
66 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

Formalizing the ISDF Software Development Methodology

Mihai Liviu DESPA

Bucharest University of Economic Studies

mihai.despa@yahoo.com

The paper is aimed at depicting the ISDF software development methodology by emphasizing

quality management and software development lifecycle. The ISDF methodology was built es-

pecially for innovative software development projects. The ISDF methodology was developed

empirically by trial and error in the process of implementing multiple innovative projects. The

research process began by analysing key concepts like innovation and software development

and by settling the important dilemma of what makes a web application innovative. Innova-

tion in software development is presented from the end-user, project owner and project man-

ager’s point of view. The main components of a software development methodology are iden-

tified. Thus a software development methodology should account for people, roles, skills,

teams, tools, techniques, processes, activities, standards, quality measuring tools, and team

values. Current software development models are presented and briefly analysed. The need

for a dedicated innovation oriented software development methodology is emphasized by

highlighting shortcomings of current software development methodologies when tackling in-

novation. The ISDF methodology is presented in the context of developing an actual applica-

tion. The ALHPA application is used as a case study for emphasizing the characteristics of

the ISDF methodology. The development life cycle of the ISDF methodology includes re-

search, planning, prototyping, design, development, testing, setup and maintenance. Artefacts

generated by the ISDF methodology are presented. Quality is managed in the ISDF method-

ology by assessing compliance, usability, reliability, repeatability, availability and security.

In order to properly asses each quality component a dedicated indicator is built. A template

for interpreting each indicator is provided. Conclusions are formulated and new related re-

search topics are submitted for debate.

Keywords: Software Development Methodology, Innovation, Project Management

Introduction

The research efforts and results presented

in the current paper apply exclusively to web

applications. Though they might apply to

other categories of software applications or

to other fields altogether, they were validated

only in the context of web applications. From

the end-user’s point of view, a web applica-

tion is considered to be innovative if it’s eas-

ier to use, faster, cheaper, more reliable or

more secure than other applications that ac-

complish the same results or if it fulfils a

need that has yet to be address in the online

environment. In the context of the end-user,

innovation targets the fulfilment of a specific

need.

From the project owner’s point of view a

web application is considered innovative if it:

 includes at least a functionality that gen-

erates added value for the end-user and

the functionality is not found in other

web applications that target the same

market;

 includes a combination of functionalities

that generate added value and the combi-

nation of functionalities is not found in

the same configuration in any other web

application that targets the same market;

functionalities can be found separately in

other web applications but not in the

same configuration;

 provides access to a graphic interface that

includes elements or element combina-

tions which improve user experience and

are not found in other web applications

that target the same market.

In the context of the project owner innova-

tion focusses on market characteristics and

targets novelty and added value. From the

project manager and from the development

1

Informatica Economică vol. 19, no. 2/2015 67

DOI: 10.12948/issn14531305/19.2.2015.07

team’s point of view a web application is

considered to be innovative if it includes

functionality that they have never imple-

mented before. In the context of the project

manager and the project team, innovation fo-

cusses on the degree of novelty of the current

application compared to previously imple-

mented applications.

This paper focuses on the perspective of the

project manager and the project team regard-

ing innovative web applications. Research

and the author’s own experience in the field

of software development lead to the conclu-

sion that innovative web applications are

characterized by frequent change of specifi-

cations, high dynamics of technology and

standards, higher than usual risks, proprietary

cost structure and custom testing scenarios.

Thus the research hypothesis of the current

paper is the fact that building an innovative

web application requires a dedicated software

development methodology.

A software development methodology is an

effort to standardize the set of methods, pro-

cedures and artefacts intrinsic to the software

development life cycle [1]. The software de-

velopment methodology illustrated in the

current paper is called Innovative Software

Development Framework and will be re-

ferred with the acronym ISDF. The method-

ology was developed based on practices em-

ployed by the author in innovative IT pro-

jects he personally managed in the last 5

years. The initial methodology was built em-

pirically based on the development life cycle

and was refined and formalized by integrat-

ing additional elements identified by review-

ing scientific papers. The resulting method-

ology was tested and validated in the suc-

cessful implementation of three innovative

software development projects. The ISDF

methodology is depicted in the current paper

by presenting a case study performed on one

of the above mentioned projects. In order to

comply with confidentiality contract clauses

and to protect the project owner’s identity

data is anonymized and project will be re-

ferred to with the acronym ALPHA. The re-

sults and scientific output presented in the

current paper have been presented at the 14th

International Conference on Informatics in

Economy, Education, Research and Business

Technologies.

2 Literature Review

Current software development methodologies

are branched into heavyweight and light-

weight. As part of the literature review proc-

ess, heavyweight and lightweight method-

ologies were analyzed with an emphasis on

epitomizing their overall structure, positive

attributes, negative attributes and the type of

project they are suitable for.

Heavyweight methodologies follow the wa-

terfall model and rely on detailed planning,

exhaustive specifications and detailed appli-

cation design. The waterfall model is predict-

able, generates comprehensive software arte-

facts and diminishes the risk of overlooking

major architectural problems [3]. Waterfall

model is typically described as a unidirec-

tional, top down [6] as every phase begins

only after the previous phase has been com-

pleted [7]. The output of one phase becomes

input for the next phase [7]. The central fig-

ure of the waterfall model is the project plan

[11]. Waterfall development entails high ef-

fort and costs for writing and approving

documents, difficulties in responding to

change, unexpected quality problems and

schedule overrun due to testing being per-

formed late in the project and lack of project

owner feedback [3]. Other issues proprietary

to the waterfall model is the fact that systems

often do not reflect current requirements and

lead-time is often generated by the need to

approve software artefacts. Also the waterfall

model pushes high-risk and difficult, ele-

ments to end of the project, aggravates com-

plexity overload, encourages late integration

and produces unreliable up-front schedules

and estimates [4]. Waterfall works best for

projects with little change, little novelty, and

low complexity [4].

Lightweight methodologies follow the agile

model and emphasize working software, re-

sponding to change effectively and user

feedback. Agile model was built to be adap-

tive, flexible and responsive with an empha-

sis on collaboration and communication. The

68 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

agile model embraces conflict while encour-

aging exploration and creativity [5]. Agile

model relies on iterative and incremental de-

velopment [9] and focuses on people not on

technology or techniques [8]. The central

figure of the agile model is the project owner

[11]. The downside of agile model is the fact

that it relies on inadequate architectural plan-

ning, over-focusing on early results, gener-

ates weak documentation and low levels of

test coverage [2]. There is a powerful nega-

tive correlation between the size of the or-

ganization and the successful implementation

of the Agile model, thus the larger the or-

ganization the harder it is to employ agile

methods [10]. Also the Agile model offers

limited support for globally distributed de-

velopment teams, reduces the ability to out-

source and narrows the perspective of gener-

ating reusable artefacts [12]. Agile model

works best for small teams as in large teams

the number of communication lines that have

to be maintained can reduce the effectiveness

of practices such as informal face-to-face

communications and review meetings [12].

The need for formalizing a software devel-

opment methodology dedicated to innovative

projects is generated by the fact that tradi-

tional heavyweight methodologies are unable

of delivering fast development without com-

promising quality whereas agile lightweight

methodologies are characterized by inade-

quate documentation, weak architecture and

lack of risk management [2]. A software de-

velopment methodology has to be described

quantitatively and qualitatively, has to lead to

similar results if used repeatedly, has to be

applied with a reasonable level of success

and has to be relatively easy to explain and

teach [13]. A software development method-

ology should include people, roles, skills,

teams, tools, techniques, processes, activities,

standards, quality measuring tools, and team

values [12].

3 Developing the ALPHA Application

The core of every software methodology is

its development life cycle. The development

life cycle formalized in the ISDF methodol-

ogy and used in the ALPHA project consists

of the following stages: research, planning,

design, prototype, development, testing,

setup and maintenance. Research, planning,

development, testing and setup are common

stages in most software development meth-

odologies. Building a prototype, design and

maintenance are also employed in other

software development methodologies but are

not regarded as distinct development life cy-

cle stages. Innovative software development

projects though, enforce prototyping as a dis-

tinct stage because it plays an important role

in reducing risk, refining specifications and

validating the innovative idea that initially

lead to the inception of the project. As part of

the research process development, life cycle

stages of the ALPHA project were analyzed

as independent entities highlighting, people

and roles.

Research stage in the ALPHA project meth-

odology was dedicated to gathering and ex-

changing information and it involved the pro-

ject manager, the project owner and the pro-

ject team. The project owner’s role was to

formulate requirements and communicate

them to the project manager. The project

manager’s role was to evaluate requirements

and assemble a team with the necessary set

of skills, professional values and experience

required to implement the project. Including

the project manager, 8 people were involved

in developing the ALPHA application. Pre-

vious experiences lead to the conclusion that

the ISDF methodology is effective on teams

that do not exceed 9 team members. When

selecting the team members, the project man-

ager took into account the fact that imple-

menting innovative projects requires strong

associating, questioning, observing, experi-

menting, and networking skills [14]. The pro-

ject team’s role was to evaluate requirements

from a technical perspective. In the ALPHA

project, the project manager together with the

project team also had the role of converting

requirements into actual specifications. As

part of the research process, the project

owner analysed applications that were similar

or complementary to the ALPHA applica-

tion.

Planning stage in the ALPHA project was

Informatica Economică vol. 19, no. 2/2015 69

DOI: 10.12948/issn14531305/19.2.2015.07

dedicated to formalizing the main character-

istics of the web application and it involved

the project owner, project manager and the

project team. The project owner had the role

of providing feedback on software artefacts.

The project manager’s role was to plan ac-

tivities, set standards and assign responsibili-

ties to team members. The project manager

together with the team members had the role

of defining the overall flow of the applica-

tion. The flow was broken down into smaller,

easier to manage subassemblies. For each

subassembly a comprehensive set of func-

tionalities was defined. Based on the required

functionality the technical team members de-

signed the database structure. The project

manager together with the project team also

chose the tools, technologies and processes

that were going to be employed in the AL-

PHA project.

Design stage in the ALPHA project was

dedicated to creating the graphic component

of the application and it involved the project

owner, the project manager and the project

team. The role of the project owner was to

provide feedback on the layout. The project

manager had the role of ensuring that the

graphic component is consistent with the

functionality and the target group of the web

application. The only team member involved

in the design stage was the graphic designer.

His role was to create a layout in accordance

with specifications received from the project

manager.

Prototype stage in the ALPHA project was

dedicated to building a functional proof of

concept and it involved the project owner,

the project manager and the project team.

The role of the project owner was to provide

feedback on the prototype. The role of the

project manager was to refine specifications

in accordance with the project owner’s feed-

back. The role of the project team was to

build the prototype. Innovative web devel-

opment projects are characterized by a con-

siderable degree of uncertainty. Building the

prototype had the role of validating the idea

that lead to the inception of the ALPHA pro-

ject. The prototype also acted as a basis for

delivering consistent feedback and refining

specifications.

Development stage in the ALPHA project

was dedicated to actually building the func-

tionality part of the application and it in-

volved the project manager and the project

team. The role of the project manager was to

monitor progress, motivate team members

and report to the project owner. The role of

the development team was to write code and

debug.

Testing stage in the ALPHA project was

dedicated to identifying programming, de-

sign, and architectural issues and it involved

the project manager and the project team.

The role of the project manager was to insure

that the testing scenarios were exhaustive.

The role of the project team was to identify

and fix security, functionality, design and ar-

chitectural issues and fix them. Also the pro-

ject team had to ensure that the web applica-

tion is doing everything it was design to do

and nothing that it wasn’t design to do.

Setup stage in the ALPHA project was dedi-

cated to installing the web application on the

live environment and it involved the project

team. The role of the project team was to

configuring the live environment in terms of

security, hardware and software resources.

Maintenance stage in the ALPHA project

was dedicated to ensuring that the application

is running properly on the live environment

and it involved the project team. The role of

the project team was to monitor the traffic,

and the firewall, mail, database and network

protocols error logs.

Next step in the research process was to

analyses the succession, connections and in-

teraction of the software development life

cycle stages highlighting resources, activities

and tools. Figure 1 presents a schematic rep-

resentation of the development life cycle

used in the ALPHA project. The develop-

ment life cycle presented in Figure 1 is also

representative for the ISDF methodology.

70 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

Fig. 1. Development life cycle for the ALPHA application

Research for the ALPHA project started with

a series of meetings between the project

manager and the project owner. The project

owner presented his vision on the application

and detailed on the initial set of require-

ments. The project manager then analysed

similar web application already operating in

the online environment. The project team

performed a technical review of the require-

ments. The Research stage ended with the

project manager and the project team drafting

the specifications for the ALPHA applica-

tion. In the Planning stage the project man-

ager and the project team defined the overall

flow of the ALPHA application and broke it

down into manageable subassemblies. The

overall flow and the subassemblies were built

with the help of use case diagrams, UCD.

Figure 2 presents the UCD diagram for the

Register – Login- Logout process of the AL-

PHA application.

Fig. 2. UCD diagram for the ALPHA project’s Register – Login – Logout process

Informatica Economică vol. 19, no. 2/2015 71

DOI: 10.12948/issn14531305/19.2.2015.07

Building UCDs is an important process in

understanding the structure of the application

and it is also one of the first deliverables that

the project owner comes into contact with.

The ISDF methodology does not rely heavily

on UCDs because building an innovative ap-

plication is a very dynamic process and ini-

tial planning will change multiple times until

the application is completed. The role of the

UCD diagrams in the ISDF methodology is

to help the project team gain a deeper under-

standing of the application and also provides

the project owner with a preview of what the

development’s team is going to implement.

In the ALPHA project a restriction was en-

forced of building a maximum of 10 UCD’s

and allocating a maximum of 2 hours for

building each UCD. The Planning stage con-

tinued with building the database structure.

Figure 3 presents a sample of the database

structure built for the ALPHA application.

Fig. 3. Sample of the ALPHA application database structure

The role of the database structure in this

stage of the ALPHA project was to help the

project team gain a deeper understanding of

the application. The database structure built

in the Planning stage was not a mandatory

requirement for the final application. The da-

tabase structure changed significantly in

three separate occasions by the time the pro-

ject was finished. The Planning stage ended

with the project manager and the project

team deciding on what tools, technologies

and process to employ in the development

process of the ALPHA application. In terms

of code versioning tools the project team de-

cided to use Tortoise SVN. For the overall

planning, resource allocation, budgeting and

activity planning the project manager decided

to use Microsoft Project. In terms of bug

tracking, task assignment and progress moni-

toring the project manager and the project

team decided on using Pivotal Tracker. In

terms of technology the project team opted

for the LAMP stack with CentOS as the

Linux distribution. HTTP server of choice

was Apache, SGBD system was MySQL and

programming language PHP. In order to fa-

cilitate building on a MVC architecture the

PHP Zend framework was chosen. The Plan-

ning stage ended with defining standards and

quality measuring techniques. The ALPHA

application was designed to be W3C, Yslow

and Page Speed compliant. Data regarding

quality was collected using the web applica-

tion GTmetrix.

In the Prototype phase the project team built

a mock-up of the application in order to vali-

date the assumptions made in the Research

and Planning stages. The mock-up was built

using Prototyper. The prototype was built

based on the UCD’s developed in the Plan-

ning stage and acted as a proof of concept.

The prototype of the ALPHA application was

presented to the project owner for feedback,

process represented in Figure 1 by transition

3. The prototype was not in accordance with

the project owner’s vision on the final appli-

cation so the project team completely rebuilt

the prototype, process represented in Fig. 1

by transition 6. After rebuilding the prototype

the feedback received form the project owner

required only minor adjustments to the proto-

type, process represented in Figure 1 by tran-

72 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

sition 5. After the adjustments were imple-

mented the prototype reflected accurately the

project’s owner vision on the final applica-

tion. The prototype had to be built fast and it

did not require any programming skills. In

the ALPHA project the maximum time allo-

cated for building a prototype was 3% of the

total estimated project time and there were a

total of 2 prototypes built. The Research,

Planning and Prototype stages were executed

in the spirit of the waterfall model and gener-

ated artefacts that are valuable in the context

of innovative projects. After the prototype

was approved by the project owner the De-

velopment and Design stage started simulta-

neously.

The Design stage consisted of a series of lay-

out iterations were the graphic designer cre-

ated a layout and made adjustments accord-

ing to feedback received from the project

owner, process represented in Figure 1. by

transitions 10, 14 and 15. Building the func-

tionality for the ALPHA application con-

sisted of a series of iterations that were or-

ganized according to timeboxing technique.

Each iteration was planned to last two weeks

and ended with a functional version of the

application. Deadlines were non-negotiable.

Each iteration was built by adding function-

ality to the previous iteration. The ALPHA

project was built in 8 iterations. An iteration

included the Development, Testing and Setup

stages. Development was performed in the

spirit of the Agile methodologies with self-

organizing teams and daily meetings to as-

sess progress and to identify issues. Develop-

ers worked in pairs, with only one of them

codding while the other was observing. Roles

were exchanged daily. Pair programming re-

duces the number of bugs and increases the

likelihood of delivering innovative solutions.

Functionality was built following priorities

set by the project owner. Functionality priori-

tisation was performed using the MoSCoW

model.

Testing was performed using the testing sce-

narios defined in the Planning stage. Scenar-

ios needed adjustments as the requirements

for the ALPHA applications changed during

actual implementation. The testing scenarios

included all the instances of the ALPHA ap-

plication. Figure 4 presents a sample of the

testing schema used in the ALPHA applica-

tion.

Fig. 4. Sample of the testing schema used for the ALPHA application

The testing schema was designed for two

testers. Each tester was involved in the de-

velopment of the application starting from

the Planning stage, when they contributed to

building the UCDs, and ending with the

Setup stage when they tested the application

on the live environment.

The Setup stage entailed installing the appli-

cations on the live environment and adding

proper content. Data was imported into the

application’s database in order to generate

proper content. The first versions of the AL-

PHA application was installed on the live en-

vironment after the first development itera-

tion, which was 5 weeks into the project, in-

cluding research, planning, prototyping and

design. After the first version of the applica-

tion was installed on the live environment

feedback was collected from the end-user

and project manager. The role of the end-user

was to provide feedback regarding usability,

design, and functionality. In the ALPHA pro-

ject after the code from the first iteration was

installed and tested on the live environment

application was tested by a sample batch of

potential end-users. End-user testing was per-

formed after each iteration. The Maintenance

stage started after the code from the last it-

Informatica Economică vol. 19, no. 2/2015 73

DOI: 10.12948/issn14531305/19.2.2015.07

eration was setup on the live environment. In

the ALPHA project the Maintenance stage

focussed on adding new functionality and

improving existing functionality. Also an

important part of the maintenance process

was fixing design, architecture and function-

ality issues that were not identified in the

Testing stage.

4 Quality Control in the ALPHA Applica-

tion

Quality was handled in the ALPHA project

by assessing the application’s attributes in

terms of compliance, usability, reliability, re-

peatability, availability and security.

Compliance is the extent to which the appli-

cation’s functionalities follow architecture,

graphic design and user flows defined in the

planning stage [15]. In order to assess the

ALPHA application in terms of compliance

the Compliance degree, indicator was used.

The indicator is referred in the current paper

using the CD acronym and is defined as fol-

lows:

 (1)

where:

Fl – number of missing functionality;

Fg – number of flawed functionality;

Fp – number of designed functionality

Fe – number of additional functionality;

Fi – number of actual functionality.

The CD indicator ranges in the [0,1] interval

where an application with CD = 0 has an

ideal compliance degree and an application

with CD = 1 is an application with a very low

compliance degree.

Table 1. Interpretation of the CD indicator

Interpretation of the CD indicator CD indicator level

High compliance degree 0

Acceptable compliance degree (0 - 0,1]

Moderate compliance degree (0,1 - 0,2]

Low compliance degree (0.2 – 1]

Usability is given by how easy a user can ac-

cess and use the application’s functionality

[15]. In order to assess the ALPHA applica-

tion in terms of usability the Usability de-

gree, indicator was used. The indicator is re-

ferred in the current paper using the UD ac-

ronym and is defined as follows:

1 2 3

1

min(, , ...)

nfa

k

nfa

k k k na k

k

r a r a r a r a

UD 


 (2)

where:

ra – number of actions required to reach the

a functionality by using route r;

ak – k functionality;

nfa – number of application functionality;

nak – number of possible routes to reach the

ak functionality.

The UD indicator ranges in the [1,100] inter-

val where an application with UD = 1 has an

ideal usability degree and an application with

UD = 100 is an application with a very low

usability degree.

 Table 2. Interpretation of the UD indicator

Interpretation of the UD indicator UD indicator level

Optimal usability degree 1

High usability degree (1 - 3]

Moderate usability degree (3 - 5]

Low usability degree (5 – 10]

Extremely low usability degree > 10

Reliability is the speed of page loading, re- sponse times of different features and behav-

74 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

ior when the application is accessed using

low-speed Internet connections [15]. In order

to assess the ALPHA application in terms of

reliability the Reliability degree, indicator

was used. The indicator is referred in the cur-

rent paper using the RD acronym and is de-

fined as follows:

1

nia

k

k

Vm

RD
nia




 (3)

where:

Vmk – average loading speed for the k in-

stance; variable expressed in seconds;

nia – number of application instances.

The RD indicator ranges in the [0,30] interval

where an application with RD = 0 has an

ideal reliability degree and an application

with RD = 30 is an application with a very

low reliability degree.

Table 3. Interpretation of the RD indicator

Interpretation of the RD indicator RD indicator level

Optimal reliability degree [0 - 2]

High reliability degree (2 - 5]

Low reliability degree (5 – 10]

Extremely low reliability degree (10 – 30]

Repeatability is determined by the degree of

predictability, when seeking a specific out-

come [15]. In order to assess the ALPHA ap-

plication in terms of repeatability testing sce-

narios are used.

Consider T as the set of project testers de-

fined by:

 (4)

where:

ti – i tester;

ntst – number of project testers.

Consider S as the set of project test scenarios

defined by:

 (5)

where:

sj – j scenario;

nsct – number of test scenarios.

Consider R as the set of test results defined

by:

 (6)

where:

rj – j result;

nrez – number of test results.

The ALPHA application has a high repeat-

ability degree if:

 ,

 (7)

Availability is the extent to which the appli-

cation is accessible [15]. In order to assess

the ALPHA application in terms of availabil-

ity the Availability degree, indicator was

used. The indicator is referred in the current

paper using the AD acronym and is defined

as follows:

 (8)

where:

Taa – uptime; variable expressed in hours;

Ttf – total exploitation time; variable ex-

pressed in hours;

The AD indicator ranges in the [0,1] interval

where an application with AD = 1 has an

ideal availability degree and an application

with AD = 0 is an application with a very low

availability degree.

Table 4. Interpretation of the AD indicator

Interpretation of the AD indicator AD indicator level

Low availability degree [0-0,94)

Medium availability degree (0,94 – 0,97]

High availability degree (0,97 – 0,99]

Ideal availability degree (0,99 – 1]

Security represents the extent to which data and personal information are protected [15].

Informatica Economică vol. 19, no. 2/2015 75

DOI: 10.12948/issn14531305/19.2.2015.07

In order to assess the ALPHA application in

terms of security the Security degree, indica-

tor was used. The indicator is referred in the

current paper using the SD acronym and is

defined as follows:

 (9)

where:

Vi – number of identified vulnerabilities;

Vc – number of known vulnerabilities.

The SD indicator ranges in the [0,1] interval

where an application with SD = 0 has an

ideal security level and an application with

SD = 1 is an application with a very low se-

curity level.

Table 5. Interpretation of the SD indicator

Interpretation of the SD indicator SD indicator level

Low security degree [1, 0,3]

Medium security degree (0,3– 0,1]

High security degree (0,1 – 0)

Ideal security degree 0

Interpretation for the quality indicators used

in assessing the ALPHA application was per-

formed empirically based on previously im-

plemented software development projects.

5 Formalizing the ISDF Methodology

The development of the ALPHA application

was performed using the ISDF software de-

velopment methodology. By analysing the

development of the ALPHA application, the

ISDF methodology was formalized and pre-

sented in a structured manner. Table 6 pre-

sents a concise view on the ISDF software

development methodology.

Table 6. ISDF software development methodology characteristics

Methodology

characteristic

ISDF Specific

Roles project owner; project manager; project team; end-user

Skills associate; question; observe; experiment; networking

Team 9 individuals; self-organizing; emphasize informal and face-to-face com-

munication

Tools prototyping; code versioning; bug reporting; progress tracking; graphic de-

sign and workflow applications

Techniques pair programming; timebox approach; MoSCoW prioritisation of tasks

Routines 30 minute meetings; daily written reports; weekly one hour meetings for

planning or adjusting the current iteration

Artefacts use case digammas; wireframes; prototypes; test case scenarios; database

schemas

Processes and

Activities

create artefacts; build prototypes; extend prototype using iterative devel-

opment; collect continues feedback; developed testing scenarios before ac-

tual coding

Standards W3C compliant; B grade by Yslow and Page speed standards; page size

under 2 MB; less than 100 HTTP requests; average page load time under 5

seconds

Quality

control

compliance; usability; reliability; repeatability; availability; security

Restrictions no more than 30 minutes per daily meeting; no more than 10 UCDs; no

more than 2 hours per UCD; no more than 3 prototypes; no more than 1%

of the total estimated time allocated to building a prototype

76 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

Core princi-

ples

early delivery of working software, welcome change, explore multiple im-

plementation scenarios, non-negotiable deadlines, writing code over writ-

ing documentation

Roles of core importance for the ISDF meth-

odology are project owner, project manager,

project team and end-user. The role of the

project owner is to provide accurate and de-

tailed application requirements to the project

manager and to provide continuous feedback.

The ISDF methodology requires the project

owner to be involved in every stage of the

development life cycle. Project owner must

provide feedback on all aspects concerning

the application but most important compo-

nents are: feedback on the prototype, feed-

back on each development iteration and

feedback on design. The role of the project

manager is to compile specifications based

on requirements provided by the project

owner, assemble the project team, design the

overall flow of the application, define the

implementation timeframe, design testing

schemas, track progress and report to the pro-

ject owner. The role of the project team is to

plan the architecture of the application,

choose the technologies required to build the

application, design the database structure, de-

sign the graphical layout, implement func-

tionality, test the application and setup the

application on the live environment. The role

of the end-user is to provide feedback on the

functionality, design, security and usability

of the application.

Skills required in developing innovative

software and by that matter required in ISDF

teams, are the ability to associate, observe,

experiment, network and question. In the

context of innovation, the ability to associate

means being able to make connections across

areas of knowledge. Transferring knowledge

and ideas from other fields into software de-

velopment is an abundant source of innova-

tion. Sharp observation skills are a key ele-

ment of innovation as it facilitates gathering

data and information that eludes most people.

When building a team the project manager

should look for individuals with a network of

vast connections. Being exposed to people

with different backgrounds and perspectives

increases your own knowledge. ISDF re-

quires people with experimenting skills that

build prototypes and pioneer new concepts

and technologies. Questioning is essential for

innovation as it is the catalyst for associating,

observing, experimenting and networking

skills [14].

Teams employed in innovative projects built

using the ISDF methodology consist of

maximum 9 individuals including the project

manager. ISDF teams rely heavily on face-to-

face communication. Empirical trials deter-

mined that teams larger than 9 individuals

have issues with effectively conducting the

daily and weekly meetings. Also project

managers find it hard to properly go through

more than 9 reports a day. ISDF teams are

self-organized in terms of assigning tasks and

building functionality. The project manager

acts as a mediator to balance workload and

solve conflicts.

Tools used in the ISDF methodology include

prototyping, code versioning, bug reporting,

progress tracking, graphic design and work-

flow applications. There are countless tools

that can be used for the above mentioned

tasks. Each team should choose tools that

they are familiar with, that suit their budget

and comply with their company culture. For

instance in the ALPHA project Prototyper

was used for building the prototype, code

versioning was performed using Tortoise

SVN, bug reporting and progress tracking

was performed using Pivotal Tracker,

graphic design was performed in CorelDraw

and workflows were performed using Micro-

soft Visio. ISDF is not a methodology that

focuses on tools but it definitely tries to ex-

ploit them as much as possible. Using the

same tools over and over will allow the pro-

ject manager to reuse artefacts from past pro-

jects.

Techniques used in the ISDF methodology

concern programming, tasks prioritisation

and time management. ISDF relies on pair

programming technique to reduce the number

Informatica Economică vol. 19, no. 2/2015 77

DOI: 10.12948/issn14531305/19.2.2015.07

of bugs, increase solution diversity, build

collaboration networks and stimulate learn-

ing. ISDF uses the timebox approach for pro-

ject planning in order to increase focus and

avoid missing deadlines. In the ISDF meth-

odology prioritisation of tasks is accom-

plished using the MoSCoW technique in or-

der to ensure early delivery of the most valu-

able functionality.

Routines enforced by the ISDF methodology

consist of daily 30 minute meetings, daily

written reports, weekly one hour meetings for

planning or adjusting the current iteration.

Every morning team members meet together

with the project manager and share progress

on their work. A special emphasises on these

meetings is to identify and eliminate factors

that inhibit progress on tasks. Daily written

reports are sent by the team members to the

project manager at the end of each working

day. Reports contain details on the tasks per-

formed that particular day and also allow the

team members to transmit more sensitive in-

formation to the project manager; informa-

tion that they are not comfortable sharing

with the rest of the team in the daily meet-

ings. Weekly meetings are for planning or

evaluating the overall progress of the itera-

tion. Each iteration begins with a weekly

meeting where tasks are assigned to team

members. Task assignment is a collaborative

process as ISDF teams are self-organized, the

project manager only intervenes to mitigate

conflict or to help overcome deadlocks.

Artefacts generated by the ISDF methodol-

ogy consist of use case digammas, wire-

frames, prototypes, test case scenarios and

database schemas. In innovative software de-

velopment application artefacts are very im-

portant because they are required in the proc-

ess of protecting intellectual property rights

like obtaining patents. Innovative software

development projects often result in applica-

tions that incorporate valuable new technolo-

gies or processes that are subject to intellec-

tual property laws. Artefacts are also valu-

able assets when new team members join the

project. In the ISDF methodology all arte-

facts, except database schemas, are generated

by the project manager. The database schema

is generated by the project team.

Process and activities critical to the ISDF

methodology are represented by creating ar-

tefacts, building a prototype, codding and ex-

tending the prototype using iterative devel-

opment, collecting continues feedback and

developing testing scenarios before actual

coding. ISDF is a methodology focused on

coding but creating software artefacts is a

critical process in implementing innovative

applications as it facilitates protecting intel-

lectual property rights and it helps mitigate

risks. Innovation is based on an idea. In order

to tests the feasibility of the idea building a

prototype is required. Prototype can also help

secure additional funding for an innovative

project. Codding and extending the prototype

is performed by using iterative development.

Building an application in multiple iteration

allows for better tolerance to changing re-

quirements as is the case in innovative pro-

jects. A critical process of the ISDF method-

ology is collecting feedback from the project

owner and from the end-user. Feedback from

the project owner is collected in every stage

of the development lifecycle. Feedback from

the end-user is collected after the first itera-

tion code is setup on the live environment.

The testing process begins after codding for

the first iteration is finished. Testing scenar-

ios are written by the project manager and by

the testers before the actual codding process

begins.

Standards within ISDF methodology regard

codding best practices, page size, HTTP re-

quests and average page loading time. ISDF

requires that all pages be W3C compliant

unless breaking best practice guidelines was

performed intentionally in order to boost per-

formance. Also requires a B grade by Yslow

and Page speed standards for all pages. ISDF

enforces page size under 2 MB and less than

100 HTTP requests to load a page. To opti-

mize user experience average page loading

time should be below 5 seconds.

Quality control in the ISDF methodology

concerns compliance, usability, reliability,

repeatability, availability and security. Com-

pliance is assessed by the degree in which

functionality architecture, graphic design and

78 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

user flows adhere to project owner specifica-

tions. Usability is determined by the ease

with which a user accesses and uses an appli-

cation’s functionality. Reliability is deter-

mined by loading speed and response times.

Reliability also requires for applications de-

veloped with ISDF methodology to take into

account users that have access to low-speed

Internet connections. Repeatability of a web

application is determined by the degree of

predictability, when seeking a specific result.

Availability is determined by the extent to

which the application is accessible. Security

is determined by the extent to which data and

personal information are protected [15].

Restrictions enforced by the ISDF method-

ology concern time and resources allocated

for activities. Imposing restrictions ensures

that project does not stray from its original

goals, follows the planned timeframe and

does not exceed initial budget. In the ISDF

methodology the maximum length of an it-

eration is two weeks and the minimum length

is one week. The daily meetings must not ex-

ceed 30 minutes. No more than 10 UCD’s are

created per project and building a UCD

should not take more than 2 hours. No more

than 3 prototypes are built per project and

building a prototype should not take more

than 1% of the estimated project timeframe.

Core principles characterizing the ISDF

methodology consist of early delivery of

working software, welcoming change, ex-

ploring multiple implementation scenarios

and actively involving project owner into all

project stages. ISDF values writing code over

writing specifications. ISDF emphasizes de-

sign over documentation. Though planning is

not overlook development is always priori-

tized. The project owner decides the priority

of tasks and deadlines are non-negotiable.

6 Conclusions

Research results presented in the current pa-

per are confined to the web application de-

velopment field and were not tested on pro-

jects with a timespan larger than 14 months

or on project teams consisting of more than

10 individuals. Innovative software devel-

opment projects require a dedicated software

development methodology that accounts for

frequent change of specifications, high dy-

namics of technology and standards, higher

than usual risks, proprietary cost structure

and custom testing scenarios. The ISDF

methodology was developed empirically by

trial and error in the process of implementing

multiple innovative projects. The current ver-

sion of the ISDF methodology was refined by

reviewing scientific literature and incorporat-

ing valuable elements from the waterfall and

agile development models. The waterfall

model provides support for generating soft-

ware documentation which is valuable in the

case of innovative software development.

The agile model provides a process capable

of coping with frequent change of require-

ments as this is frequently the case in innova-

tive software development projects. The roles

enforced in the ISDF methodology are pro-

ject owner, project manager, project team

and end-user. The ISDF methodology em-

ploys tools for prototyping, code versioning,

bug reporting, progress tracking, graphic de-

sign and workflow applications. The routines

proprietary to the ISDF methodology are

daily 30 minute meetings, daily written re-

ports and weekly one hour meetings. The ar-

tefacts generated by the ISDF methodology

consist of use case digammas, wireframes,

prototypes, test case scenarios and database

schemas. In terms of software development

techniques ISDF methodology relies on pair

programming, timebox approach and MoS-

CoW prioritisation of tasks. The following

are processes and activities proprietary to the

ISDF methodology: creating artefacts, build-

ing prototypes, extending prototypes using

iterative development, collecting continues

feedback and developing testing scenarios

before actual coding. Standards of the ISDF

methodology enforce W3C compliance, Ys-

low and Page speed B grades, less than 100

HTTP requests to load a page, page size un-

der 2 MB and page loading time under 5 sec-

onds. Quality control regards compliance,

usability, reliability, repeatability, availabil-

ity and security. As a future research topic,

ISDF methodology can be scaled in order to

accommodate software development projects

Informatica Economică vol. 19, no. 2/2015 79

DOI: 10.12948/issn14531305/19.2.2015.07

that require larger teams.

Acknowledgment

This paper was co-financed from the Euro-

pean Social Fund, through the Sectorial Op-

erational Programme Human Resources De-

velopment 2007-2013, project number POS-

DRU/159/1.5/S/138907 "Excellence in scien-

tific interdisciplinary research, doctoral and

postdoctoral, in the economic, social and

medical fields -EXCELIS", coordinator The

Bucharest University of Economic Studies.

A shorter version of this paper, titled Soft-

ware Development Methodology for Innova-

tive Projects - ISDF Methodology, has been

presented at the 14th International Confer-

ence on Informatics in Economy, Education,

Research and Business Technologies.

References
[1] T. DeMarco, “The role of software devel-

opment methodologies: past, present, and

future”, Proceedings of the 18th interna-

tional conference on Software engineer-

ing, 25-30 Mar. 1996, Berlin, Germany,

Publisher: IEEE, ISBN: 0-8186-7246-3,

pp. 2-4

[2] M. R. J. Qureshi, “Agile software devel-

opment methodology for medium and

large projects”, IET Software, vol.6, no.4,

pp.358-363, doi: 10.1049/iet-

sen.2011.0110

[3] K. Petersen, C. Wohlin and D. Baca,

“The Waterfall Model in Large-Scale

Development”, Proceedings of the 10th

International Conference on Product-

Focused Software Process Improvement,

15-17 Jun. 2009, Oulu, Finland, Pub-

lisher Springer Berlin Heidelberg, ISBN

978-3-642-02151-0, pp. 386-400

[4] S. H. VanderLeest and A. Buter, “Escape

the waterfall: Agile for aerospace”, Pro-

ceedings the 28th Digital Avionics Sys-

tems Conference, 23-29 Oct. 2009, Or-

lando, USA, Publisher: IEEE, doi:

10.1109/DASC.2009.5347438, pp. 6.D.3-

1- 6.D.3-16

[5] T. Dyba and T. Dingsoyr, “What Do We

Know about Agile Software Develop-

ment?”, IEEE Software, vol.26, no.5, pp.

6-9, doi: 10.1109/MS.2009.145

[6] B. V. Thummadi, O. Shiv and K. Lyyti-

nen, “Enacted Routines in Agile and Wa-

terfall Processes”, Proceedings of the

2011 Agile Conference, 7-13 Aug., Salt

Lake City, USA, Publisher: IEEE, 2011,

doi: 10.1109/AGILE.2011.29 pp. 67-76

[7] P. Trivedi and A. Sharma, “A compara-

tive study between iterative waterfall and

incremental software development life

cycle model for optimizing the resources

using computer simulation”, Proceedings

of the 2nd International Conference on

Information Management in the Knowl-

edge Economy, 19-20 Dec. 2013,

Chandigarh, India, Publisher: IEEE, pp.

188-194

[8] D. Duka, “Adoption of agile methodol-

ogy in software development”, Proceed-

ings of the 36th International Convention

on Information & Communication Tech-

nology Electronics & Microelectronics,

20-24 May 2013, Opatija, Croatia, Pub-

lisher: IEEE, ISBN: 978-953-233-076-2,

pp. 426-430

[9] S. Zhong, C. Liping and C. Tian-en, “Ag-

ile planning and development methods”,

Proceedings of the 3rd International Con-

ference on Computer Research and De-

velopment, 11-13 Mar. 2011, Shanghai,

China, Publisher: IEEE, doi:

10.1109/ICCRD.2011.5764064, pp. 488-

491

[10] J. A. Livermore, “Factors that impact

implementing an agile software devel-

opment methodology”, Proceedings of

the 2007 IEEE SoutheastCon, 22-25

March 2007, Richmond, USA, Publisher:

IEEE, doi:

10.1109/SECON.2007.342860, pp.82-86

[11] T. J. Lehman and A. Sharma, “Software

Development as a Service: Agile Experi-

ences”, Proceedings of the 2011 Annual

SRII Global Conference, 29 Mar. - 2 Apr.

2011, San Jose, USA, Publisher: IEEE,

doi: 10.1109/SRII.2011.82, pp. 749-758

[12] A. Cockburn, “Selecting a project's

methodology”, IEEE Software, vol.17,

no.4, pp. 64-71, doi: 10.1109/52.854070

80 Informatica Economică vol. 19, no. 2/2015

DOI: 10.12948/issn14531305/19.2.2015.07

[13] R. Klopper, S. Gruner and D. G. Kourie,

“Assessment of a framework to compare

software development methodologies”,

Proceedings of the 2007 Annual Research

Conference of the South African Institute

of Computer Scientists and Information

Technologists on IT Research in Devel-

oping Countries, Sunshine Coast, 30 Sep.

- 03 Oct. 2007, South Africa, Publisher:

IEEE, doi: 10.1145/1292491.1292498,

pp. 56-65

[14] C. M. Christensen, J. Dyer and H. Gre-

gersen, The Innovator's DNA: Mastering

the Five Skills of Disruptive Innovators,

Publisher: Harvard Business Review

Press, pp. 304, ASIN: B0054KBLRC

[15] M. Despa, I. Ivan, C. Ciurea, A. Zamfi-

roiu, C. Sbora, E. Herteliu, “Software

testing, cybernetic process”, Proceedings

of the 8th International Conference on

Economic Cybernetic Analysis: Devel-

opment and Resources, 1-2 Nov. 2013,

Bucharest, Romania ISSN 2247-1820,

ISSN-L 2247-1820.

Mihai Liviu DESPA and has graduated the Faculty of Cybernetics, Statis-

tics and Economic Informatics from the Bucharest Academy of Economic

Studies in 2008. He has graduated a Master’s Program in Project Manage-

ment at the Faculty of Management from the Bucharest Academy of Eco-

nomic Studies in 2010. He is a PhD Student at the Economic Informatics

PhD School and he is currently Project Manager at GDM Webmedia SRL.

His main field of interest is project management for software development.

