
Informatica Economică vol. 17, no. 4/2013 47

DOI: 10.12948/issn14531305/17.4.2013.05

Using Binary Code Instrumentation in Computer Security

Marius POPA1, Sergiu CAPISIZU2
1Department of Economic Informatics and Cybernetics
Bucharest University of Economic Studies, Romania

2Bucharest Bar Association
marius.popa@ase.ro, capisizu@ew.ro

The paper approaches the low-level details of the code generated by compilers whose format
permits outside actions. Binary code modifications are manually done when the internal
format is known and understood, or automatically by certain tools developed to process the
binary code. The binary code instrumentation goals may be various from security increasing
and bug fixing to development of malicious software. The paper highlights the binary code
instrumentation techniques by code injection to increase the security and reliability of a
software application. Also, the paper offers examples for binary code formats understanding
and how the binary code injection may be applied.
Keywords: Binary Code, Code Instrumentation, Code Injection

Binary Code Formats
The binary code is the output of the

compiling process. It uses two binary digits,
0 and 1, to represent symbols or computer
processor instructions as bit strings.
The binary code is directly executed by the
computer processor or is interpreted by a
specialized software component which
translates the binary code into the format
understood by the computer processor.
Therefore, the binary code is classified into
two groups:
 Native code – is generated by the

compiler depending on the hardware
features; the binary files containing
native code are executed only by
computer processor units (CPU) having
the same features like the computer
processor used to generate it; some
significant advantages are execution
speed and absence of other software
components;

 Intermediate code – is generated by the
compiler according to intermediate
language specifications to be interpreted
by a virtual machine; some examples of
virtual machines are Java Virtual
Machine (JVM) for Java platform and
Common Language Runtime (CLR) for
.NET framework; a big advantage is the
binary code portability for different
hardware and software platforms.

Some considerations related to binary code
and file formats are presented in [1], [2], [4],
[5], [6], [8] and [9].
The memory layout of native code file for a
C program is depicted in figure 1 [11].
The user space is structured into the
following segments:
 Code segment – contains executable

instructions in binary format; it is a read-
only segment and is shared among
concurrent users;

 Data segment – contains static and
global data initialized in the program
code; each process has its own data
segment; the data segment is not a
executable one;

 Block Started by Symbol (BSS) segment
– contains static and global data
uninitialized in the program code; it is
not an executable segment;

 Stack segment – is used to store local
variables (declared inside the functions)
and to pass parameters to functions; the
stack addresses are allocated from higher
memory to lower memory; it is managed
by Stack Pointer (SP)/Extended Stack
Pointer (ESP)/ Register Stack Pointer
(RSP) register;

 Heap segment – is used to allocate
memory at running time; heap allocation
is managed by operating system; the

1

48 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

heap addresses are managed by pointer variables.

Fig. 1. Memory address space of a process

Segment registers are memory pointers
placed inside the computer processor unit.
They point to memory address where a data

storage or code execution starts. The segment
registers for x86 architecture are presented in
Table 1.

Table 1. The segment registers for x86 computer architecture

Name Content
CS – Code Segment Pointer to the code location
SS – Stack Segment Pointer to the stack location
DS – Data Segment Pointer to the data location
ES – Extra Segment Pointer to extra data
FS – F Segment Pointer to extra data
GS – G Segment Pointer to extra data

It considers the following C++ program source:

class Employee{
public:
 char* Name;
 int id;

 Employee(char* aName, int nr){
 this->Name = aName;
 this->id = nr;
 procData(aName, nr);
 }
 char* empName(){ return this->Name; }
 int empID(){ return this->id; }
 void procData(char* sName, int snr){ }
};

void main() {
 Employee e("Smith", 113);
 e.empID();
 e.empName();
}

Informatica Economică vol. 17, no. 4/2013 49

DOI: 10.12948/issn14531305/17.4.2013.05

The native code built by Microsoft Visual
Studio 2010, x64 version, for each method is

presented in Table 2.

Table 2. Native code for Employee class

Method header Memory
address

Binary assembly
instruction

Assembly instruction

Employee(char*,int); 00FF1440
00FF1441
00FF1443
00FF1449
00FF144A
00FF144B
00FF144C
00FF144D
00FF1453
00FF1458
00FF145D
00FF145F
00FF1460
00FF1463
00FF1466
00FF1469
00FF146B
00FF146E
00FF1471
00FF1474
00FF1477
00FF1478
00FF147B
00FF147C
00FF147F

00FF1484
00FF1487
00FF1488
00FF1489
00FF148A
00FF1490
00FF1492

00FF1497
00FF1499
00FF149A

55
8B EC
81 EC CC 00 00 00
53
56
57
51
8D BD 34 FF FF FF
B9 33 00 00 00
B8 CC CC CC CC
F3 AB
59
89 4D F8
8B 45 F8
8B 4D 08
89 08
8B 45 F8
8B 4D 0C
89 48 04
8B 45 0C
50
8B 4D 08
51
8B 4D F8
E8 11 FD FF FF

8B 45 F8
5F
5E
5B
81 C4 CC 00 00 00
3B EC
E8 9F FC FF FF

8B E5
5D
C2 08 00

push ebp
mov ebp,esp
sub esp,0CCh
push ebx
push esi
push edi
push ecx
lea edi,[ebp-0CCh]
mov ecx,33h
mov eax,0CCCCCCCCh
rep stos dword ptr es:[edi]
pop ecx
mov dword ptr [ebp-8],ecx
mov eax,dword ptr [this]
mov ecx,dword ptr [aName]
mov dword ptr [eax],ecx
mov eax,dword ptr [this]
mov ecx,dword ptr [nr]
mov dword ptr [eax+4],ecx
mov eax,dword ptr [nr]
push eax
mov ecx,dword ptr [aName]
push ecx
mov ecx,dword ptr [this]
call Employee::procData
(0FF1195h)
mov eax,dword ptr [this]
pop edi
pop esi
pop ebx
add esp,0CCh
cmp ebp,esp
call @ILT+305(__RTC_CheckEsp)
(0FF1136h)
mov esp,ebp
pop ebp
ret 8

char* empName(); 00FF14C0
00FF14C1
00FF14C3
00FF14C9
00FF14CA
00FF14CB
00FF14CC
00FF14CD
00FF14D3
00FF14D8
00FF14DD
00FF14DF
00FF14E0
00FF14E3
00FF14E6
00FF14E8
00FF14E9
00FF14EA
00FF14EB
00FF14ED
00FF14EE

55
8B EC
81 EC CC 00 00 00
53
56
57
51
8D BD 34 FF FF FF
B9 33 00 00 00
B8 CC CC CC CC
F3 AB
59
89 4D F8
8B 45 F8
8B 00
5F
5E
5B
8B E5
5D
C3

push ebp
mov ebp,esp
sub esp,0CCh
push ebx
push esi
push edi
push ecx
lea edi,[ebp-0CCh]
mov ecx,33h
mov eax,0CCCCCCCCh
rep stos dword ptr es:[edi]
pop ecx
mov dword ptr [ebp-8],ecx
mov eax,dword ptr [this]
mov eax,dword ptr [eax]
pop edi
pop esi
pop ebx
mov esp,ebp
pop ebp
ret

int empID(); 00FF1500
00FF1501

55
8B EC

push ebp
mov ebp,esp

50 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

00FF1503
00FF1509
00FF150A
00FF150B
00FF150C
00FF150D
00FF1513
00FF1518
00FF151D
00FF151F
00FF1520
00FF1523
00FF1526
00FF1529
00FF152A
00FF152B
00FF152C
00FF152E
00FF152F

81 EC CC 00 00 00
53
56
57
51
8D BD 34 FF FF FF
B9 33 00 00 00
B8 CC CC CC CC
F3 AB
59
89 4D F8
8B 45 F8
8B 40 04
5F
5E
5B
8B E5
5D
C3

sub esp,0CCh
push ebx
push esi
push edi
push ecx
lea edi,[ebp-0CCh]
mov ecx,33h
mov eax,0CCCCCCCCh
rep stos dword ptr es:[edi]
pop ecx
mov dword ptr [ebp-8],ecx
mov eax,dword ptr [this]
mov eax,dword ptr [eax+4]
pop edi
pop esi
pop ebx
mov esp,ebp
pop ebp
ret

void procData
(char*,int);

00FF1540
00FF1541
00FF1543
00FF1549
00FF154A
00FF154B
00FF154C
00FF154D
00FF1553
00FF1558
00FF155D
00FF155F
00FF1560
00FF1563
00FF1564
00FF1565
00FF1566
00FF1568
00FF1569

55
8B EC
81 EC CC 00 00 00
53
56
57
51
8D BD 34 FF FF FF
B9 33 00 00 00
B8 CC CC CC CC
F3 AB
59
89 4D F8
5F
5E
5B
8B E5
5D
C2 08 00

push ebp
mov ebp,esp
sub esp,0CCh
push ebx
push esi
push edi
push ecx
lea edi,[ebp-0CCh]
mov ecx,33h
mov eax,0CCCCCCCCh
rep stos dword ptr es:[edi]
pop ecx
mov dword ptr [ebp-8],ecx
pop edi
pop esi
pop ebx
mov esp,ebp
pop ebp
ret 8

The main function has the following native code content:

Table 3. Native code for main function
Function
header

Memory
address

Binary assembly
instruction

Assembly instruction

void main(); 00FF13A0
00FF13A1
00FF13A3
00FF13A9
00FF13AA
00FF13AB
00FF13AC
00FF13B2
00FF13B7
00FF13BC
00FF13BE
00FF13C0
00FF13C5
00FF13C8
00FF13CD
00FF13D0
00FF13D5
00FF13D8
00FF13DD
00FF13DF
00FF13E0
00FF13E2

55
8B EC
81 EC D0 00 00 00
53
56
57
8D BD 30 FF FF FF
B9 34 00 00 00
B8 CC CC CC CC
F3 AB
6A 71
68 3C 57 FF 00
8D 4D F4
E8 14 FD FF FF
8D 4D F4
E8 35 FC FF FF
8D 4D F4
E8 77 FD FF FF
33 C0
52
8B CD
50

push ebp
mov ebp,esp
sub esp,0D0h
push ebx
push esi
push edi
lea edi,[ebp-0D0h]
mov ecx,34h
mov eax,0CCCCCCCCh
rep stos dword ptr es:[edi]
push 71h
push offset string "Smith" (0FF573Ch)
lea ecx,[e]
call Employee::Employee (0FF10E1h)
lea ecx,[e]
call Employee::empID (0FF100Ah)
lea ecx,[e]
call Employee:: empName (0FF1154h)
xor eax,eax
push edx
mov ecx,ebp
push eax

Informatica Economică vol. 17, no. 4/2013 51

DOI: 10.12948/issn14531305/17.4.2013.05

00FF13E3
00FF13E9

00FF13EE
00FF13EF
00FF13F0
00FF13F1
00FF13F2
00FF13F3
00FF13F9
00FF13FB

00FF1400
00FF1402
00FF1403

8D 15 04 14 FF 00
E8 94 FC FF FF

58
5A
5F
5E
5B
81 C4 D0 00 00 00
3B EC
E8 36 FD FF FF

8B E5
5D
C3

lea edx, [(0FF1404h)]
call @ILT+125(@_RTC_CheckStackVars@8)
(0FF1082h)
pop eax
pop edx
pop edi
pop esi
pop ebx
add esp,0D0h
cmp ebp,esp
call @ILT+305(__RTC_CheckEsp)
(0FF1136h)
mov esp,ebp
pop ebp
ret

Tables 2 and 3 contain numerical values for
memory addresses and binary code in base-
16 format. The assembly instructions and
their binary codes are generated for x86
computer architecture.
The intermediate code provides the
portability feature to a software application.
A virtual machine interprets the operation
codes from intermediate code and translates
them into native code for the machine which
runs the virtual machine. The operation codes
are associated to intermediate instructions
like the native code with the assembly
instructions. The intermediate instructions
are used within an intermediate language

representing the lowest-level human-readable
programming language.
For .NET Framework, the intermediate
language is called Common Intermediate
Language (CIL) and it is defined by
Common Language Infrastructure (CLI). The
CIL is object-oriented and stack-based.
Unlike the CPU architecture, the stack-based
architecture pushes data on a stack instead
pulling data from registers.
The Employee class and main function
defined above have the following content
written in C# programming language:

class Employee
{
 public String Name;
 public int id;

 public Employee(String aName, int nr){
 this.Name = aName;
 this.id = nr;
 procData(aName, nr);
 }

 public String empName(){ return this.Name; }
 public int empID(){ return this.id; }
 public void procData(String sName, int snr) { }

 public static void Main() {
 Employee e = new Employee("Smith", 113);
 e.empID();
 e.empName();
 }
}

The intermediate code built by Microsoft
Visual Studio 2010, x64 version, for each
method is presented in Table 4.

52 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

Table 4. C# .NET Intermediate code for Employee class
Method header IL

offset
Binary

intermediate
instruction

Intermediate instruction

Employee(String,
int);

IL_0000
IL_0001

IL_0006
IL_0007
IL_0008
IL_0009
IL_000a

IL_000f
IL_0010
IL_0011
IL_0016
IL_0017
IL_0018
IL_0019

IL_001e
IL_001f
IL_0020

02
28 0A 00 00 11

00
00
02
03
7D 04 00 00 01

02
04
7D 04 00 00 02
02
03
04
28 06 00 00 04

00
00
2A

ldarg.0
call instance void [mscorlib]System.
Object::.ctor()
nop
nop
ldarg.0
ldarg.1
stfld string EmployeeApp.Employee
::Name
ldarg.0
ldarg.2
stfld int32 EmployeeApp.Employee::id
ldarg.0
ldarg.1
ldarg.2
call instance void EmployeeApp.
Employee::procData(string, int32)
nop
nop
ret

String
empName();

IL_0000
IL_0001
IL_0002

IL_0007
IL_0008
IL_000a
IL_000b

00
02
7B 04 00 00 01

0A
2B 00
06
2A

nop
ldarg.0
ldfld string EmployeeApp.Employee
::Name
stloc.0
br.s IL_000a
ldloc.0
ret

int empID(); IL_0000
IL_0001
IL_0002
IL_0007
IL_0008
IL_000a
IL_000b

00
02
7B 04 00 00 02
0A
2B 00
06
2A

nop
ldarg.0
ldfld int32 EmployeeApp.Employee::id
stloc.0
br.s IL_000a
ldloc.0
ret

void procData
(String,int);

IL_0000
IL_0001

00
2A

nop
ret

static void
Main();

IL_0000
IL_0001
IL_0006
IL_0008

IL_000d
IL_000e
IL_000f

IL_0014
IL_0015
IL_0016

IL_001b
IL_001c

00
72 70 00 00 01
1F 71
73 06 00 00 01

0A
06
6F 06 00 00 03

26
06
6F 06 00 00 02

26
2A

nop
ldstr "Smith"
ldc.i4.s 113
newobj instance void EmployeeApp.
Employee::.ctor(string, int32)
stloc.0
ldloc.0
callvirt instance int32 EmployeeApp.
Employee::empID()
pop
ldloc.0
callvirt instance string EmployeeApp.
Employee::empName()
pop
ret

The intermediate language (IL) offset
represents the position of the current
intermediate instruction relative to the
beginning section where the method
intermediate code is stored in the file
translated by .NET virtual machine into

native code. The intermediate code is
organized in accordance with Portable
Executable (PE) specifications for .NET
applications.
The Java bytecode is the output of a Java
compiler containing the binary content of the

Informatica Economică vol. 17, no. 4/2013 53

DOI: 10.12948/issn14531305/17.4.2013.05

intermediate code. The bytecode files have a
specific organization to be interpreted by
JVM.

In Java programming language, the above
example has the following content:

class Employee extends java.lang.Object {
public String Name;
public int id;

public Employee(String aName,int nr){
 this.Name = aName;
 this.id = nr;
 procData(aName, nr);
}
public String empName(){ return this.Name; }
public int empID(){ return this.id; }
public void procData(String sName,int snr) { }

public static void main(String[] args) {
 Employee e = new Employee("Smith", 113);
 e.empID();
 e.empName();
 }

}

The intermediate code built by Java compiler
using Java Development Kit (JDK), 1.5.0

update 22 version, for each method is
presented in table 5.

Table 5. Java bytecode for Employee class

Method header Bytecode
offset

Operation
code

Bytecode instruction

public
Employee(java.lang.
String, int);

0
1

4
5
6

9
10
11

14
15
16
17

20

2A
B7 00 01

2A
2B
B5 00 02

2A
1C
B5 00 03

2A
2B
1C
B6 00 04

B1

aload_0
invokespecial #1;
//Method java/lang/Object."<init>":()V
aload_0
aload_1
putfield #2;
//Field Name:Ljava/lang/String;
aload_0
iload_2
putfield #3;
//Field id:I
aload_0
aload_1
iload_2
invokevirtual #4; //Method
procData:(Ljava/lang/String;I)V
return

public
java.lang.String
empName();

0
1

4

2A
B4 00 02

B0

aload_0
getfield #2;
//Field Name:Ljava/lang/String;
areturn

public int empID(); 0
1
4

2A
B4 00 03
AC

aload_0
getfield #3; //Field id:I
ireturn

public void
procData(java.lang.
String, int);

0 B1 return

public static void
main(java.lang.Stri
ng[]);

0
3
4
6

BB 00 05
59
12 06
10 71

new #5; //class Employee
dup
ldc #6; //String Smith
bipush 113

54 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

8

11
12
13
16
17
18

21
22

B7 00 07

4C
2B
B6 00 08
57
2B
B6 00 09

57
B1

invokespecial #7; //Method
"<init>":(Ljava/lang/String;I)V
astore_1
aload_1
invokevirtual #8; //Method empID:()I
pop
aload_1
invokevirtual #9;
//Method empName:()Ljava/lang/String;
pop
return

JVM identifies the data structures where the
operation codes of the intermediate
instructions are stored in compiled Java file.
JVM has a stack-based architecture used to
translate the intermediate instructions to
microcontroller or microprocessor native
code. More details regarding the .NET and
Java virtual machines are presented in [1],
[2], [4], [5], [6], [8] and [9].

2 Binary Code Instrumentation for
Malicious Software Detection
Code instrumentation is a technique that
inserts code to analyze and modify the
behavior a program [3], [10]. Depending on
code representation, the code instrumentation
is done for:
 Source code – text representation of the

program;
 Binary code – binary encoded

instructions of the program.
Code instrumentation techniques are applied
for the following analysis levels:
 Static analysis – the program

instrumentation occurs before the
program running;

 Dynamic analysis – the program
behavior is analyzed by collecting run-
time information.

Static binary code instrumentation. It is
method of analyzing the behavior of a binary
application by modifying its object code or
executable code before the program is run.
Static binary code instrumentation needs
advanced knowledge about the executable
formats like EXE and PE. The
instrumentation techniques and analysis are
more expensive than the dynamic
instrumentation. Two important and
particular issues are distinguished during
static instrumentation, according to [7]:

 The binary application is statically
disassembled; the disassembled code has
not accurate information about the
symbols and high level information
regarding the symbols;

 Instrumented code requires more space
than the original binary code; moving
functions from the original binary code
to a new location requires relocation
information regarding the entry points
provided by the compiler.

Static binary code instrumentation faces
with the following challenges [7]:
 Function boundaries and stack

conventions – in disassembled code,
functions may have multiple entry and/or
exit points; the function exit may be
caused by a jump instead of return
instruction; using the stack may follow
unusual methods for Extended Stack
Pointer (ESP) and Extended Base
Pointer (EBP) register handling in x86-
32bit computer architecture; therefore,
there is a lack of information replaced by
assumption information during the
binary instrumentation;

 Position-independent code – there are
multiple mechanisms for position code
relative addressing; static binary
instrumentation involves relocating of
function without relocating of static data;
this issue needs fixing the position code
relative accesses or avoiding relocation
of the binary sequences that accesses the
relative addresses;

 Scalability and modularity – code
instrumentation and analysis is done on
modularity principle ensuring the
scalability of the binary instrumentation
to large programs, keeping the accuracy
and speed of the process;

Informatica Economică vol. 17, no. 4/2013 55

DOI: 10.12948/issn14531305/17.4.2013.05

 Local variables – may be accessed in
different ways: using ESP as base
pointer, using computer processor
general register ECX by some functions
like main in C language, using EBP to
access the function parameter or in
general purpose;

 Actual parameters – may be passed on
the stack or via registers; they may be
stored at stack-relative addresses or in
the top of the stack when the binary code
is optimized; the number of actual
parameters are not established by a local
examination of the function call;

 Aliasing – multiple pointer expressions
may reference the same memory,
increasing difficulty to identify the
instructions that accesses that memory
location; pointer analysis is very difficult
without high-level information about
variables, array sizes, types, and so forth;

 Functions with side-effects – some
operations are performed by function
itself instead of its caller, affecting the
content of some variables and/or
registers.

Binary instrumentation is a well-known
technique used in computer security to
analyze binary applications in exploit
detection, sandboxing, malware analysis and
so forth.

Dynamic binary code instrumentation. It is a
method of analyzing the behavior of a binary
application when is running. The analysis
consists of code injection and examination of
the effects on the binary code.
The benefits of the dynamic binary code
instrumentation are highlighted in [10]:
 Recompiling or relinking is not needed;
 Code discovered at run-time;
 Generated code is handled dynamically;
 It is attached to running code.

A dynamic binary code instrumentation tool
is Pin. Pin allows insertion of arbitrary code
into executable when the program is running.
Also, Pin can be attached to a running
program [10].
Pin works like a “just in time” (JIT)
compiler. Pin generates binary code that is
executed. The code injection is done into
generated binary code, the only code ever
executed. Instrumentation is not done for
instructions that are ever executed, being
placed into conditional branches avoided by
the execution flow of the program.
Dynamic binary code instrumentation done
by Pin consists of two components [10]:
 A mechanism to establish the insertion

points and what code to be inserted;
 The code to be executed at insertion

points.
Pin tool implements the following
instrumentation techniques for analyzed
executable files [10]:
 Instruction instrumentation – includes

the below possible operations:
- Simple instruction counting –

instruments a binary program to
count the number of instructions
executed; Pin tool inserts a call to
count function before every
instruction; the value of instruction
count is saved in a file called
inscount.out when the
executable file finishes its running;
the instruction count function is very
simple, using a static integer variable
and is passed as argument to a
function called by Pin tools before
every instruction encountered in the
executable file; functions are defined
in inscount0.cpp from Pin tool
[10];

static UINT64 icount = 0;

VOID docount() { icount++; }
VOID Instruction(INS ins, VOID *v){

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);
}

56 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

The INS_InsertCall function
inserts a call to docount function
relative to instruction ins.
IPOINT_BEFORE is an enumerator
always valid for all instructions and
specifies the place of insertion.
IARG_END is the argument list
terminator for INS_InsertCall
function.

- Instruction address tracing –
instruments the memory addresses

where the binary instructions are
stored during execution of the
program; Pin tool inserts a call to
trace function before every
instruction in the executable file; the
function writes the content of
Instruction Pointer (IP) register into
an output file managed by a global
variable called trace in
itrace.cpp source file defined in
Pin tool [10];

FILE * trace;

VOID printip(VOID *ip) {
 fprintf(trace, "%p\n", ip);
}
VOID Instruction(INS ins, VOID *v){
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip, IARG_INST_PTR,
IARG_END);
}

The printip function writes the
content of IP register into the file
managed by trace variable. The
IP value is received by ip
parameter and it has to be passed to
INS_InsertCall function. The
argument list of
INS_InsertCall function is
changed and the address of the
instrumented instruction is passed
by IARG_INST_PTR enumerator.
Pin allows passing the content of
different programming recipients by
fields defined in the enumerator type
called IARG_TYPE;

- Memory reference tracing – is a
selective instrumentation technique,
aiming a set of instructions from the
binary code instrumented; for
example, only instructions that read
or write memory are considered; Pin
tools inserts analysis function calls
when each time when a memory
operand is encountered during the
execution flow of the binary
program; the source code of this
dynamic instrumentation technique is
given in pinatrace.cpp source
program and the results are saved
into pinatrace.out file by the
Pin tool [10];

FILE * trace;

VOID RecordMemRead(VOID * ip, VOID * addr){
 fprintf(trace,"%p: R %p\n", ip, addr);
}
VOID RecordMemWrite(VOID * ip, VOID * addr){
 fprintf(trace,"%p: W %p\n", ip, addr);
}
VOID Instruction(INS ins, VOID *v)
{
 UINT32 memOperands = INS_MemoryOperandCount(ins);

 for (UINT32 memOp = 0; memOp < memOperands; memOp++)
 {
 if (INS_MemoryOperandIsRead(ins, memOp))

Informatica Economică vol. 17, no. 4/2013 57

DOI: 10.12948/issn14531305/17.4.2013.05

 {
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE,
(AFUNPTR)RecordMemRead, IARG_INST_PTR, IARG_MEMORYOP_EA,
memOp, IARG_END);
 }
 if (INS_MemoryOperandIsWritten(ins, memOp))
 {
 INS_InsertPredicatedCall(ins, IPOINT_BEFORE,
(AFUNPTR)RecordMemWrite, IARG_INST_PTR, IARG_MEMORYOP_EA,
memOp, IARG_END);
 }
 }
}

The RecordMemRead function
prints a read memory record to the
output file. The
RecordMemWrite function prints
a write memory record to the output
file. There is a single output file
called pinatrace.out. The
memory record has the layout:

(IP, memOpType, memAddr)

where:
o IP – Instruction Pointer register,

containing the address of the
instruction;

o memOpType – type of the
memory operation; it takes R or
W as values;

o memAddr – the memory address
of the operand;

The Instruction function is
called for each instruction,
instrumenting the memory read and
write operations. The number of
memory operands is returned by
INS_MemoryOperandCount
function for each instruction ins.
The memory operation type is
checked by

INS_MemoryOperandIsRead
and
INS_MemoryOperandIsWritt
en functions, requiring the ins
instruction and memOp operand
index. The
INS_InsertPredicatedCall
function avoids the predicated
instructions with false predicate.
The function call passes the
instruction, the call place, the
address of RecordMemRead or
RecordMemWrite function, the
instruction address, the effective
address of the memory operand by
IARG_MEMORYOP_EA enumerator,
the operand index of the instruction,
and the argument list terminator.

 Image instrumentation – aims loading
and unloading of images. A trace file
called imageload.out is created and
contains trace messages related to loaded
or unloading images. The source
program containing the application for
image instrumentation technique is
imageload.cpp [10]. The needed
functions are described below.

ofstream TraceFile;

VOID ImageLoad(IMG img, VOID *v){
 TraceFile << "Loading " << IMG_Name(img) << ", Image id = " <<
IMG_Id(img) << endl;
}

VOID ImageUnload(IMG img, VOID *v){
 TraceFile << "Unloading " << IMG_Name(img) << endl;
}

58 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

IMG_AddInstrumentFunction(ImageLoad, 0);
IMG_AddUnloadFunction(ImageUnload, 0);

The ImageLoad function is called by
Pin tool every time when an image is
loaded. Also, the image can be
instrumented. An image is a binary code
sequence stored separately as the
instrumented binary code. The
ImageUnload function is called when
a new image is unloaded. An image that
is about to be unloaded cannot be
instrumented. The
IMG_AddInstrumentFunction
function is called to register the
ImageLoad callback to catch the
loaded image. The

IMG_AddUnloadFunction function
call passes the image that is about to be
unloaded and the value of
ImageUnload function. The unloaded
images cannot be instrumented, so the
ImageUnload is not an
instrumentation function.

 Trace instrumentation – is a more
efficient instruction counting. The
counter is incremented per basic block
instead of each instruction. In [10], trace
instrumentation is implemented in
inscount1.cpp application.

static UINT64 icount = 0;

VOID docount(UINT32 c) {
 icount += c;
}
VOID Trace(TRACE trace, VOID *v){
 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl);
bbl = BBL_Next(bbl)) {
 BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)docount,
IARG_UINT32, BBL_NumIns(bbl), IARG_END);
 }
}

The docount function is called before
every basic block. The trace
parameter is an object assigned to a
sequence of instructions with a single
entrance and multiple exits. The for
instruction parses the basic block set of
the binary application and inserts a call
to docount function before every basic
block by BBL_InsertCall function.
The BBL_InsertCall function call
passes the basic block to be
instrumented, the call place, the

instrumentation function, the argument
of docount function, number of
instructions within the bbl basic block
and argument list terminator.

 Routine instrumentation – is made in
[10] by number of calls for each
procedures and the number of
instructions executed in each procedure.
The instrumentation report is printed to
proccount.out file, and the source
file of the application is
proccount.cpp.

ofstream outFile;

typedef struct RtnCount {
 string _name;
 string _image;
 ADDRINT _address;
 RTN _rtn;
 UINT64 _rtnCount;
 UINT64 _icount;
 struct RtnCount * _next;

Informatica Economică vol. 17, no. 4/2013 59

DOI: 10.12948/issn14531305/17.4.2013.05

} RTN_COUNT;

RTN_COUNT * RtnList = 0;

VOID docount(UINT64 * counter) {
 (*counter)++;
}

const char * StripPath(const char * path) {
 const char * file = strrchr(path,'/');
 if (file)
 return file+1;
 else
 return path;
}

VOID Routine(RTN rtn, VOID *v) {
 RTN_COUNT * rc = new RTN_COUNT;

 rc->_name = RTN_Name(rtn);
 rc->_image = StripPath(IMG_Name(SEC_Img(RTN_Sec(rtn))).c_str());
 rc->_address = RTN_Address(rtn);
 rc->_icount = 0;
 rc->_rtnCount = 0;
 rc->_next = RtnList;
 RtnList = rc;
 RTN_Open(rtn);

 RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)docount, IARG_PTR,
&(rc->_rtnCount), IARG_END);

 for (INS ins = RTN_InsHead(rtn); INS_Valid(ins); ins = INS_Next(ins)){
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount,
IARG_PTR, &(rc->_icount), IARG_END);
 }
 RTN_Close(rtn);
}

The Routine function is called every
time when a new routine is executed.
The rc local variable is a simple linked
list to store information related to current
routine. The current running routine is
added to global list of routine managed
by RtnList global variable. The call
count of the current routine is
incremented by RTN_InsertCall
function call. The instruction counter for
each routine is also stored by the simple
linked list. The incrementing of
instruction counter is made by
INS_InsertCall function call. The
routines are managed by routine objects
and a certain routine is instrumented by
referring the object name.

Binary code instrumentation provides
information about the binary applications and
helps to improve the correctness and speed of
the developed programs. Also, the program
behavior checking provides valuable
information about third-party application,
identifying the suspicious behaviors of the
programs from unsecure sources.

3 Methods and Techniques of Binary Code
Injection
Binary code injection inserts a binary
sequence into a binary computer program to
change the intended course of execution.
A way to change the course of execution in
native executable files is altering of IP
register. IP is a special-purpose register that
stores the memory address of the next
instruction to be executed. It cannot be

60 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

programmatically accessed and its content is
altered by instructions such as jmp, call
and ret. These instructions permit the
access to old IP values automatically pushed
onto stack.
The stack content for x86-16bit computer
architecture when a function is called is
depicted in Figure 2.

Fig. 2. Accessing stack content in a far

function
The above stack content is available after a
far function call with two arguments. All
local variables are allocated on stack at lower
memory addresses, and the return address to
caller has the offsets from the current BP as 2

bytes for IP register restore and 4 bytes for
CS register restore.
The IP content is restored when the ret
instruction is executed. All these issues
together with a stack content management
may cause the change the course of
execution.
To get the current value of the IP register, a
dummy function is defined and its call is
followed by extracting the value from the top
of the stack. Therefore, the stack portion
where the return address is stored may be
overwritten by the extracted value of IP, and
the program execution is altered.
For x86-16bit computer architecture, the
register size is 16 bits. Also, the computer
word has 16 bits length. For x86-32bit
computer architecture, the register size and
computer word are extended to 32 bits. The
IP, BP and SP registers are included in the
extended versions called EIP, EBP and ESP
registers.
An example for IP content handling is
presented below. The binary code of the
sequence is injected into the binary code of
the Employee constructor method
presented in chapter 1.

Table 6. Native code injection

Method header Memory
address

Binary assembly
instruction

Assembly instruction

Employee(char*,int); ;previous
addresses

00FF146B
00FF146E
00FF1471

00FF1474
00FF1479
00FF147A

00FF147D
00FF1480
00FF1481
00FF1484
00FF14A3

;previous binary
instructions

8B 45 F8
8B 4D 0C
89 48 04

;injected binary
instructions
E8 00 00 00 00
59
89 4D 08
;old binary
sequence
8B 45 0C
50
8B 4D 08
51
C2 08 00

;previou asm instructions

mov eax,dword ptr [this]
mov ecx,dword ptr [nr]
mov dword ptr [eax+4],ecx

;injected asm instructions

call dummy (0FF1479h)
pop ecx
mov dword ptr [aName],ecx
;old asm sequence

mov eax,dword ptr [nr]
push eax
mov ecx,dword ptr [aName]
push ecx
ret 8

Informatica Economică vol. 17, no. 4/2013 61

DOI: 10.12948/issn14531305/17.4.2013.05

The effect of the injected Employee code in
constructor method is a wrong aName string
parameter passed to procData method. The
IP content popped by ECX register is the
address of the pop ecx instruction. A
disastrous effect is produced when the
restored IP register contains a malicious code
address.
Also, elaborated stack buffer overflow
attacks can be carried out by redirecting the
execution flow to the shellcode that
overwrites the vulnerable buffer of the target
host.
The bytecode injection consists in changing
the existing bytecode to redirect the
execution flow built by virtual machine. For
Java programming language, that means
modification of the compiled file stored by
the class file and interpreted by the Java
Virtual Machine. That issue is available for
programs with malicious intent. However,
there are situations when code injection
techniques are used for bytecode
instrumentation of the third-party libraries
which the source code is not available or a
debugger or a profiler cannot be used. Also,
the bytecode injection is used in performance
monitoring of the application [12].
The bytecode injection allows modification
of third-party bytecode without the source
code availability. The injection is asked by
existence of some bugs or limitations of the
third-party software to see the behavior
change and possible solutions to pass over
the software problems. The following
considerations are taken into account by [12]
as good reasons to apply injection
techniques:
 The exception generated by a method

during a data set processing provides no
information about what data element has
caused it;

 Collecting performance statistics;
 The failure of a data batch processing

when a data set is send to a database by
Java Database Connectivity (JDBC).

Advantages of Java bytecode injection are
presented in [12]:
 Modification of the binary code when

the source code is not available;

 Collecting run-time information when
tools like debuggers and profilers cannot
be used;

 Modularity of the injected bytecode;
 Keeping the original bytecode by using

tools for bytecode injection;
 Doing injection at compile-time when

the bytecode is built or run-time when
the target classes are loaded by the JVM.

The Java bytecode format is presented in [1],
[2], [4], [5], [6], [8] and [9]. Depending on
level of abstraction, the injection tools aim
[12]:
 Direct bytecode manipulation (ASM

tool)– Java bytecode understanding is
needed because the level of abstraction
is very low; the developer has to work
with operation codes, the operand stack
and bytecode instructions;

 Intermediate level (Javassist tool) – the
code is given in strings, the classfile
structure has a level of abstraction;

 Advices in Java (AspectJ tool) – the
code to be injected has a syntax-checked
format and it is compiled.

The injection techniques are classified by
[12] into the following categories:
 Manual injection – the developer knows

the place where the code is injected; to
do that, the developer must know the
classfile format;

 Primitive pointcuts – pointcut is an
expression telling the place where a
particular bytecode must be injected; this
injection techniques has limitation about
the place: a particular method, all public
methods of a class and so forth;

 Pattern matching pointcut expressions –
match the target bytecode based on a
number of criteria.

The bytecode injection time may be [12]:
 Manually at run-time – the bytecode

asks for injected bytecode;
 Load-time – bytecode injection is

performed when the target bytecode is
loaded by the JVM;

 Build-time – the bytecode is modified by
injection before packaging and
deploying the software application.

62 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.05

According to [1], [2], [4], [5], [6], [8] and [9]
where the Java classfile structure is
explained, injection of a new method into
classfile involves the structure information
modifications inside the classfile in addition
to the method bytecode. Modifications are
manually done in the classfile or
implemented in libraries as injection tool.
The operations needed to keep a viable
classfile to be correctly interpreted by the
JVM are:
 Addition of the method in the Constant

Pool – write the information as a
constant pool entry:
- Adding UTF8 method name to

constant pool;
- Adding UTF8 descriptor index to

constant pool;
- Adding method name type to

constant pool;
- Adding method type to constant

pool;
 Injection of the method bytecode –

inserting the method binary code into the
classfile:
- Insertion of the method bytecode;
- Write the bytecode image;
- Adjusting the offsets: code length,

maximum stack, exception table,
code attributes, and attribute length.

The new content of the classfile has to meet
the structural constraints to pass the
verification proceeded by JVM in order to
interpret the bytecode correctly.

4 Conclusions
Binary code instrumentation offers the tools
needed to increase the security and reliability
of a software application. Therefore, the
developers are able to understand how an
exploit is created to pass the security
mechanisms of the application in order to
build defense techniques.
Also, the binary code instrumentation may be
used reverse engineering of malwares in
order to detect them and implement
protection techniques.
The system security depends on the safety of
running binary code, operating system kernel
internals, linker and loader internals that have

to be known and understood by software
developers.

References
[1] C. Boja and M. Doinea, “Security

Assessment of Web Based Distributed
Applications”, Informatica Economică,
vol. 14, no. 1, 2010, pp. 152 – 162

[2] A Danehkar, “Inject your code to a
Portable Executable File”, 27 December
2005, http://www.codeproject.com [Nov.
15, 2013]

[3] F. Falcon and N. Riva, “Dynamic Binary
Instrumentation Frameworks: I Know
You’re there Spying on Me”, Core
Security, June 2012

[4] R. Paleari, “Static disassembly and
analysis of malicious code”, 5 July 2007,
http://roberto.greyhats.it/talks.html [Nov.
15, 2013]

[5] M. Pietrek, “An In-Depth Look into the
Win32 Portable Executable File Format”,
MSDN Magazine,
http://msdn.microsoft.com /en-
us/magazine/cc301805.aspx [Nov. 15,
2013]

[6] M. Popa, “Binary Code Disassembly for
Reverse Engineering”, Journal of Mobile,
Embedded and Distributed Systems, vol.
4, no. 4, 2012, pp. 233 – 248,

[7] P. Saxena, R. Sekar and V. Puranik,
“Efficient Fine-Grained Binary
Instrumentation with Applications to
Taint-Tracking”,
http://seclab.cs.stonybrook.edu/seclab/pu
bs/cgo065-saxena.pdf [Nov. 15, 2013]

[8] C. Toma, “Sample Development on Java
Smart-Card Electronic Wallet
Application”, Journal of Mobile,
Embedded and Distributed Systems, vol.
1, no. 2, 2009, pp. 60 – 80

[9] G. Vigna, “Static Disassembly and Code
Analysis, Malware Detection. Advances
in Information Security”, Springer,
Heidelberg, vol. 35, 2007, pp. 19 – 42

[10] Pin 2.13 User Guide, Intel Developer
Zone, http://software.intel.com/sites/
landingpage/pintool/docs/61206/Pin/html
/ [Nov. 15, 2013]

[11] http://rohanpuri.blogspot.ro/

Informatica Economică vol. 17, no. 4/2013 63

DOI: 10.12948/issn14531305/17.4.2013.05

2010_08_01_archive.html [Nov. 15,
2013]

[12] http://theholyjava.wordpress.com/

2011/09/07/practical-introduction-into-
code-injection-with-aspectj-javassist-and-
java-proxy/ [Nov. 15, 2013]

Marius POPA has graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 2002. He holds a PhD diploma in Economic
Cybernetics and Statistics. He joined the staff of Academy of Economic
Studies, teaching assistant in 2002. Currently, he is Associate Professor in
Economic Informatics field and branches within Department of Economic
Informatics and Cybernetics at Faculty of Cybernetics, Statistics and
Economic Informatics from Bucharest University of Economic Studies. He is

the author and co-author of 9 books and over 140 articles in journals and proceedings of
national and international conferences, symposiums, workshops in the fields of data quality,
software quality, informatics security, collaborative information systems, IT project
management, software engineering.

Sergiu CAPISIZU has graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 1997 and National University of Defense in 2005.
He holds a PhD diploma in Economic Cybernetics and Statistics, having the
title Models and techniques to perform the economic information audit. He is
co-author of books and articles in information audit and ICT fields. Also, he
has published articles in proceedings of national and international
conferences, symposiums, workshops in the fields of data quality, software

quality, information audit and juridical aspects in ICT field. He is evaluator of ANEVAR
association.

