
Informatica Economică vol. 18, no. 1/2014 69

DOI: 10.12948/issn14531305/18.1.2014.06

Mining Product Data Models: A Case Study

Cristina-Claudia DOLEAN

Business Information Systems Department,

Faculty of Economics and Business Administration.

Babeş-Bolyai University, Cluj-Napoca, Romania

cristina.dolean@econ.ubbcluj.ro

This paper presents two case studies used to prove the validity of some data-flow mining

algorithms. We proposed the data-flow mining algorithms because most part of mining

algorithms focuses on the control-flow perspective. First case study uses event logs generated

by an ERP system (Navision) after we set several trackers on the data elements needed in the

process analyzed; while the second case study uses the event logs generated by YAWL system.

We offered a general solution of data-flow model extraction from different data sources. In

order to apply the data-flow mining algorithms the event logs must comply a certain format

(using InputOutput extension). But to respect this format, a set of conversion tools is needed.

We depicted the conversion tools used and how we got the data-flow models. Moreover, the

data-flow model is compared to the control-flow model.

Keywords: Product Data Model, Process Mining, Data-Flow

Introduction

Processes are all over the world. Even the

steps of buying a car may be viewed as a

process. Most organizations use information

systems (e.g.: Workflow Management

Systems (WfMS), Customer Relationship

Management systems (CRM), Enterprise

Resource Planning (ERP)) to support their

businesses. If an information system has the

ability to record the actions performed by

users within it we speak about Process-aware

information systems (PAISs [1]). The actions

performed by users recorded by information

systems are called (event) logs. An event log

consists of several events. An event stores

information about the name of the event, the

resource performing the action, the

timestamp when the action has been started /

completed, or data elements recorded within

the event (e.g.: the name of a new client from

a hotel). Process mining domain [2] analyzes

this kind of event logs. Thus, the goal of

process mining is to extract information

about the process from event logs. On the

one hand, process mining aim is to extract

process models from event logs (process

discovery) and on the other hand one

question pops-us: does the discovered model

depict the intended behavior of the

process?(conformance checking). Moreover,

comparing the intended behavior of a process

with the real behavior, the future behavior

may be discovered (enhancement).

Generally, the discovering algorithms focus

on control-flow perspective [3,4,5] or

resource perspective [6]. But what can we

say about data needed in order to execute

process’ activities? This paper aims to offer a

dynamic data-flow perspective of a process

using synthetic event logs from two different

sources: Navision

(http://www.navisioninfo.com/) and YAWL

system (http://www.yawlfoundation.org/).

Generally the employees from a company

know the internal processes. But after the

execution of a particular number of activities,

the arising question is what data we need in

order to continue our process. Moreover,

being in a certain state of a process (after the

execution of certain number of activities), the

question asked by the employees is “what

data is available and can/must be used in the

future activities of the process”; or “what

data do we still need in order to execute a

particular activity”. The control-flow

perspective doesn’t have the ability to

provide these answers. Being in a certain

state of a process’ execution, it may only

show the activities which can/must be

1

70 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.06

executed, but it cannot ensure the execution

of the activities.

Second section presents some modeling

methods and techniques which provide the

data perspective of an information system or

a process. We briefly presented the

shortcomings of each of them, starting with

basic data modeling techniques like ERDs

until mining techniques using event logs.

Third section introduces our approach in

order to depict the data-flow perspective of a

process. The case studies are depicted in the

fourth section of this paper. For each case

study we analyzed the way of data collection,

then the data source, after that we presented

the conversion tools used in order to get the

desired event log format and finally we

presented the resulted data-models.

2 Related Work

The 1970s and 1980s were flooded by data-

driven approaches, while at the beginning of

1990s process driven approaches appeared

[2]. The last trend is kept nowadays: the most

part of information systems are process-

centric.

Basic types of data modeling like Entity

Relationship Diagrams (ERDs)[7] underlie

the design of relational databases by offering

a static data model. Each entity is defined by

attributes related to it, while an activity from

a process needs data related to different

entities. Thus, an ERD cannot depict the data

movement through a process.

Another basic approach used in modeling

using activities is depicted using UML

Activity Diagram. This approach focuses on

the activities, not on data; thus it may

describe the control-flow perspective of a

process. Furthermore, control-flow

perspective may be depicted using Petri Nets

[8]. The most part of mining algorithms

[3,4,5] are based on this and are implemented

in ProM Framework [9]. But, both UML

Activity Diagram and Petri Nets focus on the

order of activities without offering insights

about data movements. A Data Flow

Diagram (DFD) depicts the activities which

are directly related to the data processing.

Thus the activities that do not involve any

data modification are not depicted in a DFD.

Moreover, it also involves the actors

(resources), from whom to whom data is

transferred; so it does not offer a pure data-

flow model.

In [10] is depicted an approach which bring

DFD more closer to workflows using web

services and metadata: the Data Centric

Workflow. This model focuses on data types

and data-flow without emphasizes the

characteristics of each service separately.

The main drawback of this approach is that it

does not provide a visualization of the

resulted model.

An approach combining the control-flow

with data flow is described in [11]. First the

UML Activity Diagram is built, then the

Data-Flow matrix is generated. The last one

uses all data objects (elements) from the

process and splits them into two categories:

input (data element is read) or output (data

element is written or over written). Then, the

Process Data Diagram is constructed based

on the UML Activity Diagram and Data-

Flow matrix. This approach does not offer a

pure data-flow model of the process.

There are also approaches which starting

from a data model constructs the control-

flow perspective of the model [12]. Here we

refer to Data-Flow Skeleton Filled with

Activities (DFSFA) approach. Basically, the

workflow process is derived from the data-

flow skeleton and then is filled with

activities. First, a data-flow dependency tree

is generated based on the data dependency,

then the data-flow skeleton is built and then

it is filled with activities. This approach a-

priori input and output data elements are

known. Thus, none automatically extraction

of data elements is proposed.

Metagraphs [13] want to integrate the three

dimensions of workflows in a single model.

The visualization provided using metagraphs

combines data elements and the tasks of

workflows. Therefore it does not present a

pure data-centric approach, but the real

shortcoming appears when we are dealing

with complex metagraph: they are difficult to

be read, respectively to be analyzed.

Informatica Economică vol. 18, no. 1/2014 71

DOI: 10.12948/issn14531305/18.1.2014.06

The shortcoming of the approaches reminded

above is that none of them use an event log

as starting point in order to analyze the data

perspective. The Product Data Model (PDM)

as it was defined in [14] maps to our

approach. An approach that uses PDMs is

depicted in [15]: automatic data processing

steps are grouped into activities. The XSD

file to be imported in ProM. The drawback of

this approach is that it considers the PDM

XML file already created and based on it the

aggregation is build. Our goal is to

automatically create the PDM (first the XML

file in XES format, then its visualization).

3 Theoretical Approach

3.1 General Approach

Each PAIS has its own data structure. For

that, the event logs produced by different

PAIS have different formats. The first

standard format proposed for event logs was

MXML (Mining Extensible Markup

Language [9,16, 17]). Then, XES format

standard was introduced [18]. We used XES

format for the event logs analyzed.

As we argued earlier the current process

mining algorithms focus on the control-flow

perspective. Therefore from a control-flow

perspective of a process we can only see the

order of the activities, but what data do we

need in order to execute a particular activity?

This kind of information is “hidden” in the

control-flow perspective. But a data-flow

perspective may emphasize the data needed

for each activity. The data produced is also

depicted by the data-flow model as well (see

Fig. 1). If we look at the control-flow process

model after the execution of activity A1, we

can only figure out that either activity A2 or

activity A3 may be executed, but what data

do we need in order to execute these

activities?

On the other side a data-flow model depicts

the data needed for every activity in order to

be executed (e.g. for the execution of activity

A1 data elements a and b are needed and data

element c is produced; while in order to

complete activity A2 data elements c and d

are consumed and data element f results).

Moreover, having data elements c,d or e

available we can figure out what activities

can be executed (A2 or A3).

Fig. 1. Control-Flow perspective versus Data-Flow perspective

3.2 InputOutput Extension

In order to generate the data-flow perspective

of a process, the event logs must comply

XES format. Besides the existing extension

already defined (concept extension, lifecycle

extension, organizational extension, time

extension and semantic extension [18]), the

event logs must use InputOutput extension.

The input/output extension defines nested

elements in order to associate input,

respectively output data elements to each

event. Therefore, each event will have input

and output data elements. Moreover, for each

input/output data element the names,

respectively the values are stored.

Event Log

Control-Flow

perspective

Data-Flow

perspective

A1

A2

A3

A4

g

c

h

f

d e

A3A2

A4

a b

A1

72 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.06

Table 1. InputOutput XES definition

Name InputOutput

Prefix io

Extension URI http://granturi.ubbcluj.ro/decision_mining/xes/InputOutput.xese

xt

XML

representation

extension name="InputOutput" prefix="io"

uri="http://granturi.ubbcluj.ro/decision_mining/xes/InputOutput

.xesext"/

This extension defines input and output

attributes at event level. The attributes for

input and output data elements are defined at

meta level. Each input attribute has a name

and a value. Output attribute is treated in a

similar way.

Considering the fact that an event may

contain more than one input or output data

element we choose to delimitate the data

elements by hashtags („#”).

In order to comply with InputOutput

extension some conversion tools have been

developed. Next we will briefly depict these

conversion tools.

3.3 Data-flow Event Log Format

Convertor

This approach is not fully automated because

it needs additional information about the

process retrieved in the event logs. Here we

speak about business specialists which know

the process or documents which depicts it

(e.g. internal procedures).

First step is to determine the process to be

analyzed. In this phase, business specialists

(e.g. business analysts, managers, head of

departments, etc) derive process steps based

on internal procedures and based on their

experience.

Initialize InputNames

Initialiaze InputValues

Initialize OutputNames

Initialiaze OutputValues

Set caseIDValue

Search for clusters

If Found ()

 CN = cluster name

 CV = cluster value

 Add caseID to InputNames

 Add caseIDValue to InputValues

 For each data from cluster

 Extract data elements (name, value)

 Add name to InputNames

 Add value to InputValues

 EndFor each

 OutputNames = CN

 OutputValues = CV

EndIf

EndSearch

Once we have the event log generated by the

system we can apply the Data-flow Event

Log Format algorithm (the pseudo-code is

described above). First we have to define the

clusters for our process. These are extracted

from the process activities (e.g. for Order to

Cash process we can have the following

clusters: create order, generate invoice and

cash invoice). Basically each activity

represents a cluster. Once we have the

clusters created, we analyze each of them.

For each cluster all data is collected

(including their names and values). Hence,

these are the input data elements according to

InputOutput extension. As for the output data

element we create an artificial data element

which takes as name the initials of the

belonging cluster. It also will keep the related

value. Therefore we will get the data

elements needed for InputOutput extension;

so the data-flow mining algorithms can be

used in order to provide the visualization of

data movements within the process.

3.4 Convert to I/O Log Tool

In order to apply the data-flow mining

algorithms to en event log consisting of start

and complete events an intermediary filter

step is compulsory because start and

complete events do not respect the Data-

Flow Event Log Format (using InputOutput

extension). That is the reason why we

propose an algorithm which makes this

conversion. The pseudo-code is depicted

below.

Informatica Economică vol. 18, no. 1/2014 73

DOI: 10.12948/issn14531305/18.1.2014.06

Read Event Log

Foreach trace

 get concept:name attribute value //name of the trace

 Foreach event

 get concept:name attribute value //name of the event

 Foreach attribute from event

 Search for start event //lifecycle:transition =

 „start”

 If start event found

Search for attributes different than the defined extensions

create new event with input elements

 Endif

Search for corresponding complete event

if complete event found

Search for attributes different than the defined extensions

add output elements

 Endif

 End foreach

 End foreach

End foreach

The conversion plug-in is integrated in the

ProM Framework („Convert to I/O log”

plug-in). It takes an event log having start

and complete events (in XES format) as input

and it returns the corresponding event log in

Data-Flow Event Log Format (with input and

output data elements for each event).

For a better understanding of the

corresponding algorithm of Convert to I/O

log plug-in, an example is depicted below.

The name of the operation corresponds to the

event’s name (e.g. the name of the operation

from the example below is A1) and the data

elements will be extracted depending on

event’s type. The event logs using XES

format store the event type on

lifecycle:transition attribute.

Fig. 2. Convert to I/O example

Event logs with start and complete events

make the separation of data elements easier.

Furthermore artificial data elements are no

more needed (like in the previous conversion

approach - DFC).

4 Case Studies

In order to test the developed algorithms two

case studies have been performed: using

Navision event logs, respectively using the

event logs generated by YAWL system. For

each case study different conversion tools

were used because Navision and YAWL

system provide logs in their own way (see

Fig.). The first case study uses Data-Flow

Event Log Format Convertor and XESame

converter in order to provide the event logs

because the data source is given by Excel

(.xlsx) files while for the second case-study

we implemented a new conversion tool for

event logs using start and complete events.

These conversion tools offer the event logs in

the desired format (IO format). Therefore we

can apply the Data-Flow mining algorithms.

For each case study we presented the

visualizations provided by some plug-ins

concept:name:A1

 lifecycle:transition=start

 a=valueA

 b=valueB

concept:name=A1

 lifecycle:transition=complete

 c=valueC

Operation: A1

InputNames:a, b

InputValues: valueA, valueB

OutputNames: c

OutputValues: valueC

74 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.06

which emphasize the control-flow

perspective of a process (e.g. Alpha Miner,

Fuzzy Miner). Then we applied Data-Flow

mining algorithms and we presented the

advantages provided by the data-flow

perspective.

Fig. 3. Case studies approaches

4.1 Navision Event Logs

This case study uses event logs extracted

from a data export from Navision, an ERP

system used by several companies from

Romania. The data for this case study is

provided by Farmec.

Fig. 4. General approach

4.1.1. Data Collection

ERP systems do not have all the properties of

PAISs. They do not record all the actions

performed by users within the ERP system.

Therefore we have to set trackers on the

tables which are providing the necessary data

related to the analyzed process. We choose to

evaluate Order to Cash process. Hence, we

set trackers to all data elements related to

Orders, Invoices and Payments. These are

recorder in Sales and General Journal tables.

The system will generate event logs based on

the data needed. Data collection is a time

consuming phase; so, after we set the

trackers we have to wait in order to get the

event logs. We analyzed the data elements

used between 13
th

 of November and 15
th

 of

November 2013.

Sales header provides information related to

orders and invoices (e.g. order date, invoice

date, the client who made the order, the

receipt date, the document type), while the

information concerning cashing is stored in

General Journal table.

4.1.1 Data Source

The event logs provided by Farmec are

stored into two Excel worksheets. The first

worksheet shows the actions performed by

each user and the second one provides the

link between some data depicted in the first

worksheet (e.g. the corresponding invoice to

each order). Basically the first worksheet

represents the event log and the second

worksheet provides some additional

information. For each action performed the

following information is provided:

 the time when an action has been

performed,

ERP DB + Logs

YAWL system

Data-Flow mining

algorithms

Data-Flow Event Log

 Format Convertor

Data-Flow Event Log

Format (IO Extension)

CaseID

1

2

3

...

Activity

a1

a2

a3

...

Input

i1,i2

o1,i3

o2

...

Output

o1

o2,o3

o4

...Convert to I/O

+ XESame

Event log

in .xslx

format

Activities

files

XESame
1.3

Activities’

extraction
Data-flow

Event Log

Format

(.xes)

Informatica Economică vol. 18, no. 1/2014 75

DOI: 10.12948/issn14531305/18.1.2014.06

 the person who executed the action,

 the field’s name which has been changed,

 the field’s number which has been

changed,

 the name of the table to which the field

belongs,

 the number of the table to which the field

belongs,

 the primary key,

 the type of field change: added, deleted or

modified,

 the old value of the field,

 the new value of the field.

Table 2. Excerpt from Navision event log related to an invoice

Primary key Field name New value

Doc. type=Order, No.=1234 Doc.type Order

Doc.type = Order, Nr.=1234 No. 1234

Doc.type = Order, Nr.=1234 Order date 13/11/2013

Doc.type = Order, Nr.=1234 Client 123

Sales header provides information related to

orders and invoices (e.g. order date, invoice

date, the client who made the order, the

receipt date, the document type), while the

information concerning cashing is stored in

General Journal table. The document type

refers to orders, invoices or receipts.

Table 3. Navision tables and records

Table Number of records

Sales header 7603

General Journal 9294

Total 16897

4.1.3 Conversion

The conversion to Data-flow Event Log

Format was possible using XESame 1.3. We

used the order number as case instance. Each

trace may contain information related to the

order (e.g. the date when the order was

initiated, the client who asked the order, the

date when the corresponding invoice and/or

receipt were made etc.). In the event log, the

information related to an order is depicted on

different rows (see Table 1). The information

about invoices is described in a similar way.

First step is to group each record by order

number. Hence, all information about orders

will be retrieved in one CSV file

(ordersNew.csv). We will proceed in a

similar manner for invoices’ details and we

will get the second CSV file

(invoicesNew.csv). At this we made a

selection of orders, by filtering only those

orders for which the invoice was issued.

Moreover, in order to link the orders to

invoices we added an artificial data element:

the case number (order number - ON).

The information about cashing is stored in

cashingNew.csv. If for orders and invoices a

single filter was enough in order to get the

desired information, for cashing details we

applied several filters because the

information about cashing was not available

by selecting the document type. Therefore,

cashing information does not belong to Sales

header table. Generally the information

related to cashing is taken from Cash

Receipts Journal (JR.INC. attribute in our

event log).

Beside the event log from Navision we also

used a file which stores the link between

Order Number and the correspondent

invoice. The link between invoices and

cashing is made based on the information

from the event log (records about cashing

contain information about the number of the

corresponding invoice).

76 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.06

So far we have all the information we need in

order to get the data-flow visualization. We

have only to map this information into a

Data-flow Event Log format. XESame

allows to add child attributes. We need these

kinds of attributes in order to respect the

Data-flow Event Log format (each

input/output data element needs two child

attributes: name and value).

Basically each CVS file depicts an activity

from the event log. Therefore there are three

CSV files – related to orders, invoices,

respectively cashing. Next we will depict the

mappings done according to our CSV files:

 The case id is stored in CaseNo

(concept:name at trace level),

 The person who executed the activity

can be found in Resource field

(org:resource),

 The time when an activity was

performed is stored in Timestamp field

(time:timestamp),

 The EventID represents the name of the

activity (concept:name at event level),

 InputNames stores the names of data

elements needed in order to execute a

particular activity,

 InputNewValues refers to the values of

data elements that an activity needs in

order to be executed,

 OutputNames stores the names of data

elements produced after the execution of

a particular activity,

 OutputNewValues contains the values of

data elements resulted behind an

activity’s execution

For each event lifecycle transition attribute is

set to „complete“.

As we mentioned before, a trace instance is

represented by the order number. Due to the

fact that we analyze a short period of time

(from 13
th

 of November until 15
th

 of

November) there are orders whose invoices

were not issued and there are uncollected

invoices as well. This leads to the

incompleteness of our event logs. So, we

added an artificial “end event”.

The next step after we set up the mapping is

to execute the conversion. The result is an

event log in XES format according to the

requirements of Data-flow Event Log Format

(with input and output data elements).

4.1.4 Data analysis

The resulted event log was importer into

ProM Framework and a series of analysis

were made. The event log has 251 cases and

523 events. The maximum number of events

per trace is three (Create Order, Create

Invoice and Cashing) and there are 26

persons which executed the activities from

Order to Cash process.

First we applied some algorithms that focus

on the control-flow perspective. This type of

algorithms emphasizes the order of activities.

Each of them shows the activities presented

in the process: Create Order, Create Invoice

and Cashing. Alpha Miner shows that all

orders have a corresponding invoice, but not

all invoices are collected. Hence, we have an

XOR split operator after Create Invoice

activity. These models do not show which

data is consumed or produced by a particular

activity even if this data is stored at activity

level.

Then we applied the first two naive

algorithms proposed to emphasize the data-

flow perspective in form of PDM. Fig. and

Fig. show the visualization of the process

from data movement point of view.

Informatica Economică vol. 18, no. 1/2014 77

DOI: 10.12948/issn14531305/18.1.2014.06

Fig. 5. Control-flow perspective of Order to Cash process using different algorithms

Naive algorithm A focuses on the operations

(activities), while Naive Algorithm B

concentrates on the input and output data

elements of operations. As a result, first

algorithm identifies the operations uniquely

based on their names (e.g. Create Order)

regardless the input or output data elements

are. The input data elements needed for

Create Order activity are: Order date,

Document type, Number and Client and the

output data element is the artificial element

ON (order number).

b) Fuzzy Miner

c) Genetic Miner

a) Alpha Miner

78 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.06

Fig. 6. Naive Algorithm A applied on Navision event log

Even if in the event log there are orders

which are not specifying the client whom an

order belongs this operation does not appear

in the model. This shortcoming is solved by

Naive Algorithm B since it focuses on the

data elements consumed or produced by an

activity (see Fig.). The model counts the

frequency of each operation. Therefore, the

model illustrates that there are two orders for

which the buyer is not known. Therefore 251

orders have all the information available.

Moreover the model shows that for each

order an invoice was generated, but only 21

invoices were collected.

Fig. 7. Naive Algorithm B applied on Navision event log

4.2 YAWL event logs

Fig. shows the data source of the event logs

providing the data-flow model. The second

one refers to the event logs produced by

YAWL system. First, these respect XES

format and second this kind of event logs

consists of start and complete event logs.

Nevertheless they need a conversion tools in

order to apply data-flow mining algorithms

on them.

21 251

249 2 2

Informatica Economică vol. 18, no. 1/2014 79

DOI: 10.12948/issn14531305/18.1.2014.06

4.2.1 Data collection

The event logs are generated after some

simulations of a process (approval process

for going in an international or national

mobility) implemented in YAWL system.

This process is briefly depicted in [19] (see

Fig.).

Fig. 8. Workflow of getting the approval to go in an international or national mobility

For a better understanding we will use two

traces generated after the workflow

execution. On the first execution of the

workflow specification all the conditions are

accomplished by the users (see the red tasks

from Error! Reference source not found.9).

Fig. 2. Control-flow for approval to go in an international or national mobility process

On the other hand, on the second execution

(see the green tasks from Fig. 2Error!

Reference source not found.), the mobility is

not preview in the Plan. Therefore, a

modification of the Plan is necessary and

then it must be approved. The rest of the

workflow has the same execution like the

first one.

4.2.2 Data source

YAWL system allows the simulation of the

process depicted in the specifications. Thus,

for each task defined in the specification a

80 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.06

form is generated. It contains all data

elements defined at task level (input and/or

output data elements). Each task may be

assigned to one or more resources and it may

be executed. Thus, for each task an event is

generated. Usually, it consists of the

corresponding data elements, the time when

the activity was started, the time when the

activity was completed and the resource

executing the activity (see Figure 10).

Fig. 10. YAWL form and its corresponding events

4.2.3 Conversion

One characteristic of YAWL event logs is

that they consist of start and complete events.

Regularly the existing plug-ins implemented

in ProM Framework use as input complete

event log. Having the start component of an

event helps to the separation of the

component data elements of the PDM. Thus:

a) each event corresponds to an operation,

b) the attributes from start events form the

set of input data elements,

c) the attributes from complete events form

the set of output data elements (see Fig.

Error! Reference source not found.).

The grayed textboxes are input data elements

(shown to the user just for informative

purposes) while the enabled textbox is the

output data element (for this example there is

a single output). The elements shown in the

GUI are stored as start and complete events

in the log (also shown in Fig. 0Error!

Reference source not found.). The data-

flow visualization shows the input data

elements (grayed textboxes in form) ‘knotted

together’ in an operation that produces the

output data element (the enabled textbox in

the GUI).

4.2.4 Data Analysis

There are some exceptions when we refer to

the first task of the workflow. The first task

of the workflow refers to the preparation of

the mobility document. Being the first task,

this is a particular case because it only

involves input data elements in the PDM

visualization (departure_time, arrival_time,

city, holder and amount). In order to make

the PDM executable, at implementation level

an exception is thrown. If the current data

element is certified as input data element,

before it is added to the PDM model

verification is performed: namely if the data

element is produced (it is output data element

in a previous operation) until the current

state.

The input/output converter does not take into

consideration the XOR (OR) pattern from

control-flow perspective. Yet the XOR

pattern may be easily identified in the PDM

visualization.

5 Conclusions

In order to validate the proposed algorithm

two case studies are introduced. For the first

case study we used the event logs produced

by an ERP (Navision), while for the second

one we used the event logs generated by

YAWL system. In order to transform the

event logs from Navision in the desired

format we used Data-Flow Event Log Format

Convertor and XESame 1.3., while for the

event logs generated by YAWL system, we

Informatica Economică vol. 18, no. 1/2014 81

DOI: 10.12948/issn14531305/18.1.2014.06

used Convert to I/O log convertor. The data-

flow visualization of a process is possible if

information about each operation presented

in the event log can be extracted (name of

operation, input data element(s) and output

data element(s)). Considering the event logs

generated by YAWL the extraction of PDM

elements was possible by analyzing the start

and complete events.

Both case studies show the additional

information brought by the data-flow

perspective because it provides more

information about the process than control-

flow perspective does. Moreover PDMs are

able to represent XOR and AND patterns

specific to control-flow perspective.

The main improvement brought by data-flow

perspective refers to the fact that having

some data elements available we may decide

what activity can be executed further.

Moreover, having a set of data elements

available, the data elements needed in order

to execute further activities are depicted in

the data-flow model.

Acknowledgement

This work was supported by CNCSIS-

UEFISCSU, project number PN II – RU - TE

52/2010 code 292/2010.

References
[1] M. Dumas, W.M.P. van der Aalst and

A.H.M. ter Hofstede, „Process-Aware

Information Systems: Bridging People

and Software through Process

Technology“, Wiley & Sons, 2005

[2] W.M.P. van der Aalst, „Process Mining:

Discovery, Conformance and

Enhancement of Business Processes“,

Springer Verlag, 2011

[3] A.K.A. de Medeiros, B.F. van Dongen,

W.M.P.van der Aalst, A.J.M.M. Weijters,

„Process Mining: Extending the α-

algorithm to Mine Short Loops“, BETA

Working Paper Series, WP 113,

Eindhoven University of Technology,

Eindhoven, 2004

[4] C.W. Gűnther and W.M.P.van der Aalst,

„Fuzzy Mining: Adaptive Process

Simplification Based on Multi-

perspective Metrics“ , In G. Alonso, P.

Dadam, and M. Rosemann, editors,

International Conference on Business

Process Management (BPM 2007),

volume 4714 of Lecture Notes in

Computer Science, Springer-Verlag,

Berlin, 2007, pp. 328-343,

[5] A.K.A. de Medeiros, „Genetic Process

Mining“, PhD thesis, Technische

Universiteit Eindhoven, Eindhoven, The

Netherlands, 2006, Weijters A.J.M.M.

and van der Aalst W.M.P.,

„Rediscovering Workflow Models from

Event-Based Data using Little Thumb“,

Integrated Computer-Aided Engineering,

10(2):151-162, 2003, pp. 151-162

[6] W.M.P. van der Aalst , H.A. Reijers H.

A. , and M. Song, „Discovering social

networks fromevent logs“, Computer

Supported CooperativeWork, 14(6):549-

593, 2005, pp. 549-593

[7] P.P.-S. Chen, „The entity-relationship

model toward a unified view of data“,

ACM Transaction Database System 1,

1976, pp. 9-39

[8] C.A. Petri , „Kommunikation mit

Automaten“, PhD thesis, Institut fur

instrumentelle Mathematik, 1962

[9] B. van Dongen B., A.K. Alves de

Medeiros, H.M.W. Verbeek, A.J.M.M.

Weijters, and W.M.P. van der Aalst, „The

ProM framework: A New Era in Process

Mining Tool Support“, In G. Ciardo and

P. Darondeau, editors, Application and

Theory of Petri Nets 2005, volume 3536

of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 2005, pp. 444-

454

[10] A. Akram, J. Kewley, R. Allan, „A

DataCentric approach for Workflows“,

Enterprise Distributed Object

ComputingConference Workshops,

EDOCW '06. 10th IEEE International,

2006

[11] S.X.Sun, J.L. Zhao, J.F. Nunamaker,

O.R. Liu Sheng, „Formulating the Data-

flow Perspective for Business Process

Management“, Information Systems

Research, 17(4), 2006, pp. 374-391

[12] N. Du, Y. Liang, L. Zhao, „Data-flow

82 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.06

skeleton filled with activities driven

workflow design“, in Won Kim &

Hyung-Jin Choi, ed., 'ICUIMC' , ACM, ,

2008, pp. 570-574

[13] A. Basu, R.W. Blanning, „Metagraphs

and Their Applications“, Integrated

Series in Information Systems, Senes,

Springer, 2007

[14] I. Vanderfeesten, „Product-Based

Design and Support of Workflow

Processes“, Eindhoven University of

Technology, Eindhoven, 2009

[15] H. van der Aa, H.A. Reijers, and I.

Vanderfeesten, „Composing Workflow

Activities on the Basis of Data-flow

Structures“, In: Proceedings of the 11th

International Conference on Business

Process Management (BPM 2013),

Lecture Notes in Computer Science, vol.

8094, Springer Verlag, Berlin, 2013, pp.

275-282

[16] B.F. van Dongen and W.M.P. van der

Aalst, „A meta model for process mining

data“, In Proceedings of the CAiSE,

2005, vol. 5, pp. 309-320

[17] C. Gűnther and W.M.P. van der Aalst,

„A Generic Import Framework for

Process Event Logs“, In J. Eder and S.

Dustdar, editors, Business Process

Management Workshops, Workshop on

Business Process Intelligence (BPI 2006),

volume 4103 of Lecture Notes in

Computer Science, Springer-Verlag,

Berlin, 2006, pp. 81-92

[18] C.W. Gűnther,„XES Standard

Definition“, Fluxicon Process

Laboratories, November 2009

[19] C.C. Dolean, R. Petruşel, „Data-Flow

Modeling: A Survey of Issues and

Approaches“, Informatica Economica,

Academy of Economic Studies -

Bucharest, Romania, vol. 16(4), 2012, pp.

117-130

Cristina-Claudia DOLEAN has graduated the Faculty of Economics and

Business Administration, Babeş Bolyai University, Cluj-Napoca in 2008.

She holds a bachelor degree in Business Informatics and a master degree in

E-Business. She is currently a PhD student in the field of Business

Informatics. Her current research interest include Process mining and

Workflow Management.

