
Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

32

Collaborative Environment and Agile Development

Bogdan GHILIC-MICU, Marian STOICA, Marinela MIRCEA

The Bucharest University of Economic Studies

ghilic@ase.ro, marians@ase.ro, mmircea@ase.ro

Over time, information and communications technology development has made a direct

impact on human activity in the individual context as well as familial, economic and social.

This has laid the premise for adoption of new and modern paradigms in individual and

organizational activity management. The evolutionary climax of the social universe is called

nowadays knowledge society. The knowledge society succeeds the information society,

emphasizing the development of the opportunities brought by collaborative work environment

and agile approach. In this paper we will highlight the use of collaborative environment in

agile software development, as an instrument for managing organizations in knowledge

society. Thus, we will emphasize the paradigms of agile testing, validation and verification in

collaborative environment.

Keywords: Collaborative Environment, Knowledge Society, Agile Development, Testing,

Validation, Verification, Management, Information and Communication Technology

General Context

From historic perspective, the human

society has evolved from agrarian society to

craftsman, industrial, capitalist and

information society, reaching today the stage

of knowledge society. If we were to say what

comes next, it would probably be a society of

artificial intelligence, limited natural

resources consumption or a robot society. We

cannot know for sure, but theoretical

speculations have been proposed. On the

other hand, we can invoke the current context

of the knowledge society as a foundation of

organizational development on three pillars:

collaborative environment, agile approach

and modern management based on

information and communications technology

(ICT).

Unlike the “old” society, today we work and

live in a particular technological context,

characterized by the global internet network

as support for any kind of activity. We can

see changes in the nature of work, from

traditional office work to telework in virtual

offices or telecommuting. These aspects are

premises for increasing the exploitation of

individual skills and abilities in

organizational context and transferring them

with the purpose of achieving the business

goals. The modern business moves to the

sphere of electronic business, strongly

relying on technology and internet.

Still, the management activity or the

management as an activity does not change

in the same radical way. Traditional

concepts, methods and techniques are re-

wrapped, terminologically beautified and

launched on the market in a process specific

to marketing. Thus, while Phillip Kotler

speaks about marketing management in

information society [9] (as the Bible of

business men), why can’t we speak about

management marketing in knowledge

society? The so called modern paradigms of

contemporary management can be identified

terminologically in expressions like fractal

model, anthropocentric model, holonic

model, cloud model, chaotic model etc. Let’s

not forget that the term fractal was

introduced by Benoît Mandelbrot in 1975,

the term holon (as organizational structure)

was introduced by Arthur Koestler in 1967

and so on.

What is new in modern management is the

way these fundamental concepts from

various sciences (mathematics, philosophy,

psychology, structuralism, semiotics,

cybernetics etc.) are adopted and adapted the

management practice. In this sense of

exposure, characterized by ICT and internet

and modern management paradigms we

1

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

33

invoke the general context of collaborative

environment and agile software development

(see also the collaborative paradigm of

intelligence). The link between the two

subjects of current cognitive development is

the fact that both collaborative environment

and agile development involve the shared

participation of several factors of human

nature as well as material, financial and

temporal. Economic organizations in current

society market must be able to adapt quickly

to changes on the market. They must have

the ability to exploit any new opportunity in

their field or related fields. This ability

measures the degree of agility of an

organization. An agile business is

simultaneously flexible, able to adapt to

different economic conditions. The agility of

a business is largely determined by the agility

of the enterprise architecture employed. In

this context, the enterprise architecture is a

rigorous description of the internal structure

of an organization, its decomposition in

subsystems, relations between the

subsystems, relations with the external

environment as well as principles that must

be observed for organization design and

evolution. (Figure 1).

Fig. 1. Business agility in knowledge society

The architecture is built on the terms and

specifics of the business’s information

system. A robust and adaptive information

system involves an agile, flexible and

adaptive informatics component.

Software applications are the foundation of

informatics components. Analysis, design

and building these applications takes places

more and more in a collaborative

environment, relying on agile methodologies

(Scrum, XP, LSD etc. – see Figure 2). The

quality of agile software developments is

ensured by specific testing, validation and

verification activities.

Business agility

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

34

Fig. 2. Agile software development methodologies

2 Why software testing and validation?

Big software system development is a

complex and error prone process. Faults may

appear in any development stage, and them

must be identified and corrected as soon as

possible in order to prevent their propagation

and escalation of verification costs. Software

quality specialists must be involved in early

development stages in order to identify the

required quality and estimate the impact on

the development process [1]. Any quality

informatics system professionally designed

and developed must be tested and validated

before it goes into production. The client

must be certain that the system was

developed and integrated according to project

specification. Also, the client must be certain

that the product works correct and without

errors.

According to Edsger Dijkstra, “Program

testing may be used to demonstrate the

presence of errors, but never to prove their

absence!”. Software testing is a new process,

or series of processes, designed to verify the

degree in which the source code performs as

it was designed to and does nothing that was

not intended. The software must be

predictable and consistent, without surprises

for the users. Full testing is impossible, not

only in theory, but also in practice. There are

two ways to test software: automated testing

and manual testing. Each way has its own

advantages and drawbacks. [2]

Manual testing requires advances knowledge

from the testing specialist, while automated

testing can carry out many tests in a short

time. Most programmers favor automated

testing, but even so, some manual testing is

requires to eliminate some errors. Software

industry uses both kind of tests, but most

persons prefer automated testing to save time

and money.

Testing throughout the life cycle ensures the

implementation of fundamental concepts and

approaches of software testing. The subject

of testing is important for two reasons: first,

according to recent US government studies,

in the year 2000 59.5 billion USD were lost

due to low quality software; second, 22.2

billion USD annual loss may be eliminated

by implementing appropriate testing in all

development stages [3]. Testing is a vital part

of software development and must start as

soon as possible, becoming an important part

of the requirement definition process. In

order to achieve the most useful perspective

of the development project, the entire life

cycle must be designed, including how the

user feedback will influence the future

demand [4].

Testing is the activity of conceiving test

cases, performing the tests and evaluation of

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

35

test results. One test consists of execution of

the program for a conveniently chosen input

data set in order to verify the result is the

expected one. The test case is a set of input

data, execution conditions and expected

results, designed for a particular purpose like

verification of a certain execution path in the

program or verification of compliance to a

certain condition. [10]

Testing may involve one or more factors, the

more the better. Among these factos are [11]:

 business requirements;

 functional design requirements;

 technical design requirements;

 regulation requirements;

 source code;

 business administration restrictions

and standards;

 corporative standards;

 best practices in the profession of

trade;

 hardware configuration;

 cultural problems and linguistic

differences.

Testing process consists of the following

stages (Figure 3):

 unit testing – testing of individual

components;

 module testing – testing of a collection of

related components;

 subsystem testing – testing the collection

of modules integrated into a subsystem;

 system testing – testing the full system

before delivery;

 acceptance testing – tests performed by

actual users to verify if the system

complies to the requirements.

Fig. 3. Test process

The following are the most common testing

principles [12]:

 definition of expected results;

 avoidance of testing own programs;

 rigorous inspection of each test results;

 writing the test cases for both valid and

invalid input conditions;

 program testing – verify if it does what

specifications require but also if wht the

program does is mentioned in

specifications;

 always save the test cases and reuse

them;

 organization and planning of test

process, considering there will be errors;

 testing is a creativity stimulation

activity;

 a test case must define the desired output

or result;

 testing plan must not assume there will

be no errors;

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

36

 the probability of finding an error in a

portion of source code is proportional

with the number of errors already found.

There are also a series of testing axioms [13]:

 it is impossible to completely test a

program;

 software testing involves assuming a

risk;

 testing cannot prove there are no

errors;

 the more errors are found, the more

there are to be found;

 testing paradox: the more a program

is tested, the more its immunity to

testing increases;

 not any identified error will be

removed;

 specifications for the software

product change permanently;

 software testers are not the most

appreciated members of the

development team.

The following are the priorities and goals of

testing:

 finding the flaws;

 since a program cannot be completely

tested,

 test first the most important

features and abilities;

 test the parts where errors are

most likely to occur;

 test the integrity level of the

software;

 the general testing goal and the

purpose of each planned test case

must be known (the test case design

techniques systematically help

achieving the goals and covering the

concerns);

 test goals are the test requirements

(establishes the functional covering,

quality, test set, risks, constraints,

required standards).

Testing is an important part of maintaining

and improving the quality of software. The

product quality improves throughout the

development cycle by repeating the cycle

“test – identify fault – correct”. Quality

insurance includes all the steps taken to

improve the quality of software.

3 Software Verification and Validation

Verification and validation (V&V) must be

conducted in every stage of the development

process. V&V process has two main goals:

uncovering the flaws of the system and

evaluation of the system’s utility in

operational state. Verification checks the

system during development for compliance

to the standards, specifications and

requirements.

This activity answers questions like:

 Does the system comply to the

specifications?

 Is the product developed correctly (as

it should be)?

Validation determines if the system will be

usable on the market. This activity answers

questions like:

 Does the product cover operational

needs?

 The product can be used in the

initially established environment?

 Is the right product being developed?

Verification and validation aim to determine

if the system complies to the specifications

and meets the clients requirements. V&V

involves processes of verification/control,

revision and testing the system. System

testing involves running it using test cases

derived from real data that must be

processed.

The distinction between validation and

verification is shown in figure 4 and was well

defined by Barry Boehm (Professor Emeritus

at University of Southern California), who

described validation as “building the right

system” and verification as “building the

system right”. Validation and verification

activities complement each other.

Verification may involve all stages of the

development process, with evaluations of

user requirements and design specifications,

but users’ evaluation is limited by their

ability to understand the design and

development details. Validation focuses on

the final product, which can be extensively

tested by users during acceptance test. Users’

needs and delays in validation lead to high

risks and costs. This is why validation must

be associated with specific verification

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

37

activities, which may be conducted during early stages [1].

Fig. 4. Verification vs. Validation

(Adapt. from L. Baresi, 96 M. Pezzè/Electronic Notes in Theoretical Computer Science 148 (2006) 89–111)

Verification helps evaluate the product and

determines if the product of a certain

development stage complies with the

requirements even before the stage starts.

The activities related to verification of

correctness during development are called

verification activities. Validation aims to

verify if a product meets the client

expectations. Validation activities focus on

the final product, which is tested from the

client’s point of view, thus determining if it

meets the expectations of global users.

Verification may be static or dynamic

(Figure 5).

Fig. 5. Static and dynamic V&V

The goal of verification and validation is to

decrease the number of errors in the software

to an acceptable level. The errors may be

present in all stages of the software

development cycle.

The usual sources of errors are:

 errors caused by faulty specifications

(most errors);

 errors caused by design flaws;

 direct programming errors (relatively

few, under 15%).

Validation activities are divided in a) low

level testing (test the unit/module, test

integration) and b) high level testing (test

usability, function, the system, acceptance

test).

Testing activity is conducted according to a

must-have plan, called test plan. “American

National Standards Institute and Institute for

Electrical and Electronic Engineers Standard

829/1983 for Software Test Documentation”

identify the components describes in table 1,

which must be included in a software test

plan. The test plan is a final document which

describes: the goal, objectives test approach;

human resource and equipment engaged in

testing; instruments to be used; dependencies

and risks; flaw categories; test inputs and

output criteria; measurements to be made;

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

38

communication and reports; plan and critical moments.

Table 1. Components included in a test plan*

Component Description Goal

Responsibilities
Specification of persons and

their attributions

Assign responsibilities and

ensure tracing and concentration

Hypotheses
Code, system state and

availability

Avoid misunderstanding s about

the program

Test
Test the goal, the plan,

duration and prioritization

Sketch the entire process and

map specific tests

Communication
Communication plan – who,

what, when, how

Everybody knows what to know

and when to know

Risk analyses
Critical components that

must be tested

Focus on the areas identified as

critical for success

Flaw reporting
How the errors will be

recorded and reported

Define how to document an

error so it can be reproduced,

corrected and retested

Environment

Technical environment, data,

work environment and

interfaces used for testing

Lower or eliminate

misunderstandings and potential

slowing factors

* (Source: http://www2.sas.com/proceedings/sugi30/141-30.pdf)

4 Software Testing in Agile Development

Software testing in agile development is a

complex and controversial problem both in

literature and practice. Various persons have

various views regarding testing software that

was developed with agile methodologies

because most agile methodologies do not

concern too much with testing activities. The

agile model focuses on close collaboration

with the client, short iteration and frequent

deliveries. Testing a piece of software

developed like this is a challenge. Agile

strategies do not include many testing

practices, which are normally required for

quality software.

Agile testing is a software testing practice

that follows the principles of agile software

development. Agile development integrates

testing into the development process. Thus,

testing is part and parcel of software

development and actively participates in the

process of software coding. Agile testing

involves an agile and cross-functional team,

actively based on specific expertise from

testing. Agile teams use a “whole-team”

approach for “bake in quality” of the

software product. This approach allows the

team to work fast because tests are conducted

in real-time, allowing testers to collaborate

with the development team and offering them

the possibility to identify any problem and

transfer it into executable specifications that

guide the coding. Testing and coding are

conducted incrementally and iteratively,

developing every feature until it provides

enough value to launch the product. Agile

testing has a series of advantages and

drawbacks (Table 2). [5]

In an agile development environment,

traditional test strategy documents are less

frequent and a key agile principle is to favor

working on software and not on

documentation. Additionally, traditional

documentation does not create a common

understanding of the testing strategy, due to

the fact that document authors (and probably

test authors) are usually the only ones that

read that document. Still, testing strategy has

an increasing role in quality assurance.

Automating tests on all levels (unit,

integration, acceptance, performance etc.)

allows for rapid verification and

implementation of software modifications.

This provides significant benefits to the

business and becomes a more common

practice among new start-up companies. [6]

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

39

Table 2. Agile testing features

Advantages Drawbacks

 Test requirements are discussed and refined by a

team (stand-UPS/Scrums), allowing the

combined team to better approach the

technical/business aspects of the requirements.

This allows for general compliance and prevents

misunderstandings.

 Agile process often requires input and output

criteria for stories/descriptions (things to do in a

particular launch/iteration). Agile testing

ensures that each requirement is well defined

and measurable, allowing to determine whether

a requirement is fully implemented or not.

 QA (Quality Assurance personnel) takes part in

writing the requirements. This ensures that test

estimation is not overlooked.

 Automated testing allows for implementation of

regression.

 Quality is the responsibility of the entire

combined team, not only of QA. The entire team

agrees on test strategies, test cases and flaw

correction priority plan.

 Estimations and

dimensioning of

requirements lead to

challenges and

dependencies.

 Right questions are not

asked. It is dangerous for

QA not to ask the right

questions, especially when

the described solution is

chosen for implementation.

Daily meetings of the tam

prevent this problem.

 New user descriptions may

be added in the current

iteration. If QA is not

included in adding the new

descriptions, appropriate

engagements and

estimations are not taken

into account, leading to

non-compliance and

breaking the deadlines.

A testing strategy is a plan document that

provides the general direction for a project

testing needs. Development of a testing

strategy establishes the direction and answers

high level testing questions. The value of the

testing strategy does not reside in how it is

edited, written or formatted, but in planning a

test approach. Testing strategies may vary

from informal to extremely formal. In its

most simple form, testing strategy is just a

strategy. It is a roadmap that provides the

general direction for what testing must do

and provides details on how to do it by

answering to the following questions:

 how – the answer identifies the types

of tests required, like automated

testing or manual testing;

 where – the answer details current

testing environment, including the

specific server and may include a

diagram of all physical and logical

components;

 who – must specify the resources

used for testing and other resources

that may be needed;

 when – o good test strategy describes

the moment of the first internal

element that foes into testing and may

include a tough schedule for the rest

of the project.

These high level questions must be answered

at the beginning of the project. Testing

strategy may also approach issues related to

testing like test instrument acquisition or

flaw reporting system. The goal of the testing

strategy is to [7]:

 achieve consensus of goals and

objectives from interested parties (for

example: management, developers,

testers, clients, users);

 manage initial expectations;

 insure the right path is being chosen;

 identify types of tests to be performed

on all testing levels; this happens

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

40

always, either in formal or informal

way.

A testing strategy provides a full perspective

over testing and identifies or refers the

following:

 project plans, risks and requirements;

 relevant regulations, policies and

directives;

 required processes, standards and

templates;

 support guides;

 interested parties and their testing

goals;

 test resources and their estimations;

 test levels and phases;

 test environment;

 end criteria for each stage;

 test documentation and evaluation

methods.

Testing strategies are ways to approach the

testing process. Various strategies may be

implemented in each stage of the testing

process. From a typological point of view,

testing strategies include: incremental testing,

top-down testing, bottom-up testing,

execution thread testing, back-to-back

testing.

5. Conclusions

As stated in a paper we recently published

[8], no matter what development model is

chosen, this activity involves complex

processes that are often prone to errors. This

is why, beyond agility or traditionalism an

important role in software development goes

to testing and validation. Any good quality

informatics system, with professional design

and implementation, must be tested and

validated before it goes into production.

When the business evolves in the context of

the knowledge society, the collaborative

work environment will make its mark on the

results testing, validation and verification

models.

Acknowledgement

This paper was co-financed from the

European Social Fund, through the Sectoral

Operational Programme Human Resources

Development 2007-2013, project number

POSDRU/ 159/1.5/S/138907 "Excellence in

scientific interdisciplinary research, doctoral

and postdoctoral, in the economic, social and

medical fields - EXCELIS", coordinator The

Bucharest University of Economic Studies

References

[1] L. Baresi, “An Introduction to Software

Testing, ” Electronic Notes in Theoretical

Computer Science, vol. 148, no. 1, pp.

89-111, February 2006.

[2] A. Nawaz and K. M. Malik. Software

testing process in agile development.

Internet:

http://btu.se/fou/cuppsats.nsf/all/2499455

27e869a47c125746c0002f4e1/$file/Soft

ware_Testing_Process_in_Agile_Develo

pment.pdf, June, 2008 [Feb. 27, 2014].

[3] G. Everett, R. McLeod, Software Testing

Testing Across the Entire Software

Development Life Cycle. New Jersey:

John Wiley & Sons, 2007.

[4] MSDN, Testing in the Software

Lifecycle. Internet:

http://msdn.microsoft.com/en-

us/library/jj159342.aspx, [Feb. 27, 2014].

[5] Belatrix Software. Agile Software

Testing. Internet:

http://www.belatrixsf.com/index.php/whi

tepaper-agile-software-testing, [Feb. 27,

2014].

[6] A. Smith. Agile Test Strategy Template.

Internet:

http://ennova.com.au/blog/2011/05/agile-

test-strategy, May 20, 2011, [Feb. 27,

2014].

[7] Defining a Software Testing Strategy.

Internet: http://www.sstc-

online.org/proceedings/2002/SpkrPDFS/

WedTracs/p616.pdf, 2002, [Dec.

10,2013].

[8] M. Stoica, M. Mircea and B. Ghilic-

Micu, “Software Development: Agile vs.

Traditional,” Informatica Economică,

vol. 17, no. 4, pp. 64-76, December 2013.

[9] P. Kotler, Managementul marketingului,

Ed. Teora, ed. V, 2008, ISBN

1594960259

[10] [IEE90] IEEE. Standard: IEEE std 610.

In IEEE Standard Glossary of Software

Engineering Terminology, 1990

Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.04

41

[11] http://www2.sas.com/proceedings/sugi

30/141-30.pdf

[12] G. Myers. The Art of Software Testing,

2nd Edition. John Wiley, 2004

[13] R. Patton. Software Testing. Sams

Publishing, 2005. Testare agila:

http://btu.se/fou/cuppsats.nsf/all/2499455

27e869a47c125746c0002f4e1/$file/Soft

ware_Testing_Process_in_Agile_Develo

pment.pdf

Bogdan GHILIC-MICU received his degree on Informatics in Economy

from the Academy of Economic Studies Bucharest in 1984 and his doctoral

degree in economics in 1996. Between 1984 and 1990 he worked in

Computer Technology Institute from Bucharest as a researcher. Since 1990

he teaches in Academy of Economic Studies from Bucharest, at Informatics

and Cybernetics Economy Department. His research activity, started in 1984

includes many themes, like computers programming, software integration and hardware

testing. The main domain of his last research activity is the new economy – digital economy

in information and knowledge society. Since 1998 he managed over 25 research projects like

System methodology of distance learning and permanent education, The change and

modernize of the economy and society in Romania, E-Romania – an information society for

all, Social and environmental impact of new forms of work and activities in information

society.

Marian STOICA received his degree on Informatics in Economy from the

Academy of Economic Studies, Bucharest in 1997 and his doctoral degree in

economics in 2002. Since 1998 he is teaching in Academy of Economic

Studies from Bucharest, at Informatics and Cybernetics Economy

Department. His research activity, started in 1996 and includes many themes,

focused on management information systems, computer programming and

information society. The main domains of research activity are Information

Society, E-Activities, Tele-Working, and Computer Science. The finality of research activity

still today is represented by over 70 articles published, 20 books and over 30 scientific papers

presented at national and international conferences. Since 1998, he is member of the research

teams in over 20 research contracts with Romanian National Education Ministry and project

manager in 5 national research projects.

Marinela MIRCEA received her degree on Informatics in Economy from

the Academy of Economic Studies, Bucharest in 2003 and his doctoral

degree in economics in 2009. Since 2003 she is teaching in Academy of

Economic Studies from Bucharest, at Informatics and Cybernetics Economy

Department. Her work focuses on the programming, information system,

business management and Business Intelligence. She published over 30

articles in journals and magazines in computer science, informatics and

business management fields, over 30 papers presented at national and international

conferences, symposiums and workshops and she was member over 15 research projects. She

is the author and coauthor of 10 books. In February 2009, she finished the doctoral stage, and

her PhD thesis has the title Business management in digital economy.

