
62 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.06

Migrating Existing PHP Web Applications to the Cloud

Ionuţ VODĂ

Zitec COM srl, Bucharest, Romania

ionut.voda@gmail.com

The purpose of this paper is to present a set of best practices for moving PHP web applications

from a traditional hosting to a Cloud based one. PHP applications are widespread nowadays

and they come in many shapes and sizes and that is why they require a special attention. The

paper goes beyond just moving the code in the Cloud and setting up the run-time environment

as some architectural changes must be done at application level most of the time. The decision

of how and when to make these changes can make the difference between a successful migration

and a failed one. It will be presented how to decouple and scale an application, how to scale a

database while following the high availability principles.

Keywords: PHP, Cloud Computing, Cloud Migration, Web Applications

Introduction
Over the last decade web applications

started to become more and more popular.

Among various technologies that powered

these websites PHP is, with no doubt, one of

the most popular. Most of the high traffic sites

and platforms such as Yahoo.com, Face-

Book.com, Wikipedia.com, Wordpress.com

are using PHP to power their services [1].

Running on more than 200M active sites [2] it

quickly became used on various Cloud plat-

forms as well, as the need for scale and avail-

ability emerged for those sites.

While each Cloud vendor has documentations

aimed to help developers and/or system archi-

tects to move their applications to Cloud, they

are focused mostly on their services and they

not provide a Cloud wide guidance. This can

make the process of selecting a particular

Cloud vendor a little difficult. The problem

becomes even trickier for custom solutions

that not always fit on a Cloud offering in terms

of services they provide.

The contribution of this paper is in the way it

presents migration strategies tailored for PHP

applications, whether they are custom soft-

ware or an open source platform.

The ultimate goal of this paper is to assist PHP

developers, the system architects and eventu-

ally a company, when moving from a tradi-

tional hosting to Cloud, by helping them to

choose the Cloud platform and services best

suited for their applications.

2 When to migrate to Cloud
Every application can be migrated to Cloud,

there is no doubt about it. However certain ap-

plications make a best fit for the Cloud in what

regards the Cloud services utilization (such as:

encoders [3], CDN [4] [5], relational data-

bases [6] [7]) and automatic scaling of re-

sources [8]. Others applications can be just

moved to the Cloud without getting to fully

leverage the resources a Cloud provide. The

later applications are said to be less ideal can-

didates for a Cloud Migration. Each of the two

categories will be described in more detail be-

low.

Application types that make a good fit for a

Cloud migration:

 Applications with periodic and demanding

processing needs: these can be applications

that do batch analyzes on various data and

which may become very computing intensive.

Batch analyzes might refer to: file conversion

from one format to another, reporting, seman-

tic text analyzes, text indexing, data cluster-

ing, data classification, neural network train-

ing for machine learning and so on. All of

these operations are time predictable, in what

concerns their occurrence, and with a high de-

mand for computing power which translates in

a greater need for hardware. Although the

hardware might be bought it might not worth

the investment as the processing takes a lim-

ited number of hours per time unit (day, month

and so on). More than that, a company can de-

cide at a certain point to further accelerate the

1

Informatica Economică vol. 18, no. 4/2014 63

DOI: 10.12948/issn14531305/18.4.2014.06

batch processing process so it can end more

quickly, let's say in less than an hour as op-

posed of 3 or 4 hours. This would be very easy

in a Cloud environment just by spinning up

some more computing units, while it can be-

come challenging if not impossible otherwise

in a standard hosting due to hardware limita-

tion.

 Applications with unexpected usage peaks:

these are applications exposed to outside

world mostly (online shops, product sites,

blogs etc) which have a steady user base that

can do something at some point which can end

up with attracting a very large number of us-

ers. For instance it can get referenced on a

popular web page or they can host a video/au-

dio track that gets viral [9] or release a mar-

keting campaign that can become more suc-

cessful than anticipated (coupons, promo

codes, ad words, etc.). In other words these are

applications that cannot predict the inbound

traffic volume and the exact time frame but

they have to handle it properly. They know the

traffic will come in but they don't know how

much, when and how it will be distributed.

Just like the above category, hardware acqui-

sition might not worth the costs due to frag-

mented usage which can lead to a lot of hard-

ware just being sit there unused.

 Applications faced with the need for High

Availability (HA) and scalability: here are two

categories: on one hand, there are applications

that want to provide a HA service to their end-

users and applications that expect an increase

in their usage or plan to extend their services

to a larger user base. A HA [10] setup means

that the application has no single point of fail-

ure (SPOF) which is achieved by adding a re-

dundancy to each endpoint, component or ser-

vice that it has. Naturally this assumes for

more hardware plus the mechanisms needed

to achieve a HA such as: automatic fail-over,

load balancing and monitoring. The second

category covers applications that want to in-

crease their usage base which, for instance, are

extending their product or service offering or

are expanding to new markets, to new coun-

tries and so on. This also comes with the need

for new hardware and, again, the management

layer on top of it to make it work.

 Applications with the need for various testing

environments: beside moving or running the

production environment in the Cloud, which

we covered above, one can choose to use the

Cloud for running a test environment. The test

environments can be permanent, in case we

are talking about a staging [11] layer or tem-

porary when just a specific set of tests wants

to be performed, such as security testing [12]

or load testing [13]. Either one, some hard-

ware is again needed. The cost impact in hard-

ware acquisition is much higher for the latter

category (security testing and load testing) as

these tests can be performed a few times a

year. The problem with them is that they re-

quire a full blown production setup in order to

be relevant and that is why getting all that

hardware might become inefficient from a

cost perspective.

 Like mentioned above there are some applica-

tions that, while they can be moved to Cloud

as well, they will not fully benefit the Cloud

components. The applications falling under

this category are mostly intranets like: invoic-

ing software, CRMs [14], ERPs [15] and so

on. Their main characteristics is that they have

a predictable user base (the employees) and

usage pattern (working hours). This predicta-

bility and constant usage can give room for a

company to plan ahead and buy for its own

hardware. Of course that at some point these

applications too can become good candidates

for the Cloud, but most of the times they do

not reach the Cloud so quickly.

Ultimately the Cloud offers a pay-as-you [16]

go model and managed services (auto-scaling,

database services and so). These two are very

attractive for companies that do not want to or

afford to invest in a full blown infrastructure

for their services. Most of the companies pre-

fer to keep the focus on their core business and

let a Cloud vendor deal with the rest.

3 Cloud types

Depending by the level of management for

their services, the Clouds can be classified in

three types: Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as

a Service (SaaS). With IaaS standing at the

bottom, PaaS on top of it and SaaS above the

64 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.06

two, this is also referred as “Cloud pyramid”

[17], Figure 1.

Fig. 1. The Cloud pyramid [17]

IaaS, as the name suggest, delivers cloud in-

frastructure such as: computing (through vir-

tual machines), queues, storage, load balanc-

ers, VLANs, operating systems and others. It

requires in depth technical knowledge in order

to deploy and operate an application. Each

component has to be managed: scaled

up/down and load balanced. As IaaS compu-

ting units are in fact virtual machines (VMs),

this gives a total freedom of what software can

be deployed and how it can be configured.

However it is in user responsibility to patch

and update the running software.

Less appealing with IaaS is the monthly cost

calculation which can become very compli-

cated when more and more services are being

used in an application. Almost each service

within a Iaas Cloud have at least two dimen-

sions or attributes that account for billing. For

instance computing units (i.e EC2 in AWS

[18] or VM in Azure [19]) are being charged

at operating hours and used bandwidth, a data

storage service (i.e S3 in AWS [20] or Storage

for Azure [21]) for storage and bandwidth and

so on.

PaaS makes a step further and provides man-

aged services. That means the software up-

dates and patching responsibility falls to

Cloud vendor. Another benefit when running

PaaS is that the scaling, backup, data replica-

tion and other infrastructure specific opera-

tions happen transparently for the end user be-

ing orchestrated by the Cloud itself. Examples

of managed services under PaaS are: SQL Da-

tabase from Azure [7] which is a managed Mi-

crosoft SQL Server that comes with built in

scalability, backup, ego-replication and soft-

ware update management or Amazon Dyna-

moDB [22] which is a fully managed NoSQL

[23] database running in the Cloud. Just like

SQL Database in Azure, the whole infrastruc-

ture management operations are taking place

transparently for the end-users.

SaaS sits on top of the pyramid and it comes

with fully working software being managed in

the Cloud. A SaaS application can encompass

both IaaS components and PaaS applications.

It can use either of the two separately of

course. Examples of SaaS software are video

platforms such as (YouTube, Vimeo), email

services (Gmail, Yahoo Mail) or CRM soft-

ware (Microsoft Dynamics CRM, Zoho).

As noted, IaaS requires most of technical

knowledge between the three. With it, one

will probably need a developer to run an ap-

plication (or at least make it run) or to migrate

it in the Cloud. By moving to PaaS a little

more comfort is gained as much of the mainte-

nance work is carried by the Cloud itself.

However at this level some technical know-

how is still needed to make an application

work. SaaS is the easiest to adopt as it requires

no infrastructure configurations. It however

requires software configurations like any

other application.

Nowadays the boundaries of Cloud platforms

are becoming very thin as most of the vendors

are exposing mixed services that fall either

under IaaS, either under PaaS. Amazon Web

Services started with IaaS offerings (EC2,

SQS and S3) and added PaaS components

along the way (relational databases and non-

relational databases). Microsoft Azure offers

both PaaS components (Azure Websites [24]

and SQL Database) and IaaS (Virtual Ma-

chines and Storage).

4 Planning a cloud migration
A cloud migration consists in several distinct

steps each with its unique characteristics. Be-

fore going through these steps, it is assumed

that the application or at least the mod-

ules/components of the application that want

to be migrated to Cloud were identified. The

steps to be undertaken for a migration are as

follows: determine the architecture blueprint,

Informatica Economică vol. 18, no. 4/2014 65

DOI: 10.12948/issn14531305/18.4.2014.06

choose a Cloud vendor, refine the application

architecture, testing the setup and the release.

Fig. 2. The initial application running on a

single server

We will use as an example a custom PHP ap-

plication sitting on one server running with

three components: a front-end layer, an API

[25] and a data persistence layer, which is a

MySQL database [26] in our case. Before

moving it to Cloud the application compo-

nents look this way:

Determine the architecture blueprint: in this

very first step the scalable components of the

application or part of the application that need

to be migrated to Cloud are identified. This

step should be Cloud independent in the way

that the components should not rely at this

stage on a particular Cloud service or offering.

Of course if a company have already chosen

the Cloud vendor, it can include specific com-

ponents at this stage too. The main point of

this step is to give one an idea of the scale of

migration and to consist as a base for cost cal-

culation (the immediate next step). At this

stage, the initial setup would transform like in-

dicated in Figure 3.

Choose a Cloud vendor: once the independent

and scalable parts of the application and the

software running on each of them were iden-

tified, the next step would be to find a best fit

for them among the Cloud vendors. In a per-

fect world, each of the part of the application

would go on a Saas or PaaS component.

Fig. 3. The blueprint architecture, Cloud independent

For instance a SQL Server database will be a

best fit for Azure SQL Database [17] or on

AWS RDS [6], while a MySQL database

could go to AWS RDS too. In case the appli-

cation would long term durable storage for in-

frequently accessed data, then Amazon Glac-

ier [27] would be a good option.

66 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.06

Also, at this stage, a preliminary cost for each

Cloud vendor should be calculated. Each ven-

dor has online price calculators for that such

as Azure Price calculator [28] or AWS Simple

Monthly Calculator [29]. When doing a price

calculation, multiple things must be taken into

account, starting from obvious ones such as

computing hours, bandwidth and storage and

ending up with less obvious metrics, like:

number of GET requests for accessing a cer-

tain object storage, load balancer hours, pro-

visioned IOPS [30] for certain storage options

and many more.

Our example setup requires: computing hours,

persistent storage, bandwidth and load bal-

ancer hours. Also, since we are using a

MySQL database, AWS will be a good fit as a

Cloud solution, by using their Relational Da-

tabase Services (RDS) [6]. Of course that

AWS is not the only option but the best given

our example and for the purpose of this exer-

cise.

Refine the application infrastructure: like al-

ready mentioned, the Cloud vendor impacts

the final architecture of the application. Figure

4 shows how the blueprint architecture

changed to accommodate Cloud specific com-

ponents. Like shown, new services were used

such as DynamoDB [22] for PHP session stor-

age, S3 [20] for logs storage and RDS for

MySQL database, which allows a master-

slave architecture with a hot standby master.

Once the final architecture was set in place, a

new and final cost calculation should be done.

Testing the setup: the most important thing to

do when testing a setup is to consider real size

data. That means one should aim to do a com-

plete clone of the production data, which

mostly includes database data and user gener-

ated content.

Fig. 4. The final architecture, Cloud specific

A database can be imported in several ways

depending by the database engine: a full dump

from the source database with an import into

source database, by using the binary logging

or by setting the source database as an external

master and the destination database as slave

[31]. The later method is the most convenient

Informatica Economică vol. 18, no. 4/2014 67

DOI: 10.12948/issn14531305/18.4.2014.06

way to do as it will eventually have no down-

time when switching from one database to an-

other. However not all database engines and

Cloud vendors offer this options. When using

both binary logging and external master im-

port options, the sequence of operations is as

follows: first an initial dump is created from

the source database. It contains both database

schema and data. This initial dump is also

called a baseline. Second, the binary logging

is activated on the source database server,

which will indicate it to start doing incremen-

tal log files, which contains changes past the

moment of baseline creation. Third, the base-

line is imported on the destination database

server. Forth, the incremental log files are im-

ported so the destination database can be

tested. Once the testing is ready, the destina-

tion database can be dumped, the baseline re-

imported and the log files applied. Care must

be taken with imported data during testing in

what concerns user sensitive data such as:

phone numbers, email addresses and so one.

Extra care must be taken when the application

issues emails, texts messages or even phone

calls automatically based on certain events. It

is recommended to alter these sensitive data

by concatenating them with a random string.

The user generated content can be imported

either in batch mode or continuously. Batch

mode refers to moving blocks of content from

source server to destination server. The down-

side with this approach is that it doesn't ac-

count for data changes on the source server.

So, every time something changes on the

source server, everything needs to be copied

on the destination server as well. The contin-

uous method assumes an initial data sync be-

tween the two servers. To achieve that an ap-

plication needs to be installed on both ends,

such as Rsync [32]. Then the application will

take care of synchronizing data changes be-

tween the two servers when changes occur on

the source server.

Release: this is the moment when the tested

setup becomes promoted as a production en-

vironment. When talking about web applica-

tions, the release of such a setup mostly con-

sist in a DNS change so that the application

domain name to point to an IP address that be-

longs to the new setup. Attention must be paid

with the DNS changes as they require some

time to propagate. The TTL [33] of that spe-

cific record must be decreased to lowest value

permitted by the name server of that specific

domain. Lower the DNS TTL, faster the

changes will propagate through the internet.

5 Migration scenarios for PHP applications
Although the applications should be decom-

posed into decoupled components and ran on

scalable infrastructure, like shown in Figure 4,

there are cases when a certain company does

not want this from the very beginning. For in-

stance when they want to simply run a simpli-

fied testing setup in the Cloud or when the

company tests that specific Cloud. Another

special case is with PHP platforms such as

Wordpress, Drupal or Joomla that can be

hosted in PaaS offerings of different Clouds.

Depending on how complex and decoupled

the application setup will be, a few infrastruc-

ture scenarios emerge:

Platforms: certain PHP platforms like Word-

press, Drupal or Joomla can be hosted in PaaS

offerings of certain Cloud vendors. This

makes it very appealing for site owners to

move their sites to Cloud. Depending of the

level of customization that a platform site has,

it can be moved faster or slower to Cloud.

Greater the number of customizations, higher

the time to migrate it to Cloud and little the

chances to work “out of the box” on a PaaS

offering. For instance, Azure Websites offers

PaaS for these platforms: Wordpress [34],

Drupal [35] and Joomla [36]. PaaS is the best

choice for site owners as it offloads com-

pletely the infrastructure maintenance. Back-

ups, replications and availability are all han-

dled by the Cloud vendor. This setup can be

used for production environment.

Single virtual machine scenario: this is the

most basic setup of all and consists in replicat-

ing the off-Cloud deployment on a virtual ma-

chine. This assumes that the whole applica-

tion, before Cloud migration, runs on a single

server. This kind of setup is mostly used when

setting up a development environment or

when running a isolated test on the cloud like

68 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.06

security testing or performance testing. There

is no HA [10] associated with this setup and

should not be used for production environ-

ment.

Each layer on a virtual machine: this goes a

little further from the single virtual machine

approach, by moving each component on its

own layer. For an application consisting in

front-end and database, this means to put each

one on a virtual machine. In case the applica-

tion has other compute intensive components

such as search engine, documents encoding,

etc. they can be as well moved to dedicate vir-

tual machines. Although a separation of the

layers is achieved, there is no HA with this ap-

proach. Each service is a single point of fail-

ure. This setup should not be used for produc-

tion environments but for testing only. It is a

good step towards a fully scalable and HA

setup but it should not be treated as one so far.

Full blown HA setup: with this approach each

component is isolated on a scalable and highly

available group, just like already explained in

chapter 4. Planning a cloud migration. Figure

4 indicates such a setup.

6 Database considerations
Scaling the database can be done in different

ways depending of the usage type that it has.

A read intensive database can be scaled in a

master-slave schema (see Figure 5). It as-

sumes for one master server taking the write

queries (insert, delete, update, alter) and one

or multiple slaves serving read queries (se-

lect). The replication between master and

slaves can go either synchronously or asyn-

chronously. With former the master responds

to the client when the changes propagated on

all nodes, while with the later it can respond

immediately and the changes propagates to

slaves in background. In order to avoid a sin-

gle point of failure for the master server, a hot

standby server is being used. It receives all

data and schema changes, just like a slave

would do, but without being actually used by

the application. The hot standby will be used

only when the primary master becomes unre-

sponsive. It is the application concern to han-

dle this switch. In case of Amazon RDS this

switch is automatically handled by the system.

Fig.

5. Database master-slave setup

A write intensive database needs more mas-

ters, or more servers taking writes, than

slaves. Two common approaches [37] are

used in this scenarios: a share nothing model

[38] (also known as data partitioning [39])

where each node has its own sub-set of data

and the share everything model (also known

as shared-disk or master-master replication

[40]), where each node has the same data set

and thus is able to handle both writes and

reads. Each database engine has its own way

of dealing with data partitioning (see Figure

6), while for a master-master replication (see

Figure 7) there are usually third party applica-

tions handling that.

Fig. 6. Database partitioning

Fig. 7. Database master-master setup

ScaleDB [41] or Percona XtraDB [42] are

commercial solutions for handling master-

master replication for MySQL. Scaling on

writes is known to be more problematic than

scaling on reads as input data needs to be syn-

chronized among the nodes. CAP theorem

Informatica Economică vol. 18, no. 4/2014 69

DOI: 10.12948/issn14531305/18.4.2014.06

[43] constrain is a factor that should also be

considered when scaling writes. Of course

that the scalability issues we covered above,

in what concerns the databases, applies when

using IaaS Clouds to deploy and run the data-

base. In case of a PaaS, that would be handled

by the Cloud vendor seamlessly. The scaling

strategies depicted in Figure 6 and Figure 7

can also be used for scaling a read intensive

database or a mixed (reads and writes) data-

base. However a master-slave approach

comes more in handy for scaling read inten-

sive databases.

7 High Availability considerations
The most important thing to achieve high

availability is to separate the components and

add redundancy to each one of them. This con-

cept was strongly enforced along the paper.

The next most important thing, once the appli-

cation was decoupled, is to decide where the

redundancies will be placed from a physical

location perspective. They can stay in the

same data-center, in the same geographical re-

gion or, in the ideal case, they can be repli-

cated across geographical zones.

When the application is contained within a

single data-center, there are chances that the

entire facility to end up with a major malfunc-

tion, caused by an external event such as an

electrical storm, power supply loss or other.

This poses a great risk for an application even

though it has been deployed by following the

HA principles. Another risk is that the data-

center could reach its maximum resource ca-

pacity (i.e it can no longer start new compu-

ting power) which can limit the application

auto-scaling capacity.

The next level is to have the applications

hosted in two different data-centers within the

same geographical area. Usually the data-cen-

ters are in a range of tens of kilometers away

of each other. While obviously better than the

single data-center option, it poses almost the

same risks as the other one. It already hap-

pened for both Amazon [44] [45] and Azure

[46] [47] to have one or more zones affected

in a single incident.

To reach the ultimate level of high availability

each the application must run on at least two

geographical areas. This model comes with

greater costs of course, as the entire applica-

tion setup must be replicated to another re-

gion, and with a greater maintenance over-

head. Not all IaaS Clouds offer geographical

region data replication for all of their services.

Each vendor should be consulted for this spe-

cific topic by visiting their infrastructure

pages: Azure Regions [48], AWS Regions and

Availability Zones [49] and Rackspace global

infrastructure [50]. So, choosing where to host

the application from a location perspective is

combination of availability, implementation

time and costs and maintenance overhead and

costs. By implementation we mean the time to

make the application setup running in the

Cloud.

8 Things to consider
The following points should be carefully con-

sidered before moving an application to

Cloud, ideally in planning phase of the migra-

tion. A part of them are PHP specific, others

to distributed computing model and a part of

the Cloud vendor specific.

Eventual consistency model: the eventual con-

sistency model [51] is specific to distributed

applications running on multiple nodes. It af-

fects almost all distributed applications and

services. Although the nodes are transparent

for the Cloud consumer, they can impact the

data propagation and the Cloud response

codes for certain services. To better illustrate

the concept, we will assume that an applica-

tion uploads files to a distributed storage such

as Amazon S3 or Azure Storage. Although the

given storage system will accept the uploaded

file, it might not be immediately available for

reads or it might be shown inconsistent to sub-

sequent read requests. That is because on the

underlying nodes of that service, the file still

gets propagated to all nodes. The eventual

consistency model ultimately impacts the way

the application works as it has to handle retries

for both accessing an object or for upload-

ing/sending an object to a given Cloud ser-

vice.

PHP sessions storage: by default the PHP ses-

sions are stored on the local file-system. This

70 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.06

approach works fine for a single server run-

ning application, but it becomes unusable for

two or more machines. In this scenario a user

session will not propagate automatically to

each server, which will make the application

unable to recognize user stored data among

subsequent requests. That is why a third party

storage should be used for storing the PHP

sessions. This could be either a simple key-

value store or they can be stored in the data-

base itself. Whatever the option, it should be

highly available and reachable by all the ap-

plication components that interact with ses-

sion data. Almost each Cloud vendor offers

key value stores, for instance: Azure Tables

[53] or AWS DynamoDB. The size of the ses-

sion file is a factor that should not be ignored

as it can influence storage capacity and/or

bandwidth throughput which will eventually

reflect in costs. It should be even more consid-

ered in application with frequent session ac-

cess.

Code deployment or release: another im-

portant aspect which changes when running in

Cloud is the code deployment method. It be-

comes even trickier with a large number of

machines in the range of tenths or hundredths.

A manual code update is still manageable

when it should be rolled on a single machine

or even on two or three. As PHP does not

come as a packaged application or at least not

by default, multiple files could be updated

simultaneously on different machines where

the application is running on. To achieve that,

one should employ a centralized system (that

should obey the same availability and scala-

bility rules as discussed so far) for machine

and code management. This system serves for

two purposes: to be able to push code updates

on all running machines (when doing a code

release) and to allow the new machines,

started as result of scaling process, to update

themselves with the latest code version. From

an architectural perspective, this system has

two components: a central point that keeps

track of running machines and of the code ver-

sions each one is running on and a service or

daemon deployed on each supervised ma-

chine. The later just receives commands from

the central point and executes them. Some of

the Cloud vendors offer such an application

management service, like AWS OpsWorks

[54] for instance.

9 Conclusions
The paper started by presenting a selection of

the most important scenarios that could qual-

ify an application for a Cloud migration. Then

it presented the main cloud stacks (IaaS, PaaS

and SaaS) and highlighted a few representa-

tive services from each one of them. It then

went through planning stage which is an es-

sential part of any cloud migration process.

Here is the part where the application compo-

nents are identified, decoupled and placed into

highly available, independent and auto scala-

ble groups. Next specific guidelines for mi-

grating PHP applications were provided by

covering some of the most popular platforms

like WordPress, Drupal and Joomla. Moving

forward then with database considerations and

presenting three of the most popular database

scalability approaches. MySQL database was

chosen as case study because it was part of the

so called LAMP [55] stack that became very

popular in early 2000s. A significant part of

these MySQL powered small sites evolved

into larger sites and hence our attention to it.

Some high availability considerations were

also provided and ended up with a few things

to be considered before moving an application

to Cloud.

The contribution of this paper is in the way it

covers both cloud generic concept and PHP

web application specific use cases. It is Cloud

neutral and focused on medium to large PHP

sites with emerging computing and scalability

needs. Less focus is put on enterprise level

systems as they are less dynamic in what re-

gards the Cloud adoption. The practical exam-

ples of moving database and user generated

content from a standard hosting to Cloud

should come in handy for sites and applica-

tions looking to migrate.

References

[1] Programming languages used in most pop-

ular websites, http://en.wikipe-

dia.org/wiki/Programming_lan-

guages_used_in_most_popular_websites

http://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites
http://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites
http://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

Informatica Economică vol. 18, no. 4/2014 71

DOI: 10.12948/issn14531305/18.4.2014.06

[2] PHP just grows & grows, http://news.net-

craft.com/archives/2013/01/31/php-just-

grows-grows.html

[3] Amazon Elastic Transcoder,

http://aws.amazon.com/documenta-

tion/elastic-transcoder/

[4] Amazon CloudFront, http://aws.ama-

zon.com/cloudfront/

[5] Azure CDN, http://azure.mi-

crosoft.com/en-us/services/cdn/

[6] Amazon Relation Database Services,

http://aws.amazon.com/rds/

[7] Azure SQL Database, http://azure.mi-

crosoft.com/en-us/services/sql-database/

[8] Amazon Auto Scaling, http://aws.ama-

zon.com/autoscaling/

[9] Viral Video, http://en.wikipe-

dia.org/wiki/Viral_video

[10] High Availability, http://en.wikipe-

dia.org/wiki/High_availability

[11] Staging site in software developmnet,

http://en.wikipedia.org/wiki/Staging_site

[12] Security testing,

https://www.owasp.org/in-

dex.php/Web_Appliction_Security_Test-

ing_Cheat

[13] Load testing, http://en.wikipe-

dia.org/wiki/Load_testing

[14] Customer Relationship Management

(CRM), http://en.wikipedia.org/wiki/Cus-

tomer_relationship_management

[15] Enterprise Resource Planning (ERP),

http://en.wikipedia.org/wiki/Enter-

prise_resource_planning

[16] Pay as you go model, http://azure.mi-

crosoft.com/en-us/offers/ms-azr-0003p/

[17] Understanding the Cloud Computing

Stack: SaaS, PaaS, IaaS, http://www.rack-

space.com/knowledge_center/whitepa-

per/understanding-the-cloud-computing-

stack-saas-paas-iaas

[18] Amazon EC2, http://aws.ama-

zon.com/ec2/

[19] Azure Virtual Machines, https://az-

ure.microsoft.com/en-us/services/virtual-

machines/

[20] Amazon S3, http://aws.amazon.com/s3/

[21] Azure Storage, https://azure.mi-

crosoft.com/en-us/services/storage/

[22] Amazon DynamoDB, http://aws.ama-

zon.com/dynamodb/

[23] NoSQL databases, http://nosql-data-

base.org/

[24] Azure Websites, azure.microsoft.com

[25] Application Programming Interface,

http://en.wikipedia.org/wiki/Applica-

tion_programming_interface

[26] MySQL database, www.mysql.com

[27] Amazon Glacier, aws.amazon.com

[28] Azure price calculator, http://azure.mi-

crosoft.com/en-us/pricing/calculator/

[29] AWS price calculator, http:// calcula-

tor.s3.amazonaws.com/index.html

[30] Input/Output Operations Per Second,

http://en.wikipedia.org/wiki/IOPS

[31] Importing Data From a MySQL Instance

Running External to Amazon RDS,

http://docs.aws.amazon.com/Ama-

zonRDS/latest/UserGuide/MySQL.Proce-

dural.Importing.NonRDSRepl.html

[32] Rsync, http://rsync.samba.org/

[33] TTL for DNS records, http://en.wikipe-

dia.org/wiki/Time_to_live#DNS_records

[34] How to run Enterprise Grade WordPress

sites on Azure Websites, http://azure.mi-

crosoft.com/blog/2014/05/13/how-to-run-

wordpress-site-on-azure-websites/

[35] Migrating Drupal to Azure Websites,

http://azure.microsoft.com/en-us/docu-

mentation/articles/web-sites-php-migrate-

drupal/

[36] Created a Joomla website from the Gal-

lery in Azure,

http://www.arctg.com/blog/2251-create-

a-joomla-website-from-the-gallery-in-az-

ure.html?clcid=0x409

[37] Shared-Nothing and Shared-Disk data-

base clustering architectures,

http://www.scaledb.com/pdfs/Architec-

turePrimer.pdf

[38] Share nothing architecture, http://en.wik-

ipedia.org/wiki/Shared_nothing_architec-

ture

[39] Database partitioning, http://en.wikipe-

dia.org/wiki/Partition

[40] Master-master database replication,

http://en.wikipedia.org/wiki/Multi-mas-

ter_replication

[41] ScaleDB, http://www.scaledb.com/

http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html
http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html
http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html
http://aws.amazon.com/documentation/elastic-transcoder/
http://aws.amazon.com/documentation/elastic-transcoder/
http://aws.amazon.com/cloudfront/
http://aws.amazon.com/cloudfront/
http://azure.microsoft.com/en-us/services/cdn/
http://azure.microsoft.com/en-us/services/cdn/
http://aws.amazon.com/rds/
http://azure.microsoft.com/en-us/services/sql-database/
http://azure.microsoft.com/en-us/services/sql-database/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://en.wikipedia.org/wiki/Viral_video
http://en.wikipedia.org/wiki/Viral_video
http://en.wikipedia.org/wiki/High_availability
http://en.wikipedia.org/wiki/High_availability
http://en.wikipedia.org/wiki/Staging_site
http://en.wikipedia.org/wiki/Load_testing
http://en.wikipedia.org/wiki/Load_testing
http://en.wikipedia.org/wiki/Customer_relationship_management
http://en.wikipedia.org/wiki/Customer_relationship_management
http://en.wikipedia.org/wiki/Enterprise_resource_planning
http://en.wikipedia.org/wiki/Enterprise_resource_planning
http://azure.microsoft.com/en-us/offers/ms-azr-0003p/
http://azure.microsoft.com/en-us/offers/ms-azr-0003p/
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
http://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
http://nosql-database.org/
http://nosql-database.org/
http://azure.microsoft.com/en-us/services/websites/
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://www.mysql.com/
http://aws.amazon.com/glacier/
http://azure.microsoft.com/en-us/pricing/calculator/
http://azure.microsoft.com/en-us/pricing/calculator/
http://calculator.s3.amazonaws.com/index.html
http://calculator.s3.amazonaws.com/index.html
http://en.wikipedia.org/wiki/IOPS
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
http://rsync.samba.org/
http://en.wikipedia.org/wiki/Time_to_live#DNS_records
http://en.wikipedia.org/wiki/Time_to_live#DNS_records
http://azure.microsoft.com/blog/2014/05/13/how-to-run-wordpress-site-on-azure-websites/
http://azure.microsoft.com/blog/2014/05/13/how-to-run-wordpress-site-on-azure-websites/
http://azure.microsoft.com/blog/2014/05/13/how-to-run-wordpress-site-on-azure-websites/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-php-migrate-drupal/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-php-migrate-drupal/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-php-migrate-drupal/
http://www.arctg.com/blog/2251-create-a-joomla-website-from-the-gallery-in-azure.html?clcid=0x409
http://www.arctg.com/blog/2251-create-a-joomla-website-from-the-gallery-in-azure.html?clcid=0x409
http://www.arctg.com/blog/2251-create-a-joomla-website-from-the-gallery-in-azure.html?clcid=0x409
http://www.scaledb.com/pdfs/ArchitecturePrimer.pdf
http://www.scaledb.com/pdfs/ArchitecturePrimer.pdf
http://en.wikipedia.org/wiki/Shared_nothing_architecture
http://en.wikipedia.org/wiki/Shared_nothing_architecture
http://en.wikipedia.org/wiki/Shared_nothing_architecture
http://en.wikipedia.org/wiki/Partition_(database
http://en.wikipedia.org/wiki/Partition_(database
http://en.wikipedia.org/wiki/Multi-master_replication
http://en.wikipedia.org/wiki/Multi-master_replication
http://www.scaledb.com/

72 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.06

[42] Percona XtraDB Cluster,

http://www.percona.com/soft-

ware/percona-xtradb-cluster

[43] CAP theorem, en.wikipe-

dia.org/wiki/CAP_theorem

[44] Summary of the Amazon EC2, Amazon

EBS, and Amazon RDS Service Event in

the EU West Region, http://aws.ama-

zon.com/message/2329B7/

[45] Summary of the Amazon EC2 and Ama-

zon RDS Service Disruption in the US

East Region, http://aws.amazon.com/mes-

sage/65648/

[46] Summary of Windows Azure Service

Disruption on Feb 29th, 2012, http://az-

ure.microsoft.com/blog/2012/03/09/sum-

mary-of-windows-azure-service-disrup-

tion-on-feb-29th-2012/

[47] Windows Azure Service Disruption Up-

date,http://azure.mi-

crosoft.com/blog/2012/02/29/windows-

azure-service-disruption-update/

[48] Azure Regions, http://azure.mi-

crosoft.com/en-us/regions/#overview

[49] AWS Regions and Availability Zones,

http://docs.aws.ama-

zon.com/AWSEC2/latest/UserGuide/us-

ing-regions-availability-zones.html

[50] Rackspace global infrastructure,

http://www.rackspace.com/about/data-

centers/

[51] Eventually Consistent – Revisited,

http://www.allthingsdistrib-

uted.com/2008/12/eventually_con-

sistent.html

[52] Virtualization, en.wikipe-

dia.org/wiki/Virtualization

[53] Azure Table Storage, http://azure.mi-

crosoft.com/en-us/documentation/arti-

cles/storage-dotnet-how-to-use-ta-

bles/#what-is

[54] AWS OpsWorks, aws.ama-

zon.com/opsworks/?nc2hl3_dm/

[55] LAMP stack, http://en.wikipe-

dia.org/wiki/LAMP

Ionuţ VODĂ has graduated the Faculty of Transportations, Department of

Electronics, from University Politehnica of Bucharest in 2007. He started to

work in software development field since 2001 and focused on web develop-

ment from 2003. His work involved various programming languages (PHP,

C#, Java, Java Script and Python), database engines (MySQL, PostgreSQL,

SQL Server, Simple DB, DynamoDB) and covered software from educational

field, B2B e-commerce platforms, APIs, document ingestion and indexing,

ending up with full stack video encoding and delivery platform. He is working with cloud plat-

forms since 2008, when he started with AWS, continued with Rackspace Cloud and eventually

with Azure. His latest research interests cover clustering, classification and natural language

processing algorithms. Starting with 2006 he works at Zitec COM, a Romanian software out-

sourcing company, where he holds the position of Chief Technology Officer.

http://www.percona.com/software/percona-xtradb-cluster
http://www.percona.com/software/percona-xtradb-cluster
http://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/CAP_theorem
http://aws.amazon.com/message/2329B7/
http://aws.amazon.com/message/2329B7/
http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
http://azure.microsoft.com/blog/2012/03/09/summary-of-windows-azure-service-disruption-on-feb-29th-2012/
http://azure.microsoft.com/blog/2012/03/09/summary-of-windows-azure-service-disruption-on-feb-29th-2012/
http://azure.microsoft.com/blog/2012/03/09/summary-of-windows-azure-service-disruption-on-feb-29th-2012/
http://azure.microsoft.com/blog/2012/03/09/summary-of-windows-azure-service-disruption-on-feb-29th-2012/
http://azure.microsoft.com/blog/2012/02/29/windows-azure-service-disruption-update/
http://azure.microsoft.com/blog/2012/02/29/windows-azure-service-disruption-update/
http://azure.microsoft.com/blog/2012/02/29/windows-azure-service-disruption-update/
http://azure.microsoft.com/en-us/regions/#overview
http://azure.microsoft.com/en-us/regions/#overview
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://www.rackspace.com/about/datacenters/
http://www.rackspace.com/about/datacenters/
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Virtualization
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/#what-is
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/#what-is
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/#what-is
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/#what-is
http://aws.amazon.com/opsworks/?nc2=h_l3_dm/
http://aws.amazon.com/opsworks/?nc2=h_l3_dm/

