
Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

117

Parallel Processing of Economic Programs, a New Strategy in

Groups of Firms

Loredana MOCEAN, Monica-Iuliana CIACA, Alexandru VANCEA

Babeş-Bolyai University

loredana.mocean@econ.ubbcluj.ro, monica.ciaca@econ.ubbcluj.ro,

alexandru.vancea@cs.ubbcluj.ro

In recent years parallel and distributed systems have become increasingly attractive for

applications with high computational demands such as simulation of complex systems from

groups of companies. The main advantage of such systems is the ratio, rather than attractive,

between the price and performance that can be achieved. In the present paper, authors

describe some possibilities of parallel processing at the level of economic programs in groups

of firms. The architecture, model and future development are shown below. This paper is an

extended version of the paper presented at International Conference on Informatics in

Economy (IE 2013), Bucharest, Romania

Keywords: Decidable Problems, Parallel Processing, Parallel Calculus, Groups of Firms

Introduction

Having a quite complicated

organizational structure, behavioral

flexibility and lack of bureaucracy – present

in all the sectors of the industry, commerce

and services, groups of firms easily adapt to

the constantly changing economic and social

conditions.

Modeling of group of companies economic

systems containing hundreds of market actors

(companies) who apply management

strategies common to group or individually

(at company level) can be a difficult task.

During the last years, had been remarked two

classes of individual strategies: one based on

envy 'comp benefit "(companies compare

their benefits with those of competitors and

copy competitors with higher profit side, well

known in the literature) and maximization

strategies "max-benefit" (company calculates

benefits obtained for increasing, decreasing,

or maintaining selling prices and take a

decision as to maximize its profits without

regard for other companies).

Fig. 1. Mother-firm management and subsidiaries management

The necessity of passing, on a large scale,

from the mother-firm management to the

subsidiary management required passing

from sequential programming to parallel

processing, in groups, having at least the

following basic motivations:

 No matter the future performance of one

processor, it is impossible to have an

unlimited increase of execution capacities

and efficiency of the uniprocessor

systems;

1

Subsidiary

Mother - firm

EDSS

DSS

GDSS

TPS

OIS

Semi-structured decisions

Structured decisions

Unstructured decisions

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

118

 The inherent and strong parallel nature of

many algorithms; such an algorithm

suggests the design of a program by

initiating multiple processes, that would

cooperate to fulfill a common purpose;

2 Related Work

Research on how the IT community can

perform this compulsory passage has started

during the 7
th

 decade ([1], [4], [5], [7]).

As compared to other problems whose

solutions were found more quickly, parallel

programming has not yet managed to assert

itself as a general method of design,

implementation and execution of algorithms,

at the level of groups of firms.

Solutions for problems arising from a

completely new approach have proved to be

difficult to find, at the level of theoretical

substantiation, but especially at the level of

mentalities in the developers community.

The fact that the broad IT community is

learning and thoroughly studying an

algorithmic approach that is inherently

sequential used at the level of imperative

programming languages (actually also

deriving from the inherent sequential nature

of management) makes this compulsory

transition become extremely complicated.

3 Research Methodology

A parallel system can be used to describe

groups of firms indicating the firms central of

the group, that coordinates the function of

strategy and eventually influence the

company has focused on companies in the

group.

A parallel system can be used to describe

how they are affected by price fluctuations

on where a company is located, competition

neighbors, the purchasing power of the

customers in that area, etc.

Taking groups of firms as practical example,

we identify two practical ways of passing

from group management to subsidiary

management (referring to the passage from

sequential programming to parallel

programming):

1). Designing algorithms conceived by

parallel approach that would then be

implemented at the level of some

programming languages designed for such

execution;

2). Elaboration of specialized software for

the automatic transformation of sequential

programs in efficient parallel versions.

For the current stage, only the level of

technological development of hardware

equipment could contribute to the rapid

finalization of such a transition (despite the

lack of architectural standards for parallel

computers). Unfortunately, the smart and

especially correct management of the

resources involved at the level of an

algorithm proves to be quite difficult when

trying a parallel approach of algorithm

elaboration. This is why it remains more as a

research domain, rather than a well

established and universally accepted practical

methodology.

For these reasons, a large part of the current

research, oriented towards the parallel

processing in groups of firms is directed

towards the development and analysis of

theoretical models that would allow the

substantiation of certain general constructive

principles, as well as the efficient

implementation of restructuring compilers

(translators which restructure a sequential

program for the purpose of parallel

execution).

The development of algorithms for groups of

firms using the parallel approach will

certainly remain, in time, the only

programming methodology able to justify

and accomplish the computer science

development, in terms of software.

4 Manifestation of Parallel Processing

Possibilities, at the Level of a Program in

Groups of Firms

The main feature of imperative languages is

the reflection of the von Neumann

architecture at the level of language

constructions. Such a paradigm is focused on

the assignment instruction and provides

programs whose effect can be described as a

sequence of transformations of the memory

cells values on which the program acts.

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

119

The complete programming methodology

used in the last decades by the programmers’

community emphasizes the following

description of the algorithm design activity:

any algorithm is nothing more than a

sequence of assignment instructions that a

programmer imposes to certain memory

locations through control structures available

through the programming language that they

work with.

It is worth noticing the necessity of

sequencing, imposed by the intellectual

activity of elaborating algorithms according

to the current methodology.

On the other hand, the varied nature of the

real problems that computer science is

expected to solve often makes algorithmic

sequencing become obviously forced in

relation to a natural description of a solution

for that problem, a solution that most of the

times contains activities that can be and

should be executed simultaneously.

One of the main reasons for using the

computer is the repetition of a certain

sequence of instructions for a large amount

of data. Parallel processing becomes an

essential factor, the only possible one, for

obtaining the desired performance, to the

extent that the data features allow it.

Imperative languages are mainly oriented

towards scientific calculations involving

large amounts of data. The problems of

programs are not much related to their length

(requirements of internal and external

memory are mostly already solved, from the

technological point of view) but to generally

large amount of time required for their

execution.

Thus, the identification of parallelizing

possibilities at the level of a sequential

program becomes of maximum importance,

as a first step towards obtaining its parallel

version.

It is obvious (experimental studies prove it)

that the most of the time required for a

sequential execution (the classical estimation

is around 90%!)[6] is consumed during the

iterations. Thus the iteration loops become

the main candidates for parallelization.

Hierarchically structured machines [3]

currently represent the dominant

configuration of hardware elements in

computer systems. The feature of these

systems is the Non-Uniform Memory Access

time, which is why they are called NUMA

machines.

sNon-uniform access is reflected in relation

to the major difference between the time

required for a processor to access data in the

local memory associated to it and the time

required to access data located at a distance

(most probably through communication

methods based on message exchange).

The execution itself, of a parallel program on

a particular system in the group, requires

partitioning, distribution (also called

mapping) and planning of data and

calculations at the level of the nodes in a

network of processors.

The creation of an application that would

accomplish this optimally, in an automatic

way, and independently from the

particularities of the computer system is

considered to be an NP-complete problem

[9][2].

In the absence of an automatic support which

can accomplish this task, the optimal

partitioning of calculations and data remains,

in many cases, the responsibility of the

developer, who manually performs it at the

level of the program source code, using a

specialized description language (as in the

case of the Occam language, for example

[8]).

In order to emphasize the utility of equivalent

transformations at the level of loops, let us

consider a distributed system (network of

processors with local memory) where the

following program sequence is executed:

for i := 1 to m do

 for j := i to n do

 A[i, j] := A[i-1, j] +

B[j];

 end for

end for

where A is an m  n matrix, B is an n-vector

and n  m.

For the example above, let us assume that we

make a mapping of the calculations, so that

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

120

each instance of the outer loop is executed at

the level of one processor (thus we must have

at least m available processors); in this case,

each processor will sequentially execute the

corresponding iterations of j from the

previous loop. Thus, the k processor will

execute all the iterations with i = k.

Regarding the data mapping, let us assume

that we are making a distribution in order for

processor k to store the k line of the matrix in

its local memory (the notation of the line is

A[k,∗]) and the element B[j] is stored in the

processor’s memory (j mod (m+1)).

In such a situation (figure 2) the k processor

will execute n-k+1 iterations, but at least (n-

n/(m+1)) elements of vector B must be

brought from the processors where they have

been distributed. In addition to this, each k

processor must bring line A[k-1,∗] from the

(k-1) processor.

Fig. 2. An example of allocation

The thin lines correspond to moving the

elements of vector B and the thick dotted

ones, correspond to movements of elements

of A. Let us now take an example that is

semantically equivalent to the sequence

above, in which we assume that n processors

are available:

for j := 1 to n do

 for i := 1 to min(j,m) do

 A[i,j] := A[i-1,j] + B[j];

 end for

 end for

Assuming that processor k executes all the

iterations with j = k and stores element B[k]

and column A[∗,k] in its local memory, then

processor k will execute min(k,m)+1

iterations. Element B[k] is never changed,

and can be stored even at the level of an

available register. However, the most

important change is the presence of all

elements of A accessed by the processor at

the level of its local memory (see figure 3).

The two analyzed mappings use m and n

processors, respectively.

Since n  m, the second mapping achieves a

greater degree of parallelism as compared to

the first case, but the greatest benefit is that

all the data required for the calculations are

locally stored and thus it is not necessary to

perform any data transfer operation.

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

121

This makes operations be independent,

allowing them to execute simultaneously. As

opposed to this, the first version involves the

necessity of many data exchanges among the

processors, which considerably increase the

execution time.

The second mapping also displays a better

static localization, even perfect in this case.

The elements of vector B can be stored in the

cache memory or in an available register, to

be used in each iteration, thus also obtaining

a better dynamic localization.

In the first version, the access requests for the

value of the same B[k] came from more

processors.

In both cases analyzed above, processors do

not perform the same number of iterations,

which leads to a variation of the

computational load, at processors level.

If the variation of this load is too big, there is

a negative effect on the performance of the

computer system.

Considering the two cases discussed, the

second mapping has a smaller variation, thus

displaying a greater degree of balanced

processor load (IEP).

Fig. 3. An optimal allocation

These two examples show us that different

structures of nested loops, semantically

equivalent, can represent very different

execution times, depending on the degrees of

parallelism, localization and IEP displayed.

The transformation of a nested loop structure

(SCI) in a semantically equivalent SCI,

displaying possibilities of parallel execution

is the main purpose of a restructuring

translator and at the same time it is one of the

main analysis and research objectives in

groups of firms.

The theoretical basis of the transformation

methodology of the SCI, is the data

dependency mathematical concept. Data

dependencies are a measure of parallelism

that can be highlighted in the source code.

Therefore, their accurate determination is of

paramount importance for effective

parallelization. Unfortunately, analysis of

data dependencies is in the general case

determining undecidable problem.

For example, in the code sequence:

read(n);

for i := 11 to 20 do

 A[i] := A[i-n] + 3;

end for

(in) dependence of the two references to

elements of array A depends on the value of

n which is not unknown at compiling time.

That means that in the management of the

mother – firm, for each subsidiary we can

consider the dependence between all i-n

companies (see figure 4).

Mother - firm

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

122

Fig. 4. The dependence between i-n

subsidiaries

This is necessary to implement dynamic

analysis methods of data dependencies. Even

if we limit ourselves only to the static aspect

of the problem, complications persist.

Let us consider for example the following

code, we want to analyze whether the array

indexing expressions V will denote the same

element or not:

 if n > 2 then

 if a > 0 then

 if b > 0 then

 if c > 0 then

 V[a
n
] := V[b

n
 + c

n
] + 3;

 end if

 end if

 end if

 end if

We must solve the equation given of the

condition of equality of the corresponding

index expressions.

The problem of data dependences in this case

would mean neither more nor less than the

problem of demonstrating Fermat's great

theorem (the existence of three positive

integers a, b, c> 0 which satisfy the equation,

a
n
 = b

n
 + c

n
, nN) theorem which until now

was neither demonstrated nor contradicted

(although was verified the absence of such

numbers verified to very high values, the

problem is that we don’t have another

methodology for proving such theorems than

just checking!).

Also, the classical un-decidable problem of

stopping a program (halting problem) can be

formulated in such a framework of

determining dependencies in a program.

For these reasons, the approach of the

analysis of data dependencies is doing only

in a relatively small area, namely the affine

index expressions (ie those of the form ax +

b, expressions linear plus a constant) which

occur in the majority of situations in practice.

The problem formulated in such a framework

is decidable, but obtaining accurate solutions

can be a very costly process. Therefore, if

you cannot find the exact solution or finding

it too expensive, it is assumed conservatively

dependence.

On the other hand, the restricting of the

analysis of affine equations, followed

automatically by data dependencies

conservative assumption in all other cases,

we can lose a large amount of potential

parallelism. For example, in sequence:

 for i := 10 to n do

 A[i
2
] := A[3] + 2;

 end for

is not known value of n, we do not only make

affine index expressions (ie data analysis will

conservatively assumed dependence), but it

is obvious that the equation i
2
 = 3 has no

solution in the set of integers and hence the

dependence between these two references for

array there.

The emergence of expressions un-affine

therefore means loss of information, but not

always necessarily forced to assume

dependence. For example, if other

dimensions of the array elements involved

are affine, we can use these to demonstrate

(in) dependence:

for i := 10 to 20 do

 A[i
2
][2i] := A[3][2i+1] + 2;

end for

The first dimension contains un-affine term,

but the terms of the second dimensions are

both affine.

Data Dependency would require the

simultaneous satisfaction of the equations

representing the identity of reference in the

two dimensions. Analyzing only what the

second dimension but it appears immediately

that equation 2i = 2i +1 has no solutions, so

we do not have data dependencies.

As architectures become more complex,

significantly increasing the number of

directions of optimization and decision

Mother -firm S1

S2

Sn-i

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

123

making relative to the range of

transformations applied is very complicated.

The problem of choosing an optimal

sequence of transformations leading to the

most efficient parallel version remains an

open question. Relative to this, compilers

moment only managed to incorporate a set of

heuristic decision.

Before attempting to generate an optimal

sequence of loop transformations, it is natural

to ask whether in the general case, a program

always supports optimal planning scheme

execution.

5 Conclusions

In mathematics, computer science or

management, mathematical optimization

(alternatively, optimization or mathematical

programming) is the selection of a best

element (with regard to some criteria) from

some set of available alternatives.

In the simplest case, an optimization

problem consists of maximizing or

minimizing a real function by systematically

choosing input values from within an

allowed set and computing the value of the

function.

The generalization of optimization theory

and techniques to other formulations

comprises a large area of applied

mathematics.

More generally, optimization includes

finding "best available" values of some

objective function given a defined domain,

including a variety of different types of

objective functions and different types of

domains.

As machines become more complex, the

number of optimization directions increases

significantly, and the decision making

process related to the transformations to be

applied becomes very complicated.

The problem of choosing an optimal

sequence of transformations that would lead

to the most efficient parallel version remains

an open one.

Regarding this aspect, the current compilers

only manage to embed a certain set of

heuristic decisions in the activity of the

groups of firms.

This paper has attempted to connect the

management group of companies and

parallelization algorithms and proposes a

parallelization of their activity.

References

[1] F.E.Allen “Program optimization”, in

Annual Review in Automatic

Programming 5, International Tracts in

Computer Science and Technology and

their Applications, vol.13, Pergamon

Press, Oxford, England, pp.239-307,

1969.

[2] Bane, D “Utpal Banerjee - Speedup of

ordinary programs”, PhD thesis, Report

79-989, Department of Computer

Science, University of Illinois at Urbana-

Champaign, October 1979.

[3] S. Dasgupta “Computer Architecture”,

vol.1 and 2, John Wiley and Sons, New

York, 1989.

[4] Y.Muraoka, “Parallelism exposure and

exploitation in programs”, Ph.D. thesis,

Tech.Rep. 71-424, University of Illinois

at Urbana-Champaign, 1971.

[5] R.M.Karp, R.E.Miller and S.Winograd,

“The organization of computations for

uniform recurrence equations”, in Journal

of the ACM, 14(3), pp.563-590, July

1967.

[6] D.Kuck, P.Budnik, S.C.Chen et al.

,“Measurements of parallelism in

ordinary FORTRAN programs”, in

Computer, vol.7, nr.1, 1974, pp.37-46.

[7] L. Lamport “The parallel execution of

DO loops”, in Communications of the

ACM, 17(2), 1974.

[8] D. Pountain and D. May, “A Tutorial

Introduction to Occam Programming”,

McGraw Hill, 1987.

[9] M. Wolfe, “High Performance Compilers

for Parallel Computing”, Addison-

Wesley, Redwood, 1996.

[10] L. Mocean, M. Ciaca, A. Vancea,

“Possibilities of parallel processing at the

level of economic programs in groups of

firms”, Conference Proceedings of the 12

ICIEERBT, 2013

http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Argument_of_a_function
http://en.wikipedia.org/wiki/Value_(mathematics)
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Domain_of_a_function

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.11

124

Loredana MOCEAN has graduated Babes-Bolyai University of Cluj-

Napoca, the Faculty of Computer Science, she holds a PhD diploma in

Economics and she had gone through didactic position of assistant, lecturer

and associate professor, since 2000 when she joined the staff of the Babes-

Bolyai University of Cluj-Napoca, Faculty of Economics and Business

Administration. Also, she graduated Faculty of Economics and Business

Administration. She is the author of more than 20 books and over 35 journal

articles in the field of Databases, Data mining, Web Ser-vices, Web Ontology, ERP Systems

and much more. She is director or member in more than 20 grants and research projects,

national and international.

Dr. Monica Iuliana CIACA obtained her bachelor’s degree at Babes Bolyai

University Cluj-Napoca, in the field of Computer Science. After graduation,

she has worked as programmer at the Institute for Computation Techniques

from Cluj-Napoca. In 1994 she started working at the Babes Bolyai

University as teaching assistant, being interested in artificial intelligence,

expert systems, business information systems and software engineering. She

published various articles, the most important being the one written after her

participation in a Tempus Phare project, in Perugia. In 2003 she got her PhD in Mathematics

and Computer Science, with a thesis on parallel computing: “Implementation Techniques in

Parallel Computing”. In the last five years she looked to extend her knowledge in another

field: theology. She obtained her Bachelor’s Degree and Master’s Degree in Biblical Studies

and Iconographic exegesis, in 2012, at Babes Bolyai University. Since 2004 she is Associate

Professor at Babes Bolyai University, Cluj-Napoca, Faculty of Economics, in the Department

of Business Information Systems.

 Dr. Alexandru VANCEA has graduated the Computer Science Department

of “Babes-Bolyai” University Cluj-Napoca in 1986. Ph.D. in Computer

Science in 2000. Research areas and domains of interests: Programming

Languages Design and Analysis, Automatic parallelization of programs,

Distributed Programming. Teaching: Operating Systems, Computer

Architecture, Fundamentals of Programming Languages.

