
Informatica Economică vol. 18, no. 2/2014 53

DOI: 10.12948/issn14531305/18.2.2014.06

An UI Layout Files Analyzer for Test Data Generation

Paul POCATILU, Felician ALECU

Department of Economic Informatics and Cybernetics

Bucharest University of Economic Studies, Romania

ppaul@ase.ro, felician.alecu@ie.ase.ro

Prevention actions (trainings, audits) and inspections (tests, validations, code reviews) are the

crucial factors in achieving a high quality level for any software application simply because

low investments in this area are leading to significant expenses in terms of corrective actions

needed for defect fixing. Mobile applications testing involves the use of various tools and

scenarios. An important process is represented by test data generation. This paper proposes a

test data generator (TDG) system for mobile applications using several sources for test data

and it focuses on the UI layout files analyzer module. The proposed architecture aims to

reduce time-to-market for mobile applications. The focus is on test data generators based on

the source code, user interface layout files (using markup languages like XML or XAML) and

application specifications. In order to assure a common interface for test data generators, an

XML or JSON-based language called Data Specification Language (DSL) is proposed.
Keywords: Mobile Applications, Software Testing, Test Data Generators, Software Quality,

Time-to-Market, UI Layout

Introduction
Software testing is an important phase

within the software development cycle. It is

also an expensive phase counting about 40%

of the total cost associated with software

development [1], [2].

According to ISO9000 standard [13], the

quality associated to a deliverable is seen as

being “the degree to which a set of inherent

characteristics fulfill requirements”. If the

requirements are not (completely) met,

severe consequences may follow, like

intensive rework or even the risk of losing

the business.

From an economic point of view, quality

measures are indicating the application actual

metrics (in terms of cost, time and scope) that

can be easily compared with the planned

ones. To fulfill the requirements is crucial but

the way in which these requirements are met

in terms of time, cost and application scope is

also very important because an application

may be delivered in time but with a lot extra

work and/or by using lighter inspections, so

the project may not be so successful due to

the reduced profits and very possible future

implementation costs.

When discussing about the quality of a

software application, usually there are two

types of costs assigned [14]:

 poor quality costs – defects that must be

repaired by corrective actions;

 good quality costs – code inspections and

prevention activities, like planning,

training and auditing.

As illustrated into the Figure 1, any

application can reach a great quality level at

a reasonable cost by positioning itself just

above the optimal point indicated by the

vertical line.

Testing methodologies include white-box and

black-box approaches [3], [4]. White-box

testing considers the internal structure of

programs. In this case, test data generation

uses several coverage criteria (path,

statement, branch etc.). Black-box testing

does not depend on the internal structure of

programs. Test data is generated based on

program specifications.

One area of software testing that can be

automated is test data generation. Test data

generation based on coverage can use

random or optimized inputs, engaging

advanced techniques [5], [6].

1

54 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.06

Fig. 1. Total Cost of Quality

There is a continuous uptrend of mobile

application development. Compared with

other software solutions, time-to-market for

mobile applications tends to be shorter. A

mobile application can be used on different

versions of the target platform, on different

hardware configurations (screen size,

processor architecture, processor speed,

memory capacity etc.), different types of

networks (Wi-Fi, mobile) etc. In this respect,

mobile applications testing is more

challenging than other type of application

testing [7], [8], [9]. Every improvement of

testing process for mobile applications helps

achieving high quality software, reducing the

development costs and the time-to-market.

We propose a complex system for automated

test data generation for mobile applications

in order to reduce the required time for

testing while keeping the same level of

quality. This integrates our previous work

that includes researches related to test data

generators based on source code as in [6] and

[10] where we proposed a test data generator

using genetic algorithms and a framework for

test data generators analysis. The system

combines several inputs for test data

generator in order to achieve an optimized set

of inputs that assure the best coverage of

code and the input domain.

The paper is organized as follows: Section 2

describes the proposed framework for test

data generators for mobile applications and

the Data Specification Language (DSL).

Section 3 presents the proposed components

of the test data generator that are based on

source code, user interface layout files and

specification. Section 4 presents the same

example implemented for two mobile

platforms (Android and Windows Phone) in

order to highlight the UI layout files

challenges. Section 5 is dedicated to the

discussion related to presented work. The

paper ends with conclusions and future work.

2. Test Data Generators

The TDG is a complex system that include

several subsystems that are linked together

by inputs and outputs. The proposed system

consists of the following components:

 Source code analyzer;

 User interface files analyzer;

 Specification analyzer;

 Test data generator.

The input of the system consists of the source

files, user interface layout files and

specifications. The system components are

depicted in Figure 2.

Informatica Economică vol. 18, no. 2/2014 55

DOI: 10.12948/issn14531305/18.2.2014.06

Fig. 2. Test data generator inputs and outputs

One type of input for data generator consists

of one or more files based on DSL (Data

specification Language). This is an XML-

based language used to describe data type,

data length, type of generation (random or

based on list of values), number of

occurrences, data boundaries etc. An example

of a DSL content is presented in Listing 1.

Listing 1. Example of DSL content

XML JSON
<dataset>

<field>

 <type>string</type>

 <length>30</length >

</field>

<field>

 <type>number</type>

 <length>int</length >

 <values>

 <start>0</start>

 <end>1000</end>

 </values>

</field>

<field>

 <type>number</type>

 <length>byte</length >

 <values>

 <value>0</value>

 <value>1</value>

 </values>

</field>

</dataset>

{

 "dataset": {

 "field": [{

 "type": "string",

 "length": "30"

 },

 {

 "type": "number",

 "length": "int",

 "values": {

 "start": "0",

 "end": "1000"

 }},

 {

 "type": "number",

 "length": "byte",

 "values": {

 "value": [

 "0",

 "1"

] } }] }

}

The framework is flexible enough to accept

any other components that will provide data

specification files based on DSL.

The test data generator is further detailed in

Figure 3. There are at least two types of

inputs so there will be two distinct data

generators, each one using a different way to

produce the expected test data.

The instrumented source files are the output

of the source files analyzer. These will allow

to record the code coverage by executing it.

UI files

analyzer

Source code

analyzer Source files

UI layout

files

Test data

generator
Generated

test data

Specification

analyzer
Specifications

56 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.06

Fig. 3. Test data generator components

The outputs of UI files analyzer and

specification analyzer are DSL files that

represent the input of data generator. This

will parse the DSL files and will produce test

data for the software under test (SUT).

3 TDG Analyzers

3.1 Source Code Instrumentation

This module will parse the source code and

will instrument the files in order to record the

code execution. Structural testing is subject

to numerous papers, including [11] and [12].

Test data generators are based on the

associated control flow graph (CFG), control

flow diagram (CFD) or program tree.

After the source code is instrumented, it is

used as input by the data generator. This will

generate test data either randomly, or using

evolutionary algorithms. The SUT will be

executed using the generated data in order to

achieve the targeted coverage criteria,

depending on the required level: statements,

branches, paths, blocks, data flows or

functions [6].

The source code is modified by adding

simple calls to output functions or to more

complex functions. While SUT is running,

the calls will record the executed functions to

calculate the coverage with the current data

set.

The source code analyzer could also generate

the associated CFG, CFD or the program tree

that can be used as inputs for other types of

data generators.

3.2 User Interface Layout Files
Several mobile application development

include, as other platforms, the possibility to

declare the user interface layouts using

separate files based on markup languages.

For example, Android developers use XML

files to declare the interface, iOS developers

create storyboards while the Windows Phone

developers rely on XAML files.

The analyzer will parse the UI layout file

and, for each control, will determine the

associated properties. Based on the control

type and the associated attributes the

analyzer will generate test data specification

using DSL format.

For example, Table 1 presents an example for

the basic input text control as defined by

different UI layout markup languages.

Several sources such as [15], [16], [17], [18]

and [19] present the content and structure of

Android, iOS and Windows Phone UI layout

files.

Table 1. Example of input text declaration
UI layout file Input text tag Input type

Android (xml) EditText inputType= "number"

iOS (storyboard) textField keyboardType="numberPad"

Windows Phone (xaml) TextBox InputScope="Number"

If the input type is specified, this will help in

determining the data type for that input text

control. Table 1 shows that the exemplified

fields requires numeric input and so the test

data domain will be narrowed to this type.

Other controls may have two or more states

or they can use a list of predefined values.

All of these can be used to describe the data

that will be generated for the component

under test.

3.3 Specifications
The specifications represent one of the most

important source for the test data generation.

Data

generator

Data

specification

(using DSL)

Instrumented

source files

Data

generator

Informatica Economică vol. 18, no. 2/2014 57

DOI: 10.12948/issn14531305/18.2.2014.06

The level of details (user and system

specification), the representation and the

storage medium for specifications may vary

from one team to another. This high level of

variation generates some challenges for

generalization. In this respect, the analyzer

will require a preprocessing phase that will

unify the input for the specification analyzer.

As stated in [2], the requirements are of two

kinds, functional (related directly to the

application) and nonfunctional (usability,

performance, security etc.). Test data

generator should focus on both types of

requirements.

Each component under test (module, class,

screen etc.) will require the associated

specification files. This could include inputs,

outputs, source, destination, actions, pre-

conditions and post-conditions etc.

4 UI Layout Files Analysis

In order to implement the UI layout file

analyzer, the same example will be used for

two platforms: Android and Windows Phone.

The example consists of a screen used to

collect user data such as first and last name

and age.

The UI layout analyzer should detect three

text fields used for data entry. The third field

(age) should contain only numbers.

An excerpt from the UI layout file for the

Android application is presented in Listing 2.

For this example the targeted controls are

EditText type. For these controls the

android:inputType attribute is located in

order to determine the input data type.

Another attribute for the EditText control is

android:maxLength that gives information

related to the maximum text size that will be

generated for this field.

Listing 2. Excerpt from the XML layout file for Android application
<TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="First Name" />

<EditText

 android:id="@+id/editTextFirstName"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignLeft=

 "@+id/textView1"

 android:layout_below="@+id/textView1"

 android:layout_marginTop="16dp"

 android:ems="10"

 android:inputType="textCapWords" />

<TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft=

 "@+id/editTextFirstName"

 android:layout_below=

 "@+id/editTextFirstName"

 android:text="Last Name" />

<EditText

 android:id="@+id/editTextLastName"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignLeft=

 "@+id/textView2"

 android:layout_below=

 "@+id/textView2"

 android:layout_marginTop="16dp"

 android:ems="10"

 android:inputType="textCapWords" />

<TextView

 android:id="@+id/textView3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft=

 "@+id/editTextLastName"

 android:layout_below=

 "@+id/editTextLastName"

 android:text="Age" />

<EditText

 android:id="@+id/editTextAge"

 android:layout_width="50dp"

 android:layout_height="wrap_content"

 android:layout_alignLeft=

 "@+id/textView3"

 android:layout_below="@+id/textView3"

 android:layout_marginTop="16dp"

 android:ems="10"

 android:inputType="number" />

<Button

 android:id="@+id/btnOK"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft=

 "@+id/editTextAge"

 android:layout_alignParentBottom="true"

 android:layout_marginBottom="23dp"

 android:text="OK" />

<Button

 android:id="@+id/btnCancel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline=

 "@+id/btnOK"

 android:layout_alignBottom=

58 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.06

 "@+id/btnOK"

 android:layout_alignParentRight="true"

 android:layout_marginRight="39dp"

 android:text="Cancel" />

The textCapWords value for

android:inputType attribute is treated as a

simple string.

Figure 4 represents the screenshot of the

Android application screen associated to the

layout presented in Listing 2.

Fig. 4. Example of a test screen from the

Android application

The same functionality was implemented in a

Windows Phone application. Listing 3 is an

excerpt from the associated XAML file. The

UI layout analyzer module for Windows

Phone UI layout files will parse the content

looking (in this example) for TextBox

controls. Within TextBox tags the

InputScope attribute is located in order to

determine the input type. The maximum

number of characters is controlled by

MaxLength attribute. Similarly to Android

layout files, the PersonalSurname and

PersonalGivenName values for InputScope

attribute will be treated as strings by the DSL

generator.

Fig. 5. Example of a test screen from the

Windows Phone application

Figure 5 depicts the same application screen

but for Windows Phone platform. The

associated UI layout file is presented in

Listing 3.

The UI layout file analyzer could be

extended also for other input controls such as

lists or combo-boxes and also for buttons in

order to support testing automation. This

represents a future direction for automation

of user interaction testing for mobile

applications.

Informatica Economică vol. 18, no. 2/2014 59

DOI: 10.12948/issn14531305/18.2.2014.06

Listing 3. Excerpt from the XAML layout file for Windows Phone application
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBox Height="72" HorizontalAlignment="Left" Margin="28,80,0,0"

x:Name="textBoxFirstName" VerticalAlignment="Top" Width="378" InputScope="
PersonalGivenName" />

 <TextBox Height="72" HorizontalAlignment="Left" Margin="28,201,0,0"

x:Name="textBoxLastName" VerticalAlignment="Top" Width="378" InputScope="
PersonalSurname" />

 <TextBox Height="72" HorizontalAlignment="Left" Margin="28,323,0,0"

x:Name="textBoxAge" VerticalAlignment="Top" Width="124" InputScope="Number" />

 <TextBlock HorizontalAlignment="Left" Margin="42,48,0,0" TextWrapping="Wrap"

Text="First Name" VerticalAlignment="Top"/>

 <TextBlock HorizontalAlignment="Left" Margin="42,169,0,0" TextWrapping="Wrap"

Text="Last Name" VerticalAlignment="Top"/>

 <TextBlock HorizontalAlignment="Left" Margin="42,291,0,0" TextWrapping="Wrap"

Text="Age" VerticalAlignment="Top"/>

 <Button x:Name="buttonOK" Content="OK" HorizontalAlignment="Left"

Margin="65,468,0,0" VerticalAlignment="Top" Width="160"/>

 <Button x:Name="buttonCancel" Content="Cancel" HorizontalAlignment="Left"

Margin="246,468,0,0" VerticalAlignment="Top" Width="160"/>

</Grid>

The UI layout analyzer will parse each layout

file. The parser should be implemented for

each mobile platform under test in order to

correctly detect the user controls.

The resulting DSL file (XML-based) is

presented in Listing 4.

Listing 4. Example of DSL generated

content
<dataset>

 <field>

<type>string</type>

<length>MAX_STRING</length>

 </field>

 <field>

<type>string</type>

<length>MAX_STRING</length>

 </field>

 <field>

<type>number</type>

<length>MAX_NUMBER</length>

 </field>

</dataset>

If the data length cannot be deduced from the

UI layout files, several constants representing

the maximum limit will be used

(MAX_STRING, MAX_NUMBER etc.). If

the data length is identified within the

controls attributes, these will be used as

limits. For lists, the contained values will be

used for input.

Before the DSL file will be used by the test

data generator, it could be correlated with the

specification and adjusted in order to provide

the best description for test data.

5 Discussions

The test data generator designed for mobile

applications include several analyzers that

generate data specification files (based on

DSL markup language) or instruments the

source code. Data generators are

implemented differently based on their

inputs. Table 2 presents the main

characteristics identified for data generators

depending on their functionality.

The analyzers for source code and user

interface files require total or partial access to

the application source files. The UI layout

files are part of the application project and

have to be parsed by the analyzer. The

analyzer results can be combined to obtain

test data specifications. The specification

analyzer does not require access to any of the

source files.

The source code analyzer and the UI layout

files analyzer require knowledge about the

internal structure of the application. These

modules are closely related to the developer.

The specification analyzer is independent of

the application implementation and it is

closed to the user or customer.

The code required to generate test data based

on source files has a high complexity. TDGs

are dependent on the programming language.

Firstly, a source files has to be instrumented.

Then, data generator will run SUT in order to

record the code coverage. For UI layout files

the parser is language dependent and it is

60 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.06

possible to be implemented for several

markup languages. The specification

analyzer is less complex, but it requires a

preprocessing phase, that could include

manual work, in order to receive the desired

input.

The main advantages of the proposed

solution are:

 a broader source for test data generation;

 it targets structural and functional testing

approaches;

 flexible design, that allows the

development and use of other

components;

 uses standard input and output files in

order to allow a common interface.

The UI layout files analyzer is a useful tool

for test data generation. It has a medium

complexity, but could be very helpful in

generating test data, especially when the

specifications are missing or are incomplete.

Table 2. Comparison of test data generators flows
Analyzer Source code

access

Knowledge about

the application

implementation

Complexity

Source code Yes Required High

User interface layout files Partial Partially required Medium

Specifications No Not required Low

The proposed solution has components with

a high level of complexity and it has to be

adapted for each targeted platform.

6 Conclusion and Future Work
Reaching a high quality level for a software

application can only be done by massively

investing in prevention. This is why it is very

important to position ourselves just above the

optimal value of the TCQ (Total Cost of

Quality) where the quality costs are minimal

and the quality level is high enough.

Due to the exponential grow of the TCQ

shape, a very high quality level turns to be

somehow uneconomical since the

investments needed are much higher than the

achievements in terms of quality.

Test data is very important for the success of

any application. Test data is required at

several levels that are closed to the developer

(source code) or to the users/customers of the

developed application. There is no single

solution for test data generation and these

available options have to be used together in

order to obtain the best results. The proposed

system is based on several inputs for test data

generation and it could be extended for other

types of input. Each input will be used by a

dedicated analyzer that will generate outputs

for data generators. Finally, data generators

will produce test data for the software under

test.

On the short term, the future work will

include the development of the UI layout

files parser for mobile applications together

with the associated data generator, and a

detailed description of DSL language. On the

long term we intend to implement the

proposed solution in order to be used in a real

environment.

Acknowledgment

Parts of this research have been published in

the Proceedings of the 13
th

 International

Conference on Informatics in Economy, IE

2014 [20].

References

[1] S. Pressman, Software Engineering: A

Practitioner’s Approach. 7th ed., New

York: McGraw-Hill, 2009.

[2] I. Sommerville, Software Engineering.

9th ed., Boston: Addison-Wesley, 2011.

[3] M. Roper, Software Testing, McGraw-

Hill Book, 1994.

[4] G. J. Meyers, The Art of Software

Testing, Second Edition, New Jersey:

John Wiley & Sons, 2004.

[5] M. Harman, F. Islam, T. Xie and S.

Informatica Economică vol. 18, no. 2/2014 61

DOI: 10.12948/issn14531305/18.2.2014.06

Wappler, "Automated Test Data

Generation for Aspect-Oriented

Programs," in Proc. of AOSD’09,

Charlottesville, 2009.

[6] P. Pocatilu and I. Ivan, "A Genetic

Algorithm-based System for Automatic

Control of Test Data Generation,"

Studies in Informatics and Control, vol.

22, no. 2, pp. 219-226, 2013.

[7] M. Kumar and M. Chauhan, "Best

Practices in Mobile Application Testing

(White Paper)," Infosys, Bangalore,

2013.

[8] R. Selvam and V. Karthikeyani, "Mobile

Software Testing – Automated Test

Case Design Strategies," International

Journal on Computer Science and

Engineering (IJCSE), vol. 3, no. 4, pp.

1450-1461, 2011.

[9] P. Pocatilu, "Testing Java ME

Applications," Informatica Economică,

vol. 12, no. 47, pp. 147-150, 2008.

[10] P. Pocatilu, "A Framework for Test Data

Generators Analysis," Economic

Computation and Economic Cybernetics

Studies and Research, vol. 47, no. 3, pp.

185-198, 2013.

[11] S. Jiang, Y. Zhang and D. Yi, "Test Data

Generation Approach for Basis Path

Coverage," ACM SIGSOFT Software

Engineering Notes, vol. 37, no. 3, pp. 1-

7, 2012.

[12]

S. Varshney and M. Mehrotra, "Search

based Software Test Data Generation for

Structural Testing: A Perspective," ACM

SIGSOFT Software Engineering Notes,

vol. 38, no. 4, pp. 1-6, 2013.

[13] Project Management Institute, A Guide

to the Project Management Body of

Knowledge: PMBOK Guide, 5
th

 edition,

Project Management Institute, 2013

[14] International Standards Organization.

2008. ISO 9000:2008. Quality

Management Systems – Fundamentals

and Vocabulary. Geneva, Switzerland:

ISO.

[15] R. Meier, Professional Android 4

Application Development, Wiley, 2012

[16] S. Komatineni and D. MacLean, Pro

Android 4, Apress, 2012

[17] P. Pocatilu, Programarea dispozitivelor

mobile, ASE Publishing House, 2012

[18] T. Szostak, Windows Phone 8

Application Development Essentials,

Packt Publishing, 2013

[19] M. Neuburg, iOS 7 Programming

Fundamentals, O’Reilly Media, 2013

[20] P. Pocatilu, F. Alecu and S. Capisizu, A

Test Data Generator for Mobile

Applications, Proceedings of the IE

2014 International Conference,

Bucharest, Romania, May 15-18, 2014,

ISSN 2284-7472, pp. 116-121

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 1998. He achieved the PhD in Economics in 2003

with thesis on Software Testing Cost Assessment Models. He has published

as author and co-author over 45 articles in journals and over 40 articles on

national and international conferences. He is author and co-author of 10

books, (Mobile Devices Programming and Software Testing Costs are two of

them). He is professor at the Department of Economic Informatics and

Cybernetics within the Bucharest University of Economic Studies, Bucharest. He teaches

courses, seminars and laboratories on Mobile Devices Programming, Economic Informatics,

Computer Programming and Project Quality Management to graduate and postgraduate

students. His current research areas are software testing, software quality, project

management, and mobile application development.

62 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.06

Felician ALECU has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 2000 and he holds a PhD diploma in Economics

from 2006. Currently he is lecturer of Economic Informatics within the

Department of Economic Informatics at Faculty of Cybernetics, Statistics

and Economic Informatics from the Academy of Economic Studies. He is the

author of several articles in the field of parallel computers, grid computing

and distributed processing. He holds a Project Management Professional

(PMP) certification from the Project Management Institute (PMI), and he is member of the

Romanian chapter of PMI.

