
120 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.11

Implementing Monitoring Systems in Mobile Applications – a Case Study

Octavian DOSPINESCU, Roxana-Marina STRAINU

Faculty of Economics and Business Administration, AL.I.Cuza University, Iasi

doctav@uaic.ro, roxana.strainu@gmail.com

During the last years, the evolution of mobile applications allowed the developers to become

more and more creative. In this way, we can imagine many applications models with a real

impact in the real life. In this article we are trying to present a case study for a monitoring

system using the Android platform and the benefits of computer networks. We use the power of

mobile sockets and mobile threads, integrating them in a complex architecture in order to ob-

tain a real monitoring system. As an immediate application, we propose a baby monitoring

systems so that the children could be remotely supervised by their parents. The case study is

based on an Android mobile client-server architecture and also uses the capabilities offered by

the phone’s speaker and microphone. We intend to have a robust application and that’s why

we initially preferred Network Service Discovery and Android P2P, but these functionalities

are implemented starting with Android 4.1. So, we emulated all these functionalities by using a

model based on sockets and server sockets.

 Keywords: Mobile Monitoring Systems, Android Implementation, Mobile Sockets, Mobile Ar-

chitectures

Introduction

In this article we present a case study of a

mobile monitoring application made on An-

droid platform. Our goal is to implement an

application which can be used by parents in

order to supervise their children; this vision

could be used to also improve the proposals

about the intelligent tutoring systems de-

scribed by [1] or to implement innovative sys-

tems described by [2]. We propose the follow-

ing scenario: the baby is in a room and the par-

ent is in other room; in both rooms they have

smart-phones with our application. Without

using the GSM provider, the parent can hear

the activity of the baby. Eventually, if the

baby cries, the system will warn the parent

about the situation.

The application is designed to run in some

conditions and rules:

 the application does not use the GSM ca-

pabilities and it can also run on a tablet;

 the minimum required platform is An-

droid 2.0;

 the application uses only a Wi-Fi connec-

tion and doesn’t need any external remote

server;

 the application uses the speakers and the

microphones of the involved smart-

phones.

Initially, we intended to use Network Service

Discovery [3] and Android P2P, but these

functionalities are implemented starting with

Android 4.1. For these reasons, we preferred

to emulate these capabilities by using the

socket’s technology. As a conclusion, the only

restrictions are the following: smart-phones

with a Wi-Fi connection, speaker and micro-

phone. As we know, these resources are al-

ready available on almost all the smart-

phones, so the proposed application could be

installed on a significant number of mobile

devices. Although the new HTML5 standard

could represent a solid enterprise mobile com-

puting foundation and a feasible path towards

the proliferation of the applications as de-

scribed in [4], we consider that it is extremely

important that an application could be used by

a large number of clients with “normal”

smart-phones. We are also conscious that, ac-

cording to [5], Mobile Application Develop-

ment is a popular topic these days, when tons

of mobile apps are released and available tools

and resources are expanding.

Nowadays, the wireless networks have many

sensors and protocols used to capture and

transmit data [6], but one of the oldest meth-

ods of network communication provided by

Java is by using Transfer Control Protocol

1

mailto:doctav@uaic.ro

Informatica Economică vol. 18, no. 4/2014 121

DOI: 10.12948/issn14531305/18.4.2014.11

(TCP) sockets. For this, we use two classes:

Socket and Server Socket, the latter being the

one to trace the connections that are made. For

the audio streaming, it is used the device’s mi-

crophone which is operated by Android

through the objects of type Audio Recorder.

The information received by the microphone

is encoded (using Audio Format class)

through predefined constants (ENCOD-

ING_PCM_16BIT) and it is allocated a broad-

cast channel (in our case CHAN-

NEL_IN_MONO). The audio coding is done

using PCM (Pulse Code Modulation). It con-

verts audio signals (represented by sound

waves) to a digital signal (strings of 0 and 1)

with or without compression.

For the audio reception it is used the smart-

phone speaker. The speaker is handled in An-

droid using AudioTrack class. The signal

emitted by the speaker uses the same type of

encryption like that is received by the micro-

phone and transmitted over the network. This

time, the communication channel is CHAN-

NEL_OUT_DEFAULT and the speaker cho-

sen to issue the sound is operated by Audio

Manager class. The predefined constant

VOICE_CALL will direct the sound to re-

ceiver, and STREAM_MUSIC will direct the

information to the speaker.

2 Scenarios and architectures for data and

sound transmission in the monitor system

The network audio transmission is made by

data packets with the rules described in [7].

They can be created and transmitted using

Datagram Packet and Datagram Socket which

work together. From the sender’s side, the

Datagram Socket object transmits an object of

type Datagram Packet (which contains data

from a buffer) to the IP connected to that de-

vice. The IP is then passed as a parameter

when creating objects of type AudioSender

(the class that will manage the sound record-

ing operation). The receiver’s object of Data-

gram Socket type receives a Datagram Packet

and the data from the packet is introduced in a

buffer which is then played by the speaker

with the Audio Receiver class. This emission-

reception process is presented in Figure 1.

Fig. 1. The emission-reception process using Datagram Socket in a client-server architecture

The application uses threads and they are ob-

tained by implementing the Runnable inter-

face or by inheriting the Thread class which

allows to override the run() method.

Scenario A:

In this scenario, the flow of execution is as fol-

lows:

 on both devices the application starts and

awaits the user action;

 when the user selects a type of device, the

graphical interface will change according

to its type.

The complete description of this scenario is

presented in Figure 2.

122 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.11

Fig. 2. Devices waiting for the user’s action

The child device waits for parent device to

connect. When the socket server object from

the child device detects the connection, it runs

the thread of the Audio Sender object which

will switch on the microphone and it will start

to deliver data packets to the child device.

This will start the thread of AudioReceiver in

order to receive packets from the server and to

deliver them as a sound. The messages are

sent by the server and the client to the GUI us-

ing a special handler.

The connected devices will show like in Fig-

ure 3 and in terms of hearing, the child device

transmits the sounds to the parent device.

Fig. 3. Connected devices in scenario A

In order to better illustrate the operation of this scenario, we offer the detailed diagram pre-

sented in Figure 4.

Informatica Economică vol. 18, no. 4/2014 123

DOI: 10.12948/issn14531305/18.4.2014.11

Fig. 4. The execution flow and the architecture of scenario A

Scenario B:

This scenario assumes that the parent device

is able to emit sounds to the child device. This

means that the parent device will have a but-

ton that will handle events of sound emission

to and from the child device. As we can ob-

serve, this scenario is more complicated.

Based on the scenario A described in Figure

4, it is not enough a communication only from

client and GUI, but also in a reverse sense so

that the client thread knows how to manage

the transmission and reception (by pressing

and releasing the button).

Also, the communication between client and

server is no longer enough by using just sock-

ets. The client must warn the server that it in-

tends to transmit sound to it and the server

should prepare for receiving it. In the same

scenario, both client and server threads will

have to manage how to communicate with the

threads reserved for the sound. There will be

not enough just to call the start() method of the

sender and receiver’s thread, but also their

swap between them depending on user’s ac-

tion. The performances of the threading tech-

nique are very well described in [8].

Figure 5 reveals the way of working for this

scenario and the internal structure of the ap-

plication that is based only on threads.

124 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.11

Fig. 5. The execution flow and the architecture of scenario B

The threads communicate each other using

socket data streams and we had in mind the

rules and principles presented in [9] and [10].

In this scenario, when the client receives the

signal from the graphical interface by pressing

“Talk to the baby” button to send sound to the

server, it will communicate to the Audi-

oSender thread, through a Piped Writer object,

how to behave:

 “1” means that it should start recording

and sending packets to the receiver;

 “0” means that it should release the micro-

phone because the audio streaming is not

necessary anymore.

Meanwhile, the server is alerted via a text

message (using objects of type Data Stream)

that is to receive a sound in order to know to

stop broadcasting and start reception. The

server in turn sends messages to Audio Re-

ceiver and Audio Sender to stop or start, then

to the graphical interface to know to handle

the corresponding event: it will replace the

image of the microphone with the image of the

speaker. So it will also behave the client

thread announcing GUI about the sound trans-

mission to another device, and it will change

the speaker with the microphone.

The result of this process is presented in Fig-

ure 6.

Informatica Economică vol. 18, no. 4/2014 125

DOI: 10.12948/issn14531305/18.4.2014.11

Fig. 6. The behavior of parent and child devices when they transmit sound in reverse

When the “Talk to the baby” button is re-

leased, the images on the screen and the cor-

responding text will change as shown in Fig-

ure 7.

Fig. 7. Connected devices according to the scenario B

As we could see, the most interesting and re-

alistic scenario is scenario B, which will be

implemented in the following section.

3 The implementation of the monitoring

system using Android platform

In order to implement the scenarios presented

in the section above, we used many specific

classes: AudioReceiver, AudioSender,

126 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.11

ClientThread, ServerThread,

CommunicationThread. All these classes are

used then in MainActivity class. We consider

that the most important and relevant classes

are AudioReceiver and AudioSender.

AudioReceiver class is inherited from the

Thread class. It receives sounds and the plays

them for the user.

public class AudioReceiver extends Thread{

 public static DatagramSocket socket;

 private AudioTrack speaker;

 //Audio Configuration.

 private int sampleRate = 16000; //How much will be ideal?

 private int channelConfig = AudioFormat.CHANNEL_OUT_DEFAULT;

 private int audioFormat = AudioFormat.ENCODING_PCM_16BIT;

 private boolean status = true;

 public AudioReceiver() {

 // TODO Auto-generated constructor stub

 Log.d("Audio Receiver","Creating receiver...");

 }

 public int getPort(){

 return socket.getLocalPort();

 }

 public InetAddress getIP(){

 return socket.getLocalAddress();

 }

 @Override

 public void run() {

 try {

 //socket-ul severului

 socket = new DatagramSocket(50005);

 Log.d("VR", "Socket was Created");

 Log.d("VR", "IP server: "+socket.getInetAddress());

 /*int minBufSize = AudioRecord.getMinBufferSize(sampleRate,

 channelConfig, audioFormat);*/

 //the same minim buffer size at sender and receiver

 int minBufSize = 4096;

 byte[] buffer = new byte[minBufSize];

 //the first parameter says where the sound will go.

 //AudioManager.VOICE_CALL is for the special speaker, and

 //AudioManager.STREAM_MUSIC is for the speaker

 speaker = new

AudioTrack(AudioManager.STREAM_MUSIC,sampleRate,channelConfig,audioFormat,minBufSiz

e,AudioTrack.MODE_STREAM);

 DatagramPacket packet;

 //speaker.play();

 Log.d("VR", "Playing the sound...");

 while(!isInterrupted()) {

 try {

 packet = new DatagramPacket(buffer,buffer.length);

 socket.receive(packet);

 Log.d("VR", "Receive packet of dimension:

"+buffer.length);

 //reading content from packet

 buffer=packet.getData();

 Log.d("VR", "Put the packet in buffer...");

 //speaker.setPlaybackRate(16000);

 //send data to speaker

 speaker.write(buffer, 0, minBufSize);

 Log.d("VR", "Writing data in speaker...");

 speaker.play();

 } catch(IOException e) {

Informatica Economică vol. 18, no. 4/2014 127

DOI: 10.12948/issn14531305/18.4.2014.11

 Log.e("VR","IOException");

 }

 }

 } catch (SocketException e) {

 Log.e("VR", "SocketException");

 //socket.close();

 }

 }

 public void stopReceiving(){

 speaker.release();

 //socket.close();

 }

 public String getIpAddress() {

 String ip = "";

 try {

 Enumeration<NetworkInterface> enumNetworkInterfaces =

NetworkInterface.getNetworkInterfaces();

 while (enumNetworkInterfaces.hasMoreElements()) {

 NetworkInterface networkInterface =

enumNetworkInterfaces.nextElement();

 Enumeration<InetAddress> enumInetAddress =

networkInterface.getInetAddresses();

 while (enumInetAddress.hasMoreElements()) {

 InetAddress inetAddress =

enumInetAddress.nextElement();

 if (inetAddress.isSiteLocalAddress()) {

 ip += "SiteLocalAddress: "+

inetAddress.getHostAddress() + "\n";

 }

 }

 }

 } catch (SocketException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 ip += "Something Wrong! " + e.toString() + "\n";

 }

 return ip;

 }

}

AudioSender class is inherited from the

Thread class. In fact, it is a sound sender that

reads data from the smart-phone’s micro-

phone. The most important implemented

methods are run(), stopSending() and re-

sumeSending(), as we can see in the code be-

low.

public class AudioSender extends Thread{

 public AudioSender(InetAddress destIP) {

 // TODO Auto-generated constructor stub

 Log.d("Audio Sender", "Creating the sender...");

 destinationIP=destIP;

 buffer = new byte[4096];

 recorder = new

AudioRecord(MediaRecorder.AudioSource.MIC,sampleRate,channelConfig,audioFormat,buff

er.length);

 }

 @Override

 public void run() {

 try {

 socket = new DatagramSocket();

 Log.d("VS", "It was created the socket for Audio Sender");

128 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.11

 //android.os.Process.setThreadPriority(android.os.Process.THREAD_PRIORITY_URG

ENT_AUDIO);

 //Log.d("VS","Buffer has " + minBufSize +" bytes!");

 Log.d("VS", "The recipient is: "+destinationIP.toString());

 //recorder.startRecording();

 Log.d("VS", "Start recording...");

 if(recorder.getState()==AudioRecord.STATE_INITIALIZED){

 recorder.startRecording();

 while(status){

 String action=getMessage();

 Log.d(TAG,"The action for microphone is:

"+action);

 //resumeSending();

 while(result.equals("start")){

 resumeSending();

 }

 while(result.equals("true")){

 recorder.release();

 Log.d(TAG, "Pausing microphone!...");

 }

 }

 }else{

 Log.d(TAG, "Warning!The microphone was not initialized");

 }

 }catch (IOException e) {

 Log.e("VS", "IOException");

 }

 }

 public void stopSending(){

 recorder.release();

 Log.d(TAG, " Pausing microphone!...");

 }

 public void resumeSending(){

 //reading data from MIC into buffer

 recorder.read(buffer, 0, buffer.length);

 Log.d("VS", "The buffer has "+buffer.length);

 //we put the buffer in a packet

 Log.d("VS", "Packet created...");

 DatagramPacket packet = new DatagramPacket

(buffer,buffer.length,destinationIP,port);

 Log.d("VS", "sending the packet...");

 try {

 socket.send(packet);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

4 Conclusions, advantages and future di-

rections

As we noted in the previous sections, the ap-

plication model that we propose has a number

of real advantages:

 it can be used on smart-phones with An-

droid 2.0;

 it uses limited resources and base classes

(threads and classic graphical user inter-

face);

 it uses features available on all phone

(speaker and microphone);

 it does not require a remote dedicated

server, because the transmission is made is

a “peer-to-peer” way.

During all the tests we made, the application

Informatica Economică vol. 18, no. 4/2014 129

DOI: 10.12948/issn14531305/18.4.2014.11

worked fine and the quality of the transmis-

sion was excellent.

In the future, our model could be improved

with some additional features:

 a warning system if the level of the sound

exceeds a specified limit (for example, if

the baby cries, then the parent should be

warned in a specific way);

 a video system which could be activated

in some specific conditions (for example,

if the baby does not produce any sound for

a while, then the video transmission

should automatically activate on the par-

ent side).

As a conclusion, we can say that the model we

propose in this article is a realistic one and it

has the potential to be extended with addi-

tional features.

References

[1] E. Pecheanu, D.Stefanescu, S.C. Buraga

and A. Istrate, “Integratin Hypermedia

Objects in an Intelligent Tutoring Sys-

tem”, The Annals of “Dunarea de Jos”

University of Galati, fascicle III, 2000, pp.

92-99. Available:

http://www.ann.ugal.ro/eeai/archives/lf-

01.pdf

[2] I. Smeureanu, N. Isaila, “New information

technologies for an innovative education”,

World Journal for Educational Technol-

ogy, vol. 3, issue 3 (2011), pp. 177-189.

Available: http://www.world-education-

center.org/index.php/wjet/arti-

cle/view/252/pdf_68

[3] Android Developer, “Using Network Ser-

vice Discovery”. Technical documenta-

tion. Available: http://developer.an-

droid.com/training/connect-devices-wire-

lessly/nsd.html

[4] C. Strîmbei, “SOA Based Data Architec-

ture for HTML5 Web Applications”, Re-

vista Informatica Economică, vol. 17,

no.2/2013, pp. 84-95

[5] L.Hurbean and D. Fotache, “Mobile Tech-

nology: Binding Social and Cloud into a

New Enterprise Applications Platform”,

Informatica Economica Review, vol. 17,

no.2/2013, pp. 73-83

[6] R.S. Bal and A.K. Rath, “Clusterin Struc-

ture and Deployment of Node in Wireless

Sensor Network”, Journal of Information

technology and computer science”, 2014,

10, pp. 70-76. Available:

http://www.mecs-press.org/ijitcs/ijitcs-

v6-n10/IJITCS-V6-N10-10.pdf

[7] M. Mayilvaganan and S. Dhivya, “A Sim-

ple Packet Transmission Scheme For

Wireless Data Over Routing Protocols – A

Survey”, International Journal of Re-

search in Computer Applications and Ro-

botics, august 2014, vol. 2, Issue 8, pp.

131-135. Available: http://www.ijr-

car.com/Volume_2_Issue_8/v2i819.pdf

[8] A.Kika and S. Greca, “Multithreading Im-

age Processing in Single-core and Multi-

core CPU using Java”, International Jour-

nal of Advanced Computer Science and

Applications, Vol. 4, No. 9, 2013. Availa-

ble: http://thesai.org/Downloads/Vol-

ume4No9/Paper_26-Multithreading_Im-

age_Processing_in_Single-core.pdf

[9] S.Sangar and M.L.Manickam, “Security

and Privacy in Wireless Body Area Net-

work”, Indian Streams Research Journal,

Vol. 4, Issue 8, 2014, pp. 1-7

[10] M.Georgescu and N.Suicimezov, “Issues

Regarding Security Principles in Cloud

Computing”, USV Annals of Economics

and Public Administration, Vol. 12, Issue

2(16), 2012, pp. 221-226

http://developer.android.com/training/connect-devices-wirelessly/nsd.html
http://developer.android.com/training/connect-devices-wirelessly/nsd.html
http://developer.android.com/training/connect-devices-wirelessly/nsd.html
http://www.mecs-press.org/ijitcs/ijitcs-v6-n10/IJITCS-V6-N10-10.pdf
http://www.mecs-press.org/ijitcs/ijitcs-v6-n10/IJITCS-V6-N10-10.pdf
http://thesai.org/Downloads/Volume4No9/Paper_26-Multithreading_Image_Processing_in_Single-core.pdf
http://thesai.org/Downloads/Volume4No9/Paper_26-Multithreading_Image_Processing_in_Single-core.pdf
http://thesai.org/Downloads/Volume4No9/Paper_26-Multithreading_Image_Processing_in_Single-core.pdf

130 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.11

Octavian DOSPINESCU graduated the Faculty of Economics and Business

Administration in 2000 and the Faculty of Informatics in 2001. He achieved

the PhD in 2009 and he has published as author or co-author over 30 articles.

He is author and co-author of 10 books and teaches as a lecturer in the Depart-

ment of Information Systems of the Faculty of Economics and Business Ad-

ministration, University Alexandru Ioan Cuza, Iasi. Since 2010 he has been a

Microsoft Certified Professional, Dynamics Navision, Trade&Inventory

Module. In 2014 he successfully completed the course “Programming Mobile Applications for

Android Handheld Systems” authorized by Maryland University. He is interested in mobile

devices software, computer programming and decision support systems.

Roxana-Marina STRAINU graduated in 2014 the Master of Business Infor-

mation Systems at the Faculty of Economics and Business Administration,

Alexandru Ioan Cuza University of Iasi. She also graduated the Faculty of

Mathematics in the year 2005. She is interested in developing smart systems

and mobile applications on Android platform. Now she is a PhD student in the

business information systems area.

