research in Computer Science,

Vol. 1, No. 4, nov-dec. 2010, pp. 292-296.

[15] L. Hurbean, D. Fotache, V. D. Pavaloaia

and O. Dospinescu, „Platforme integrate

pentru afaceri. ERP”, Editura Economica,

Bucuresti, 2013, p. 258.

[16] O. Dospinescu and M. Perca, „Web

Services in Mobile Applications”,

26 Informatica Economică vol. 19, no. 4/2015

DOI: 10.12948/issn14531305/19.4.2015.02

Informatica Economica Journal, Vol. 17,

No. 2, pp. 17-26, 2013.

[17] A. T. Zadeh, S. Sahranb and M. Mukhtar,

„Service Identification in SMEs: Appropi-

ate Elements and Methods”, International

Journal of Machine Learning and Compu-

ting, vol. 3, no. 3, pp. 279-283, June 2013.

[18] J. Thönes, „Micro-services”, IEEE Soft-

ware, ISSN 0740-7459/15, 2015, pp. 113-

116.

[19] G. Gruman and A. Morrison, „Micro-ser-

vices: The resurgence of SOA principles

and an alternative to the monolith”, Tech-

nology Forecast: Rethinking integration,

Issue 1, 2014, www.pwc.com/technolo-

gyforecast

[20] M. Fowler, „Micro-services”, available

at: http://martinfowler.com/articles/mi-

cro-services.html, 25 March 2014.

[21] S. Newman, „Building micro-services”,

O’Reilly Media, 2015.

[22] H. Kurhinen, “Developing micro-ser-

vice-based distributed workflow engine”,

Bachelor’s Thesis, Mamk University of

Applied Sciences, 2014.

[23] J. Thönes, „Micro-services”, IEEE Soft-

ware, ISSN 0740-7459/15, 2015, pp. 113-

116.

[24] G. Gruman and A. Morrison, „Micro-ser-

vices: The resurgence of SOA principles

and an alternative to the monolith”, Tech-

nology Forecast: Rethinking integration,

Issue 1, 2014, www.pwc.com/technolo-

gyforecast

[25] M. Fowler, „Micro-services”, available

at: http://martinfowler.com/articles/mi-

cro-services.html, 25 March 2014.

[26] Sam S. Newman, „Building micro-ser-

vices”, O’Reilly Media, 2015.

[27] G. Gruman and A. Morrison, „Micro-ser-

vices: The resurgence of SOA principles

and an alternative to the monolith”, Tech-

nology Forecast: Rethinking integration,

Issue 1, 2014, www.pwc.com/technolo-

gyforecast

[28] M. Vianden, H. Lichter and A. Steffens,

„Experience on a Micro-service-based

Reference Architecture for Measurement

Systems”, 2014, 21st Asia-Pacific Soft-

ware Engineering Conference, ISSN

1530-1362/14, IEEE 2014

[29] N. Dospinescu, M. Tatarusanu, G. I. But-

naru and L. Berechet, „The Perception of

Students from the Economic Area on the

New Learning Methods in the Knowledge

Society”, The AMFITEATRU ECO-

NOMIC journal, vol. 13, no. 30, Academy

of Economic Studies-Bucharest, Roma-

nia, pp. 527-543.

[30] Z. Gulzar, „An exploratory Analysis of

Learning Management System as an

Emergin ICT tool in India”, Jun. 2015,

Bonfring International Journal of Indus-

trial Engineering and Management Sci-

ence, Vol. 5, No. 2

[31] P. Tchounikine, „Computer Science and

Educational Software Design: A Resource

for Multidisciplinary Work in Technology

Enhanced Learning”, Springer Science &

Business Media, p. 4, June 2011.

[32] I. Gordon, „Essential Software Architec-

ture”, Second Edition, Springer Science &

Business Media, 2011, p. 24.

[33] I. Gordon, „Essential Software Architec-

ture”, Second Edition, Springer Science &

Business Media, 2011, p. 25.

[34] I. Gordon, „Essential Software Architec-

ture”, Second Edition, Springer Science &

Business Media, 2011, p. 24.

[35] R. M. Helm, „University Admission

Worldwide”, World Bank, p. 7, Jul. 2008.

[36] W. D. Hutton et al, „The Social Shaping

of a Virtual Learning Environment: The

Case of a University-wide Course Man-

agement System”, Electronic Journal of e-

Learning, Vol. 2, Issue 1 (February 2004),

pp. 69-80.

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.theseus.fi/bitstream/handle/10024/78410/Kurhinen_Heikki.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/78410/Kurhinen_Heikki.pdf?sequence=1
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

Informatica Economică vol. 19, no. 4/2015 27

DOI: 10.12948/issn14531305/19.4.2015.02

Cătălin STRÎMBEI has graduated the Faculty of Economics and Business

Administration of Al.I.Cuza University of Iaşi in 1997. He holds a PhD di-

ploma in Cybernetics, Statistics and Business Informatics from 2006 and he

has joined the staff of the Faculty of Economics and Business Administration

as teaching assistant in 1998 and as associate professor in 2013. Currently he

is teaching Object Oriented Programming, Multi-Tier Software Application

Development and Database Design and Administration within the Department

of Business Information Systems, Faculty of Economics and Business Administration,

Al.I.Cuza University of Iaşi. He is the author and co-author of four books and over 30 journal

articles in the field of object oriented development of business applications, databases and ob-

ject oriented software engineering.

Octavian DOSPINESCU graduated the Faculty of Economics and Business

Administration in 2000 and the Faculty of Informatics in 2001. He achieved

the PhD in 2009 and he has published as author or co-author over 30 articles.

He is author and co-author of 10 books and teaches as an associate professor

in the Department of Information Systems of the Faculty of Economics and

Business Administration, University Alexandru Ioan Cuza, Iasi. Since 2010 he

has been a Microsoft Certified Professional, Dynamics Navision, Trade & In-

ventory Module. In 2014 he successfully completed the course “Programming Mobile Appli-

cations for Android Handheld Systems” authorized by Maryland University. He is interested in

mobile devices software, computer programming and decision support systems.

Roxana-Marina STRAINU graduated in 2014 the Master of Business Infor-

mation Systems at the Faculty of Economics and Business Administration,

Alexandru Ioan Cuza University of Iasi. She also graduated the Faculty of

Mathematics in the year 2005. She is interested in developing smart systems

and mobile applications on Android platform. Now she is a PhD student in the

business information systems area.

Alexandra NISTOR graduated the Faculty of Economics and Business Ad-

ministration in 2011 and the Master of Business Information Systems at the

Faculty of Economics and Business Administration in 2013. Her research in-

terests include the use of automated testing in small and medium companies.

Now she is a PhD student in the business information systems area.

