
162 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.15

Issues and Challenges of Business Rules Modeling in Software Systems for

Business Management

Anca ANDREESCU, Marinela MIRCEA

Bucharest University of Economic Studies, Romania

anca.andreescu@ie.ase.ro, mmircea@ase.ro

Software systems for business management appeared as a result of the growing need to en-

sure a consistent IT support for most of the business activities that organizations have to deal

with. Moreover, organizations continue to struggle for obtaining competitive advantages on

the business market and to lower the cost of developing and maintaining computer systems to

support their operations. As business rules play an important role within any organization,

they should be taken into consideration as distinct elements when developing a software sys-

tem that will operate in a collaborative environment. The paper addresses the problem of

business rules modeling, with special emphasis on incorporating business rules in Unified

Modeling Language (UML) models.

Keywords: Business Rules, Software Systems, Business Management, UML Models, OCL

Introduction

While software development environ-

ments productivity is still growing strong,

studies on the causes of software projects

failure consistently places poor quality re-

quirements on top of the hierarchy of these

causes [1]. An explanation of this situation is

that the development teams allocated too lit-

tle time understanding the real business prob-

lems, the user needs or the nature of the un-

derlying environment in which the system

will run. Moreover, developers are trying to

provide technical solutions as quickly, but

based on insufficient understanding of the

problem’s requirements [2].

In most cases, difficulties in requirements

modeling and analysis arise from insufficient

understanding of the logic part of the applica-

tion, known as business logic. Business logic

is the defining element for a business being

in the process of modeling and automation,

and it includes both business rules (BR) and

workflow (process), which describes the

transfer of documents or data from one par-

ticipant (person or software system) to an-

other.

It is common knowledge that every organiza-

tion operates according to a set o business

rules. These may be external rules, coming

from legal regulations that must be observed

by all organizations acting in a certain field,

or internal rules which define the organiza-

tion’s business politics and aim to ensure

competitive advantages in the market. Start-

ing from the previous observations, it is ob-

vious the important role that business rules

play within the development process of an

organization’s software system [3]. And this

especially applies to Software Systems for

Business Management (SSBM), as they are

suitable to incorporate a large amount of

business rules.

Doing business today is mainly about creat-

ing and maintaining strategies and connec-

tions. While strategies must comply with

business rules, an organization is more likely

to succeed in its business activities if it cre-

ates a support for strong collaborations be-

tween managers, employees, clients and any

other stakeholders. Thus, using a collabora-

tive SSBM is a must, not a need in order to

operate in a collaborative environment.

An analysis of SSBM’s components, in terms

of their functionality and how they relate to

business rules reveals the important role that

the business rules play in the development

process of these systems. The results of this

analysis are summarized in Figure 1 and de-

scribe hereinafter.

Very often, software components are dis-

cussed in the context of component-based

software systems. In this paper a software

component will be perceived in a wider

sense, as an element of the system which

1

Informatica Economică vol. 18, no. 1/2014 163

DOI: 10.12948/issn14531305/18.1.2014.15

provides implementation for a service or pre-

defined event, being encapsulated and able to

communicate with other system components.

Fig. 1. Components of a software system for business management

According to [4], a software application may

contain two types of components: Technical

components and Business components.

Technical components are non-functional

components used to build the technical archi-

tecture by providing reliable and reusable so-

lutions that have a recurring problem (ensur-

ing, for example, networks communication or

persistence). On the other hand, a Business

component is a representation of the nature

and behavior of real world entities, as they

can be found in an organization’s vocabulary

(customer, account etc.).

In terms of independence from specific or-

ganization’s requirements, at the lowest level

of a SSBM we can identify components that

supply business utility services [5]. For ex-

ample, an address book, a catalogue or a

component that deals with interest rates. This

type of component encapsulates little or no

business rules and can be regarded as a utility

function. A “function “ component can act as

a lookup table, indexed by a key, a mathe-

matical function or a combination of input

parameters that will provide (almost) always

the same result. These components are, by

their nature, very stable and could be reused

within a particular business area.

At the next level there are components that

encapsulate business objects which could

manage, for example, customers, a bank ac-

count or book copies. These components are

also relatively stable in the sense that once

developed, they will subsequently undergo

minor changes, mostly due to the need to add

information or additional roles. Many busi-

ness rules can be found in these components,

so their reusability is likely to be restricted to

a particular business area.

On the highest level there are the components

that manage business processes. They con-

tain objects that store events such as borrow-

ing a book or ordering a product. Business

objects will play a role in the related process

event and, therefore, will be recorded in that

event. A process component is less reusable

than the other two types and includes busi-

ness rules governing the process. These com-

ponents are less stable and they tend to

change frequently as the organization seeks

better ways to conduct the business. Business

rules can be stored in the process related

component or can be encapsulated in a sepa-

rate component that will act as a plug-in. By

using the latter approach, a process will be-

come more general because we introduce

certain flexibility in the execution order of

activities and impose business rules to re-

strict this order.

2 Explicit Manipulation of Business Rules

Businesses are controlled by rules that regu-

late how the business operates and is struc-

tured. Often they are not even considered

rules but are referred to as “facts” of the

business. Rules ensure that the business is

run according to predefined external laws or

regulations or internal restrictions or goals

164 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.15

[6]. Enforcing business rules will make the

business to function as efficiently and profit-

ably as possible, while fulfilling its goals.
Given these facts, it is obvious the important

role that business rules play within the devel-

opment process of SSBM. From the business

rules manipulation perspective, the support

offered by the traditional software develop-

ment methodologies (both structured and ob-

ject oriented) is very limited, because they: a)

do not define a structured process for busi-

ness rules identification, specification, analy-

sis and implementation; b) allow business

rules to be scattered in different parts of the

system, which cumbers the possibilities to

track and change rules or to ensure their

uniqueness.

These are motivations that have entailed

business rules to be treated as distinctive el-

ements of the software development process,

movement that had started almost twenty

years ago, as conceptual studies, and has

been consolidated during the last ten years,

through the so-called business rules ap-

proaches [7]. Such an approach formalizes

business rules that are critical within an or-

ganization and specify them in a language

that can be easily understand by all the

stakeholders.

It is obvious that, for software technologies,

the adoption of a business rules approach is a

natural step forward in increasing productivi-

ty. Promoters of the business rules approach-

es, such as Barbara Von Halle [8] or Ronald

G. Ross [9] advocate that many problems re-

lated to frequently requirements changes

could be solved using such an approach and

some of them assert the advantages of using

commercial rule based software products, al-

so known as Business Rules Management

Systems (BRMS). Essentially, this kind of

systems externalizes business rules and pro-

vides facilities for a centralized business

rules management.

Though it is an important software develop-

ment strategy in the context of the new chal-

lenges brought in by the on-going extension

of electronic businesses, a business rules ap-

proach can significantly increase the devel-

opment efforts, because, at methodological

level, it extends the software development

cycle, and, at the technological level, com-

mercial BRMS (such as IBM ILOG Business

Rule Management Systems or Visual Rules)

imply major costs. These represent re-

strictions that have limited the use of busi-

ness rules approaches mainly to systems that

are specific to large organizations or belong

to a very specialized business domain, such

as insurance or telecommunications.

However, there is the possibility to apply the

underlying principles of business rules ap-

proaches, at some extent, also for the SSBM

that do not fit the categories mentioned

above. In this context, we use the concept of

explicit manipulation of business rules in a

software system, designating any attempt to

treat business rules as independent assets in

any stage of the development cycle. This

means that the developers might use the ad-

vantages of the underlying principles of

business rules approaches without being

compelled to use a business rules engine. The

design of a general development process

(based on the Unified Software Development

Process [10]) that is capable to integrate a set

of necessary activities for the explicit manip-

ulation of business rules was presented in [3].

Figure 2 depicts the implications of using

business rules within the SSBM development

process, starting from the four main neces-

sary activities related to business rules: iden-

tification, specification implementation and

management.

The above mentioned activities are all equal-

ly important in successfully managing busi-

ness rules. Business rules identification may

be the hardest part, because, depending on

the enclosed information, business rules

could be based on explicit or tacit (implicit)

knowledge [11]. Once identified, business

rules have to be specified in an appropriate

manner in order to be understood by all per-

sons involved in the development process.

While business people are not so often famil-

iar with specification languages that require a

higher level of formalization, developers re-

quire that business rules statements to be un-

ambiguous in order to allow an easy transi-

tion towards source code. This challenge can

Informatica Economică vol. 18, no. 1/2014 165

DOI: 10.12948/issn14531305/18.1.2014.15

lead to the following conclusion: business

rules must be specified at different levels of

formalization, starting from natural language

and ending to formal descriptions.

Fig. 2. Implications of business rules explicit manipulation

The Unified Modeling Language (UML) is a

standard semi-formal specification language

and is able to describe, through its models,

many aspect of a software system. Further-

more, several types of constraint can be ap-

plied to the models’ elements in order to add

supplementary information. In many cases,

this information actually represents business

rules. Hereinafter the article focuses on visu-

al and formal representation of business rules

within UML models.

3 Business Rules Modeling in UML

Business rules modeling aims at representing

business rules in various models in order to

be more easily understood by developers.

This largely depends on the system’s type,

the development methodology, the type of

rule and so on, and can vary from simple

graphics to complex representations such as

decision tables, decision trees or activity dia-

grams.

Any software system can be represented by

one or more models that correspond to dif-

ferent aspects of the system. Since most

SSBM are complex, a complete and detailed

model of such a system will include several

models that can be handled separately. Ob-

ject-oriented development methodologies

recommend that a system should be built

from different perspectives. Thus, Object

Modeling Technique (OMT) proposes three

models for three different purposes, namely

models that can describe either objects or in-

teractions or transformations: object model,

dynamic model and functional model. On the

other hand, the Unified Software Develop-

ment Process recommends modeling a sys-

tem around three visions: use case view, log-

ical view and components view.

However, a complete model of a SSBM,

must also address the problem of business

rules modeling. UML does not have special

notations for the visual description of busi-

ness rules, but rules that are represented in or

by different UML diagrams can stand for a

business rules model. Problems arise when a

complete business rules model should be rep-

resented and analyzed as a whole, because

business rules are scattered in various sys-

tem’s models [12]. A viable solution is to

place business rules in a repository, from

166 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.15

where they can be analyzed in a systematic

manner. Also, by establishing a relationship

between different models and the rules in re-

pository, rules’ traceability can be achieved.

The following paragraphs contain an analysis

of how business rules are included in or af-

fect different types of UML diagrams. Syn-

thesis of this approach is outlined in Figure 3.

Fig. 3. Placing business rules in the context of UML diagrams

Activity diagrams can be used to model the

logic of the operations described in one or

more UML use cases. They are similar to

technological process schema and data flow

diagrams encountered in structured develop-

ment methods. In fact, activity diagrams are

created as a finite set of serial actions or a

combination of serial and parallel actions

[13]. In an activity diagram, a business rule

can be associated to a ramification within the

business process. For example, in Figure 4

there are two business rules that influence the

workflow, corresponding to each decision

point (represented as a diamond in the dia-

gram). The first rule determines the Standard

customer to pay the order before issuing the

delivery, while the Premium customers can

pay after the order was sent for delivery. The

second rule is a condition that specifies that

if an order is urgent, than it must be delivered

within 12 hours, otherwise it will be deliv-

ered as usual.

Use case diagrams model the behavior of a

system by linking system’s functions with its

actors. Business rules within use case dia-

grams are mainly statements that describe the

duties and powers of actors in the system. It

is important to describe how tasks are as-

signed to actors, by including some degree of

obligation. It influences the way business

rules are formulated. Mandatory require-

ments are designated by use of the expression

“must do”, while non-binding requirements

are designated by using “can / could do” ex-

pressions.

Other types of rules that naturally belong in a

use case are those that describe the condi-

tions representing exceptions to the baseline

scenario. For example, in the above activity

diagram, a Premium customer is allowed to

pay an order after or while it was delivered.

Suppose we introduce a supplementary busi-

ness rules according to which, for orders that

have the value greater than 500 Euro, Premi-

um customers must pay a deposit represent-

ing 20% of the order value. This rule will be

an exception (and will generate an alternate

flow) to the basic flow of events in the use

case “Premium customer pays order”.

Sequence and collaboration diagrams are

used to describe how users accomplish their

tasks. These include business rules that de-

termine the exact order of actions to be per-

formed by user and system in order to carry

Informatica Economică vol. 18, no. 1/2014 167

DOI: 10.12948/issn14531305/18.1.2014.15

out a particular task.

Orders Payment Delivery

Make order

Pay in advance

[Standard Client]
[Premium Client]

Pay order

Deliver in max 12h

[Urgent order]

Normal delivery

[otherwise]

Issue invoice

Business rule no.1

Business rule no.2

Fig. 4. UML activity diagram for orders processing

Statechart diagrams are useful for modeling

the life cycle of an object by specifying the

sequence of object’s states in response to the

occurrence of events and under certain condi-

tions. In most cases, these are Event - Condi-

tion - Action (ECA) business rules. Frequent-

ly, ECA rules are represented by statechart or

activity diagrams.

Class diagrams are used to depict classes of

business objects and the relationships be-

tween them. These always include specific

business rules that express the constraints

applied to objects or the properties that gov-

ern the relationships between objects. In oth-

er words, we can say that the UML diagrams

have built-in visual syntax support for defin-

ing certain types of business rules. A class

diagram has structural constraints in its rela-

tionships to depict the multiplicity of an as-

sociation. UML requires that the multiplicity

between classes be defined when defining an

association between two classes. The multi-

plicity is actually a rule that defines how

many objects of one class can or must be as-

sociated with an object of the other class. For

example, we will consider the following two

facts which can be found in a banking sys-

tem: a) Person applies for Credit and b)

Consumer and Mortgage are types of Cred-

it. The first fact was represented in Figure 5

as an association relationship between class

Person and class Credit, while the second

fact was described as a generalization rela-

tionship between super-class Credit and sub-

classes Consumer and Mortgage. More de-

tails on how to textually specify business

rules using a pattern language can be found

in [14].

The previous examples described business

rules that are included by default in a class

model. In addition, a class can add supple-

mentary documentation in the form of notes

or constraints. Constraints are generic UML

elements for defining formal rules. They are

expressed in UML within curly braces close

to the model element that it affects and can

168 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.15

be specified either with a formal language or

more informally through natural language.

The advantage of specifying via a formal

language is that it is easier to ensure unam-

biguous specifications. The note attached to

the Account class in Figure 5 shows that for

this class the minimum amount deposited in

an account must be 100 Euro.

Person

-ID: Integer
-Name: String
-NetSalary: Float

+ApplyforCredit()

Credit

-Sum: Float
-MounthlyPayment: Float
-StartDate: String
-EndDate: String

+Approve()

Account

-AccNumber: String
-Balance: Float
+MinAmount: Integer

+Create()
+Deposit()
+Withdraw()

Bank

+Name: String

Consumer Mortgage Goods

-Value: Float

+guarantee+credit

0..*0..1

+owner

+goods

1

0..*

+accounts

+holder

0..*

1

+accounts+bank

1..*1

+provider

+credits

1

1..*

+debitor+credits

10..*

{MinAmount>=100 Euro}

Fig. 5. UML class diagram for a banking system

Usually, constraints are specified in natural

language and practice has shown that this

method wills always generate ambiguities. In

order to describe explicit and unambiguous

constraints, the so-called formal languages

have been created. Though, the main disad-

vantage of traditional formal languages is

that they are difficult to use by people that do

not have a solid mathematical background.

Object Constraint Language (OCL) aims to

fill this gap and it is a formal language, but at

the same time, easy to read and write. OCL

[15] was defined as a part of UML specifica-

tion and became a standard for specifying

rigorous expressions that can add essential

information to object-oriented models and

other object modeling artifacts.

OCL is not an implementation language and

cannot be used to specify actions, such as

what the result is of violating a specific rule

or what is performed when a rule evaluates to

a specific value. These actions are best de-

picted in a UML activity diagram or through

writing pseudocode. OCL is a typed lan-

guage, in which all the operators are of a

specific type and each operator can only be

applied on specific operand types [6]. This is

why, for any OCL expression, a context must

be provided.

There are many uses for OCL in order to

augment UML models. Some of the most

common are described in Table 1, together

with examples of business rules specified in

natural language and also in OCL. These

business rules are applied to the UML bank-

ing model in Figure 5.

Informatica Economică vol. 18, no. 1/2014 169

DOI: 10.12948/issn14531305/18.1.2014.15

Table 1. Uses of OCL expressions
Element Description Informal business rules OCL expression

Invariant Condition that must be

true at all the times for

all objects of a class.

The minimum amount depos-

ited in an account must be

100 Euro.

context Bank

inv: self.Accounts.MinAmount>=100

Pre-

condition

Specifies what must be

true before an operation

on a class is performed.

Before creating an account, a

person must deposit a mini-

mum amount of money.

context Account :: Create (sum:

Integer)

pre: sum > MinAmount

Post-

condition

Specifies what will be

true after the operation

has been performed.

When deposit money in an

account, its balance will in-

crease just with the added

value amount of money.

context Account :: Deposit (s:

Integer)

post: Balance = Balance @pre + s

Derivation

rule

Specifies how a specific

value is calculated from

other values.

Calculate the number of ac-

counts a person owns.

context Person ::numberAccounts:

Integer

derive: self.accounts size()

Guard Specifies whether to

perform a specific ac-

tivity or, when several

alternatives exist, an al-

ternative.

In order to be approved a

credit must be verified and

preapproved.

context Credit::Approve() : void

pre: state = #verified

post: if

(oclIsInState(#preapproved))

state = #approved

else

state = #denied

endif

However, we must also consider the limita-

tions of this language. Even if by automatic

code generation more complete code se-

quences are produced, not all OCL expres-

sions may be directly executable. This may

be a major drawback in an industry that re-

quires shorter delivery times. According to

[13], OCL must be used in situations where
the ability to generate code may be a require-

ment, but seems harder to create UML models

that generate granular code than it is to write

the code itself.

4 Conclusions

Software Systems for Business Management

must offer support for at least three key ele-

ments: automate organization’s underlying

activities and decisions, enforce internal and

external business rules and operate in a col-

laborative environment through the commu-

nication with other systems. All the above el-

ements are equally important for a business’s

success, but the first two may be considered

critical. A good understanding of the sys-

tem’s business requirements and how busi-

ness rules are included in and influence these

requirements represent the very first step in

developing a SSBM. However, an important

distinction must be made between business

rules and system rules because sometimes a

system imposes rules that do not support any

business rule [16]. In [9] Ross presented an

extensive analysis of this distinction between

rules. Since UML is a standard for software

modeling, this paper presented various ways

on how to include business rules into UML

models, by using the language elements or

additional constraints. Because business rules

that are described more formally than in nat-

ural language are more suitable to be unam-

biguous and well understood by the devel-

opment team, the use of OCL expressions for

business rules specification was also ad-

dressed. Though, practice has shown reluc-

tance in using OCL during the requirements

analysis stage, when developers work with

business people, considering that it is more

appropriate for the design phase. Future re-

search will focus on defining UML stereo-

types for business rules and including these

in Computer Aided Software Engineering

(CASE) tools.

References

[1] B. McGraw, “Why Software Pro-

jects Fail”, May 2009, available at:

http://fearnoproject.com/2009/05/01/why

-software-projects-fail/

170 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.15

[2] D. Leffingwell, D. Widrig, “Managing

Software Requirements: A Use Case

Approach, Second Edition”, Addison

Wesley, 2003.

[3] A. Andreescu, “A General Software De-

velopment Process Suitable for Explicit

Manipulation of Business Rules,” The

proceedings of the “CompSysTech ’09”

International Conference, Ruse, Bulgar-

ia, pp. IIIA.9-1, June 2009.

[4] J. Grodziski, „Méthodes de

développement logiciel : Intégration de

l’approche évènementielle à l’approche

par composant”, Mémoire de DESS

systèmes d’information et de communi-

cation, University of Paris, 2000.

[5] I.Graham, „Business Rules Management

and Service Oriented Architecture: A

Pattern Language”, Wiley, 2007.

[6] H.E. Eriksson and M.Penker, “Modeling

with UML: Business Patterns at Work”,

John Wiley & Sons, 2000.

[7] Business Rules Group, “BRG's Business

Rules Manifesto”, 2003, available at:

http://www.businessrulesgroup.org

[8] B. Von Halle, L. Goldberg and J.

Zachman, “Business Rule Revolution:

Running Business the Right Way”, Hap-

py About, Cupertino, 2006.

[9] R.G. Ross, „Business Rule Concepts:

Getting to the Point of Knowledge, 3rd

Edition”, Business Rule Solutions, 2009.

[10] G. Booch, J. Raumbagh and I. Jacobson,

„The Unified Software Development

Process”, Addison-Wesley, 1999.

[11] I. Nonaka and H. Takeuchi, „The

Knowledge-Creating Company”, Oxford

University Press, Oxford. 1995.

[12] O.Vasilecas and E. Lebedys, „Moving

business rules from system models to

business rules repository”, INFOCOMP,

Vol.5, Nr.2, June 2006.

[13] P. Kimmel, “UML Demistified”,

McGraw-Hill/Osborne, 2006.

[14] M. Mircea, A. Andreescu, “Using Busi-

ness Rules in Business Intelligence”,

Journal of Applied Quantitative Meth-

ods, Volume 4, Issue 3 - September

2009.

[15]- J. Warmer and A. Kleppe, „Object

Constraint Language: Getting Your

Models Ready for MDA, Second edi-

tion”, Addison Wesley, 2003.

[16]- G. Witt, “Writing Effective Business

Rules”, Morgan Kaufmann Elsevier,

2012.

Anca Ioana ANDREESCU, PhD is an associate professor at the Bucharest

University of Economic Studies, Faculty of Cybernetics, Statistics and In-

formatics, Department of Economic Informatics and Cybernetics. She pub-

lished over 20 articles in journals and magazines in computer science, infor-

matics and business management fields, over 30 papers presented at national

and international conferences, symposiums and workshops. In January 2009

she finished the doctoral stage, the title of her PhD thesis being: The Devel-

opment of Software Systems for Business Management. She is the author of one book and she

is coauthor of five books. Her interest domains related to computer science are: requirements

engineering, business analytics, modeling languages, business rules approaches and software

development methodologies.

Marinela MIRCEA, associate professor, PhD, currently working with Bu-

charest University of Economic Studies, Faculty of Cybernetics, Statistics

and Informatics, Department of Economic Informatics and Cybernetics.

Competence areas: information system, Business Intelligence. Research in

the fields of in-formation system, Business Intelligence, classification tech-

niques. Author of 6 books and more than 50 papers published in national and

international journals.

