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The paper approaches the low-level details of the code generated by compilers whose format 
permits outside actions. Binary code modifications are manually done when the internal 
format is known and understood, or automatically by certain tools developed to process the 
binary code. The binary code instrumentation goals may be various from security increasing 
and bug fixing to development of malicious software. The paper highlights the binary code 
instrumentation techniques by code injection to increase the security and reliability of a 
software application. Also, the paper offers examples for binary code formats understanding 
and how the binary code injection may be applied. 
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Binary Code Formats 
The binary code is the output of the 

compiling process. It uses two binary digits, 
0 and 1, to represent symbols or computer 
processor instructions as bit strings.  
The binary code is directly executed by the 
computer processor or is interpreted by a 
specialized software component which 
translates the binary code into the format 
understood by the computer processor. 
Therefore, the binary code is classified into 
two groups: 
 Native code – is generated by the 

compiler depending on the hardware 
features; the binary files containing 
native code are executed only by 
computer processor units (CPU) having 
the same features like the computer 
processor used to generate it; some 
significant advantages are execution 
speed and absence of other software 
components; 

 Intermediate code – is generated by the 
compiler according to intermediate 
language specifications to be interpreted 
by a virtual machine; some examples of 
virtual machines are Java Virtual 
Machine (JVM) for Java platform and 
Common Language Runtime (CLR) for 
.NET framework; a big advantage is the 
binary code portability for different 
hardware and software platforms. 

Some considerations related to binary code 
and file formats are presented in [1], [2], [4], 
[5], [6], [8] and [9]. 
The memory layout of native code file for a 
C program is depicted in figure 1 [11]. 
The user space is structured into the 
following segments: 
 Code segment – contains executable 

instructions in binary format; it is a read-
only segment and is shared among 
concurrent users; 

 Data segment – contains static and 
global data initialized in the program 
code; each process has its own data 
segment; the data segment is not a 
executable one; 

 Block Started by Symbol (BSS) segment 
– contains static and global data 
uninitialized in the program code; it is 
not an executable segment; 

 Stack segment – is used to store local 
variables (declared inside the functions) 
and to pass parameters to functions; the 
stack addresses are allocated from higher 
memory to lower memory; it is managed 
by Stack Pointer (SP)/Extended Stack 
Pointer (ESP)/ Register Stack Pointer 
(RSP) register; 

 Heap segment – is used to allocate 
memory at running time; heap allocation 
is managed by operating system; the 
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heap addresses are managed by pointer variables. 
 

 
Fig. 1. Memory address space of a process 

 
Segment registers are memory pointers 
placed inside the computer processor unit. 
They point to memory address where a data 

storage or code execution starts. The segment 
registers for x86 architecture are presented in 
Table 1. 

 
Table 1. The segment registers for x86 computer architecture 

Name Content 
CS – Code Segment Pointer to the code location 
SS – Stack Segment Pointer to the stack location 
DS – Data Segment Pointer to the data location 
ES – Extra Segment Pointer to extra data 
FS – F Segment Pointer to extra data 
GS – G Segment Pointer to extra data 

 
It considers the following C++ program source: 

class Employee{
public:  
    char* Name; 
    int id; 
 
    Employee(char* aName, int nr){ 
        this->Name = aName; 
        this->id = nr; 
        procData(aName, nr); 
    } 
    char* empName(){ return this->Name; } 
    int empID(){ return this->id; } 
    void procData(char* sName, int snr){ } 
}; 
 
void main() {  
 Employee e("Smith", 113); 
 e.empID(); 
 e.empName(); 
} 
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The native code built by Microsoft Visual 
Studio 2010, x64 version, for each method is 

presented in Table 2. 

 
Table 2. Native code for Employee class   

Method header Memory 
address 

Binary assembly 
instruction 

Assembly instruction 

Employee(char*,int); 00FF1440 
00FF1441 
00FF1443 
00FF1449 
00FF144A 
00FF144B 
00FF144C 
00FF144D 
00FF1453 
00FF1458 
00FF145D 
00FF145F 
00FF1460 
00FF1463 
00FF1466 
00FF1469 
00FF146B 
00FF146E 
00FF1471 
00FF1474 
00FF1477 
00FF1478 
00FF147B 
00FF147C 
00FF147F 
 
00FF1484 
00FF1487 
00FF1488 
00FF1489 
00FF148A 
00FF1490 
00FF1492 
 
00FF1497 
00FF1499 
00FF149A 

55 
8B EC 
81 EC CC 00 00 00 
53 
56 
57 
51 
8D BD 34 FF FF FF 
B9 33 00 00 00 
B8 CC CC CC CC 
F3 AB 
59 
89 4D F8 
8B 45 F8 
8B 4D 08 
89 08 
8B 45 F8 
8B 4D 0C 
89 48 04 
8B 45 0C 
50 
8B 4D 08 
51 
8B 4D F8 
E8 11 FD FF FF 
 
8B 45 F8 
5F 
5E 
5B 
81 C4 CC 00 00 00 
3B EC 
E8 9F FC FF FF 
 
8B E5 
5D 
C2 08 00 

push ebp   
mov ebp,esp   
sub esp,0CCh   
push ebx   
push esi   
push edi   
push ecx   
lea edi,[ebp-0CCh]   
mov ecx,33h   
mov eax,0CCCCCCCCh   
rep stos dword ptr es:[edi]   
pop ecx   
mov dword ptr [ebp-8],ecx       
mov eax,dword ptr [this]   
mov ecx,dword ptr [aName]   
mov dword ptr [eax],ecx   
mov eax,dword ptr [this]   
mov ecx,dword ptr [nr]   
mov dword ptr [eax+4],ecx     
mov eax,dword ptr [nr]   
push eax   
mov ecx,dword ptr [aName]   
push ecx   
mov ecx,dword ptr [this]   
call Employee::procData 
(0FF1195h)   
mov eax,dword ptr [this]   
pop edi   
pop esi   
pop ebx   
add esp,0CCh   
cmp ebp,esp   
call @ILT+305(__RTC_CheckEsp) 
(0FF1136h)   
mov esp,ebp   
pop ebp   
ret 8   

char* empName(); 00FF14C0 
00FF14C1 
00FF14C3 
00FF14C9 
00FF14CA 
00FF14CB 
00FF14CC 
00FF14CD 
00FF14D3 
00FF14D8 
00FF14DD 
00FF14DF 
00FF14E0 
00FF14E3 
00FF14E6 
00FF14E8 
00FF14E9 
00FF14EA 
00FF14EB 
00FF14ED 
00FF14EE 

55 
8B EC 
81 EC CC 00 00 00 
53 
56 
57 
51 
8D BD 34 FF FF FF 
B9 33 00 00 00 
B8 CC CC CC CC 
F3 AB 
59 
89 4D F8 
8B 45 F8 
8B 00 
5F 
5E 
5B 
8B E5 
5D 
C3 

push ebp   
mov ebp,esp   
sub esp,0CCh   
push ebx   
push esi   
push edi   
push ecx   
lea edi,[ebp-0CCh]   
mov ecx,33h   
mov eax,0CCCCCCCCh   
rep stos dword ptr es:[edi]   
pop ecx   
mov dword ptr [ebp-8],ecx       
mov eax,dword ptr [this]   
mov eax,dword ptr [eax]   
pop edi   
pop esi   
pop ebx   
mov esp,ebp   
pop ebp   
ret   

int empID(); 00FF1500 
00FF1501 

55 
8B EC 

push ebp   
mov ebp,esp   
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00FF1503 
00FF1509 
00FF150A 
00FF150B 
00FF150C 
00FF150D 
00FF1513 
00FF1518 
00FF151D 
00FF151F 
00FF1520 
00FF1523 
00FF1526 
00FF1529 
00FF152A 
00FF152B 
00FF152C 
00FF152E 
00FF152F 

81 EC CC 00 00 00 
53 
56 
57 
51 
8D BD 34 FF FF FF 
B9 33 00 00 00 
B8 CC CC CC CC 
F3 AB 
59 
89 4D F8 
8B 45 F8 
8B 40 04 
5F 
5E 
5B 
8B E5 
5D 
C3 

sub esp,0CCh   
push ebx   
push esi   
push edi   
push ecx   
lea edi,[ebp-0CCh]   
mov ecx,33h   
mov eax,0CCCCCCCCh   
rep stos dword ptr es:[edi]   
pop ecx   
mov dword ptr [ebp-8],ecx       
mov eax,dword ptr [this]   
mov eax,dword ptr [eax+4]   
pop edi   
pop esi   
pop ebx   
mov esp,ebp   
pop ebp   
ret   

void procData 
(char*,int); 

00FF1540 
00FF1541 
00FF1543 
00FF1549 
00FF154A 
00FF154B 
00FF154C 
00FF154D 
00FF1553 
00FF1558 
00FF155D 
00FF155F 
00FF1560 
00FF1563 
00FF1564 
00FF1565 
00FF1566 
00FF1568 
00FF1569 

55 
8B EC 
81 EC CC 00 00 00 
53 
56 
57 
51 
8D BD 34 FF FF FF 
B9 33 00 00 00 
B8 CC CC CC CC 
F3 AB 
59 
89 4D F8 
5F 
5E 
5B 
8B E5 
5D 
C2 08 00 

push ebp   
mov ebp,esp   
sub esp,0CCh   
push ebx   
push esi   
push edi   
push ecx   
lea edi,[ebp-0CCh]   
mov ecx,33h   
mov eax,0CCCCCCCCh   
rep stos dword ptr es:[edi]   
pop ecx   
mov dword ptr [ebp-8],ecx   
pop edi   
pop esi   
pop ebx   
mov esp,ebp   
pop ebp   
ret 8   

 
The main function has the following native code content: 
 

Table 3. Native code for main function 
Function 
header 

Memory 
address 

Binary assembly 
instruction 

Assembly instruction 

void main(); 00FF13A0   
00FF13A1   
00FF13A3   
00FF13A9   
00FF13AA   
00FF13AB   
00FF13AC   
00FF13B2   
00FF13B7   
00FF13BC   
00FF13BE   
00FF13C0   
00FF13C5   
00FF13C8   
00FF13CD   
00FF13D0   
00FF13D5   
00FF13D8   
00FF13DD   
00FF13DF   
00FF13E0   
00FF13E2   

55 
8B EC 
81 EC D0 00 00 00 
53 
56 
57 
8D BD 30 FF FF FF 
B9 34 00 00 00 
B8 CC CC CC CC 
F3 AB 
6A 71 
68 3C 57 FF 00 
8D 4D F4 
E8 14 FD FF FF 
8D 4D F4 
E8 35 FC FF FF 
8D 4D F4 
E8 77 FD FF FF 
33 C0 
52 
8B CD 
50 

push ebp 
mov ebp,esp 
sub esp,0D0h 
push ebx 
push esi 
push edi 
lea edi,[ebp-0D0h] 
mov ecx,34h 
mov eax,0CCCCCCCCh 
rep stos dword ptr es:[edi]  
push 71h  
push offset string "Smith" (0FF573Ch) 
lea ecx,[e] 
call Employee::Employee (0FF10E1h) 
lea ecx,[e]  
call Employee::empID (0FF100Ah) 
lea ecx,[e]  
call Employee:: empName (0FF1154h) 
xor eax,eax  
push edx  
mov ecx,ebp 
push eax  
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00FF13E3   
00FF13E9   
 
00FF13EE   
00FF13EF   
00FF13F0   
00FF13F1   
00FF13F2   
00FF13F3   
00FF13F9   
00FF13FB   
 
00FF1400   
00FF1402   
00FF1403   

8D 15 04 14 FF 00 
E8 94 FC FF FF 
 
58 
5A 
5F 
5E 
5B 
81 C4 D0 00 00 00 
3B EC 
E8 36 FD FF FF 
 
8B E5 
5D 
C3 

lea edx, [(0FF1404h)] 
call @ILT+125(@_RTC_CheckStackVars@8) 
(0FF1082h) 
pop eax  
pop edx 
pop edi 
pop esi 
pop ebx 
add esp,0D0h  
cmp ebp,esp  
call @ILT+305(__RTC_CheckEsp) 
(0FF1136h) 
mov esp,ebp  
pop ebp 
ret    

 
Tables 2 and 3 contain numerical values for 
memory addresses and binary code in base-
16 format. The assembly instructions and 
their binary codes are generated for x86 
computer architecture. 
The intermediate code provides the 
portability feature to a software application.  
A virtual machine interprets the operation 
codes from intermediate code and translates 
them into native code for the machine which 
runs the virtual machine. The operation codes 
are associated to intermediate instructions 
like the native code with the assembly 
instructions. The intermediate instructions 
are used within an intermediate language 

representing the lowest-level human-readable 
programming language.  
For .NET Framework, the intermediate 
language is called Common Intermediate 
Language (CIL) and it is defined by 
Common Language Infrastructure (CLI). The 
CIL is object-oriented and stack-based. 
Unlike the CPU architecture, the stack-based 
architecture pushes data on a stack instead 
pulling data from registers. 
The Employee class and main function 
defined above have the following content 
written in C# programming language:

 
class Employee
{ 
    public String Name; 
    public int id; 
 
    public Employee(String aName, int nr){ 
        this.Name = aName; 
        this.id = nr; 
        procData(aName, nr); 
    } 
 
    public String empName(){ return this.Name; } 
    public int empID(){ return this.id; } 
    public void procData(String sName, int snr) { } 
 
    public static void Main() {  
        Employee e = new Employee("Smith", 113); 
        e.empID(); 
        e.empName(); 
    } 
} 

 
The intermediate code built by Microsoft 
Visual Studio 2010, x64 version, for each 
method is presented in Table 4.
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Table 4. C# .NET Intermediate code for Employee class 
Method header IL 

offset 
Binary 

intermediate 
instruction 

Intermediate instruction 

Employee(String,
int); 

IL_0000 
IL_0001 
 
IL_0006 
IL_0007 
IL_0008 
IL_0009 
IL_000a 
 
IL_000f 
IL_0010 
IL_0011 
IL_0016 
IL_0017 
IL_0018 
IL_0019 
 
IL_001e 
IL_001f 
IL_0020 

02 
28 0A 00 00 11 
 
00  
00 
02 
03 
7D 04 00 00 01 
 
02 
04 
7D 04 00 00 02 
02 
03 
04 
28 06 00 00 04 
 
00 
00 
2A 

ldarg.0 
call instance void [mscorlib]System. 
Object::.ctor()  
nop 
nop 
ldarg.0 
ldarg.1 
stfld string EmployeeApp.Employee 
::Name 
ldarg.0 
ldarg.2 
stfld int32 EmployeeApp.Employee::id 
ldarg.0 
ldarg.1 
ldarg.2 
call instance void EmployeeApp. 
Employee::procData(string, int32) 
nop 
nop 
ret 

String 
empName(); 

IL_0000 
IL_0001 
IL_0002 
 
IL_0007 
IL_0008 
IL_000a 
IL_000b 

00 
02 
7B 04 00 00 01 
 
0A 
2B 00 
06 
2A 

nop 
ldarg.0 
ldfld string EmployeeApp.Employee
::Name 
stloc.0 
br.s IL_000a 
ldloc.0 
ret 

int empID(); IL_0000 
IL_0001 
IL_0002 
IL_0007 
IL_0008 
IL_000a 
IL_000b 

00 
02 
7B 04 00 00 02 
0A 
2B 00 
06 
2A 

nop 
ldarg.0 
ldfld int32 EmployeeApp.Employee::id 
stloc.0 
br.s IL_000a 
ldloc.0 
ret 

void procData 
(String,int); 

IL_0000 
IL_0001 

00 
2A 

nop 
ret 

static void 
Main(); 

IL_0000 
IL_0001 
IL_0006 
IL_0008 
 
IL_000d 
IL_000e 
IL_000f 
 
IL_0014 
IL_0015 
IL_0016 
 
IL_001b 
IL_001c 

00 
72 70 00 00 01 
1F 71 
73 06 00 00 01 
 
0A 
06 
6F 06 00 00 03 
 
26 
06 
6F 06 00 00 02 
 
26 
2A 

nop 
ldstr "Smith" 
ldc.i4.s 113 
newobj instance void EmployeeApp. 
Employee::.ctor(string, int32) 
stloc.0 
ldloc.0 
callvirt instance int32 EmployeeApp. 
Employee::empID() 
pop 
ldloc.0 
callvirt instance string EmployeeApp. 
Employee::empName() 
pop 
ret 

 
The intermediate language (IL) offset 
represents the position of the current 
intermediate instruction relative to the 
beginning section where the method 
intermediate code is stored in the file 
translated by .NET virtual machine into 

native code. The intermediate code is 
organized in accordance with Portable 
Executable (PE) specifications for .NET 
applications. 
The Java bytecode is the output of a Java 
compiler containing the binary content of the 
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intermediate code. The bytecode files have a 
specific organization to be interpreted by 
JVM. 

In Java programming language, the above 
example has the following content: 

 
class Employee extends java.lang.Object {
public String Name; 
public int id; 
 
public Employee(String aName,int nr){ 
 this.Name = aName; 
 this.id = nr; 
 procData(aName, nr); 
} 
public String empName(){ return this.Name; } 
public int empID(){ return this.id; } 
public void procData(String sName,int snr) { } 
 
public static void main(String[] args) {  
        Employee e = new Employee("Smith", 113); 
        e.empID(); 
        e.empName(); 
    } 
 
} 

 
The intermediate code built by Java compiler 
using Java Development Kit (JDK), 1.5.0  

update 22 version, for each method is 
presented in table 5. 

 
Table 5. Java bytecode for Employee class 

Method header Bytecode 
offset 

Operation 
code  

Bytecode instruction 

public 
Employee(java.lang.
String, int); 

0 
1 
 
4 
5 
6 
 
9 
10 
11 
 
14 
15 
16 
17 
 
20 

2A 
B7 00 01 
 
2A 
2B 
B5 00 02 
 
2A 
1C 
B5 00 03 
 
2A 
2B 
1C 
B6 00 04 
 
B1 

aload_0 
invokespecial  #1;  
//Method java/lang/Object."<init>":()V 
aload_0 
aload_1 
putfield #2;  
//Field Name:Ljava/lang/String; 
aload_0 
iload_2 
putfield #3;  
//Field id:I 
aload_0 
aload_1 
iload_2 
invokevirtual  #4; //Method 
procData:(Ljava/lang/String;I)V 
return 

public 
java.lang.String 
empName(); 

0 
1 
 
4 

2A 
B4 00 02 
 
B0 

aload_0 
getfield #2;  
//Field Name:Ljava/lang/String; 
areturn 

public int empID(); 0 
1 
4 

2A 
B4 00 03 
AC 

aload_0 
getfield #3; //Field id:I 
ireturn 

public void 
procData(java.lang.
String, int); 

0 B1 return 

public static void 
main(java.lang.Stri
ng[]); 

0 
3 
4 
6 

BB 00 05 
59 
12 06 
10 71 

new #5; //class Employee 
dup 
ldc #6; //String Smith 
bipush 113 
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8 
 
11 
12 
13 
16 
17 
18 
 
21 
22 

B7 00 07 
 
4C 
2B 
B6 00 08 
57 
2B 
B6 00 09 
 
57 
B1 

invokespecial  #7; //Method 
"<init>":(Ljava/lang/String;I)V 
astore_1 
aload_1 
invokevirtual #8; //Method empID:()I 
pop 
aload_1 
invokevirtual #9;  
//Method empName:()Ljava/lang/String; 
pop 
return 

 
JVM identifies the data structures where the 
operation codes of the intermediate 
instructions are stored in compiled Java file. 
JVM has a stack-based architecture used to 
translate the intermediate instructions to 
microcontroller or microprocessor native 
code. More details regarding the .NET and 
Java virtual machines are presented in [1], 
[2], [4], [5], [6], [8] and [9]. 
 
2 Binary Code Instrumentation for 
Malicious Software Detection 
Code instrumentation is a technique that 
inserts code to analyze and modify the 
behavior a program [3], [10]. Depending on 
code representation, the code instrumentation 
is done for: 
 Source code – text representation of the 

program; 
 Binary code – binary encoded 

instructions of the program. 
Code instrumentation techniques are applied 
for the following analysis levels: 
 Static analysis – the program 

instrumentation occurs before the 
program running; 

 Dynamic analysis – the program 
behavior is analyzed by collecting run-
time information. 

Static binary code instrumentation. It is 
method of analyzing the behavior of a binary 
application by modifying its object code or 
executable code before the program is run. 
Static binary code instrumentation needs 
advanced knowledge about the executable 
formats like EXE and PE. The 
instrumentation techniques and analysis are 
more expensive than the dynamic 
instrumentation. Two important and 
particular issues are distinguished during 
static instrumentation, according to [7]: 

 The binary application is statically 
disassembled; the disassembled code has 
not accurate information about the 
symbols and high level information 
regarding the symbols; 

 Instrumented code requires more space 
than the original binary code; moving 
functions from the original binary code 
to a new location requires relocation 
information regarding the entry points 
provided by the compiler. 

Static binary code instrumentation faces 
with the following challenges [7]: 
 Function boundaries and stack 

conventions – in disassembled code, 
functions may have multiple entry and/or 
exit points; the function exit may be 
caused by a jump instead of return 
instruction; using the stack may follow 
unusual methods for Extended Stack 
Pointer (ESP) and Extended Base 
Pointer (EBP) register handling in x86-
32bit computer architecture; therefore, 
there is a lack of information replaced by 
assumption information during the 
binary instrumentation; 

 Position-independent code – there are 
multiple mechanisms for position code 
relative addressing; static binary 
instrumentation involves relocating of 
function without relocating of static data; 
this issue needs fixing the position code 
relative accesses or avoiding relocation 
of the binary sequences that accesses the 
relative addresses; 

 Scalability and modularity – code 
instrumentation and analysis is done on 
modularity principle ensuring the 
scalability of the binary instrumentation 
to large programs, keeping the accuracy 
and speed of the process; 
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 Local variables – may be accessed in 
different ways: using ESP as base 
pointer, using computer processor 
general register ECX by some functions 
like main in C language, using EBP to 
access the function parameter or in 
general purpose; 

 Actual parameters – may be passed on 
the stack or via registers; they may be 
stored at stack-relative addresses or in 
the top of the stack when the binary code 
is optimized; the number of actual 
parameters are not established by a local 
examination of the function call; 

 Aliasing – multiple pointer expressions 
may reference the same memory, 
increasing difficulty to identify the 
instructions that accesses that memory 
location; pointer analysis is very difficult 
without high-level information about 
variables, array sizes, types, and so forth; 

 Functions with side-effects – some 
operations are performed by function 
itself instead of its caller, affecting the 
content of some variables and/or 
registers. 

Binary instrumentation is a well-known 
technique used in computer security to 
analyze binary applications in exploit 
detection, sandboxing, malware analysis and 
so forth.  

Dynamic binary code instrumentation. It is a 
method of analyzing the behavior of a binary 
application when is running. The analysis 
consists of code injection and examination of 
the effects on the binary code. 
The benefits of the dynamic binary code 
instrumentation are highlighted in [10]: 
 Recompiling or relinking is not needed; 
 Code discovered at run-time; 
 Generated code is handled dynamically; 
 It is attached to running code. 

A dynamic binary code instrumentation tool 
is Pin. Pin allows insertion of arbitrary code 
into executable when the program is running. 
Also, Pin can be attached to a running 
program [10].  
Pin works like a “just in time” (JIT) 
compiler. Pin generates binary code that is 
executed. The code injection is done into 
generated binary code, the only code ever 
executed. Instrumentation is not done for 
instructions that are ever executed, being 
placed into conditional branches avoided by 
the execution flow of the program. 
Dynamic binary code instrumentation done 
by Pin consists of two components [10]: 
 A mechanism to establish the insertion 

points and what code to be inserted; 
 The code to be executed at insertion 

points. 
Pin tool implements the following 
instrumentation techniques for analyzed 
executable files [10]: 
 Instruction instrumentation – includes 

the below possible operations: 
- Simple instruction counting – 

instruments a binary program to 
count the number of instructions 
executed; Pin tool inserts a call to 
count function before every 
instruction; the value of instruction 
count is saved in a file called 
inscount.out when the 
executable file finishes its running; 
the instruction count function is very 
simple, using a static integer variable 
and is passed as argument to a 
function called by Pin tools before 
every instruction encountered in the 
executable file; functions are defined 
in inscount0.cpp from Pin tool 
[10];

 
static UINT64 icount = 0;

 
VOID docount() { icount++; }     
VOID Instruction(INS ins, VOID *v){ 

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END); 
} 
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The INS_InsertCall function 
inserts a call to docount function 
relative to instruction ins. 
IPOINT_BEFORE is an enumerator 
always valid for all instructions and 
specifies the place of insertion. 
IARG_END is the argument list 
terminator for INS_InsertCall 
function. 

- Instruction address tracing – 
instruments the memory addresses 

where the binary instructions are 
stored during execution of the 
program; Pin tool inserts a call to 
trace function before every 
instruction in the executable file; the 
function writes the content of 
Instruction Pointer (IP) register into 
an output file managed by a global 
variable called trace in 
itrace.cpp source file defined in 
Pin tool [10]; 

 
FILE * trace; 
 
VOID printip(VOID *ip) {  
    fprintf(trace, "%p\n", ip);  
} 
VOID Instruction(INS ins, VOID *v){ 
    INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip, IARG_INST_PTR, 
IARG_END); 
} 

 
The printip function writes the 
content of IP register into the file 
managed by trace variable. The 
IP value is received by ip 
parameter and it has to be passed to 
INS_InsertCall function. The 
argument list of 
INS_InsertCall function is 
changed and the address of the 
instrumented instruction is passed 
by IARG_INST_PTR enumerator. 
Pin allows passing the content of 
different programming recipients by 
fields defined in the enumerator type 
called IARG_TYPE; 

- Memory reference tracing –  is a 
selective instrumentation technique, 
aiming a set of instructions from the 
binary code instrumented; for 
example, only instructions that read 
or write memory are considered; Pin 
tools inserts analysis function calls 
when each time when a memory 
operand is encountered during the 
execution flow of the binary 
program; the source code of this 
dynamic instrumentation technique is 
given in pinatrace.cpp source 
program and the results are saved 
into pinatrace.out file by the 
Pin tool [10]; 

 
FILE * trace; 
 
VOID RecordMemRead(VOID * ip, VOID * addr){ 
    fprintf(trace,"%p: R %p\n", ip, addr); 
} 
VOID RecordMemWrite(VOID * ip, VOID * addr){ 
    fprintf(trace,"%p: W %p\n", ip, addr); 
} 
VOID Instruction(INS ins, VOID *v) 
{ 
    UINT32 memOperands = INS_MemoryOperandCount(ins); 
     
    for (UINT32 memOp = 0; memOp < memOperands; memOp++) 
    { 
        if (INS_MemoryOperandIsRead(ins, memOp)) 
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        { 
            INS_InsertPredicatedCall(ins, IPOINT_BEFORE, 
(AFUNPTR)RecordMemRead, IARG_INST_PTR, IARG_MEMORYOP_EA, 
memOp, IARG_END); 
        }         
        if (INS_MemoryOperandIsWritten(ins, memOp)) 
        { 
            INS_InsertPredicatedCall(ins, IPOINT_BEFORE, 
(AFUNPTR)RecordMemWrite, IARG_INST_PTR, IARG_MEMORYOP_EA, 
memOp, IARG_END); 
        } 
    } 
} 

 
The RecordMemRead function 
prints a read memory record to the 
output file. The 
RecordMemWrite function prints 
a write memory record to the output 
file. There is a single output file 
called pinatrace.out. The 
memory record has the layout: 
 

(IP, memOpType, memAddr) 
 

where: 
o IP – Instruction Pointer register, 

containing the address of the 
instruction; 

o memOpType – type of the 
memory operation; it takes R or 
W as values; 

o memAddr – the memory address 
of the operand; 

The Instruction function is 
called for each instruction, 
instrumenting the memory read and 
write operations. The number of 
memory operands is returned by 
INS_MemoryOperandCount 
function for each instruction ins. 
The memory operation type is 
checked by 

INS_MemoryOperandIsRead 
and 
INS_MemoryOperandIsWritt
en functions, requiring the ins 
instruction and memOp operand 
index. The 
INS_InsertPredicatedCall 
function avoids the predicated 
instructions with false predicate. 
The function call passes the 
instruction, the call place, the 
address of RecordMemRead or 
RecordMemWrite function, the 
instruction address, the effective 
address of the memory operand by 
IARG_MEMORYOP_EA enumerator, 
the operand index of the instruction, 
and the argument list terminator. 

 Image instrumentation – aims loading 
and unloading of images. A trace file 
called imageload.out is created and 
contains trace messages related to loaded 
or unloading images. The source 
program containing the application for 
image instrumentation technique is 
imageload.cpp [10]. The needed 
functions are described below.

 
ofstream TraceFile; 
 
VOID ImageLoad(IMG img, VOID *v){ 
    TraceFile << "Loading " << IMG_Name(img) << ", Image id = " << 
IMG_Id(img) << endl; 
} 
 
VOID ImageUnload(IMG img, VOID *v){ 
    TraceFile << "Unloading " << IMG_Name(img) << endl; 
} 
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IMG_AddInstrumentFunction(ImageLoad, 0);
IMG_AddUnloadFunction(ImageUnload, 0); 

 
The ImageLoad function is called by 
Pin tool every time when an image is 
loaded. Also, the image can be 
instrumented. An image is a binary code 
sequence stored separately as the 
instrumented binary code. The 
ImageUnload function is called when 
a new image is unloaded. An image that 
is about to be unloaded cannot be 
instrumented. The 
IMG_AddInstrumentFunction 
function is called to register the 
ImageLoad callback to catch the 
loaded image. The 

IMG_AddUnloadFunction function 
call passes the image that is about to be 
unloaded and the value of 
ImageUnload function. The unloaded 
images cannot be instrumented, so the 
ImageUnload is not an 
instrumentation function. 

 Trace instrumentation – is a more 
efficient instruction counting. The 
counter is incremented per basic block 
instead of each instruction. In [10], trace 
instrumentation is implemented in 
inscount1.cpp application.  

 
static UINT64 icount = 0;
 
VOID docount(UINT32 c) {  
    icount += c;  
}    
VOID Trace(TRACE trace, VOID *v){ 
    for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl);  
bbl = BBL_Next(bbl)) { 
        BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)docount,  
IARG_UINT32, BBL_NumIns(bbl), IARG_END); 
    } 
} 

 
The docount function is called before 
every basic block. The trace 
parameter is an object assigned to a 
sequence of instructions with a single 
entrance and multiple exits. The for 
instruction parses the basic block set of 
the binary application and inserts a call 
to docount function before every basic 
block by BBL_InsertCall function. 
The BBL_InsertCall function call 
passes the basic block to be 
instrumented, the call place, the 

instrumentation function, the argument 
of docount function, number of 
instructions within the bbl basic block 
and argument list terminator. 

 Routine instrumentation – is made in 
[10] by number of calls for each 
procedures and the number of 
instructions executed in each procedure. 
The instrumentation report is printed to 
proccount.out file, and the source 
file of the application is 
proccount.cpp.

 
ofstream outFile; 
 
typedef struct RtnCount { 
    string _name; 
    string _image; 
    ADDRINT _address; 
    RTN _rtn; 
    UINT64 _rtnCount; 
    UINT64 _icount; 
    struct RtnCount * _next; 
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} RTN_COUNT; 
 
RTN_COUNT * RtnList = 0; 
 
VOID docount(UINT64 * counter) { 
    (*counter)++; 
} 
     
const char * StripPath(const char * path) { 
    const char * file = strrchr(path,'/'); 
    if (file) 
        return file+1; 
    else 
        return path; 
} 
 
VOID Routine(RTN rtn, VOID *v) {     
    RTN_COUNT * rc = new RTN_COUNT; 
 
    rc->_name = RTN_Name(rtn); 
    rc->_image = StripPath(IMG_Name(SEC_Img(RTN_Sec(rtn))).c_str()); 
    rc->_address = RTN_Address(rtn); 
    rc->_icount = 0; 
    rc->_rtnCount = 0; 
    rc->_next = RtnList; 
    RtnList = rc;             
    RTN_Open(rtn); 
             
    RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)docount, IARG_PTR,  
&(rc->_rtnCount), IARG_END); 
     
    for (INS ins = RTN_InsHead(rtn); INS_Valid(ins); ins = INS_Next(ins)){
        INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount,  
IARG_PTR, &(rc->_icount), IARG_END); 
    }     
    RTN_Close(rtn); 
} 

 
The Routine function is called every 
time when a new routine is executed. 
The rc local variable is a simple linked 
list to store information related to current 
routine. The current running routine is 
added to global list of routine managed 
by RtnList global variable. The call 
count of the current routine is 
incremented by RTN_InsertCall 
function call. The instruction counter for 
each routine is also stored by the simple 
linked list. The incrementing of 
instruction counter is made by 
INS_InsertCall function call. The 
routines are managed by routine objects 
and a certain routine is instrumented by 
referring the object name.  

Binary code instrumentation provides 
information about the binary applications and 
helps to improve the correctness and speed of 
the developed programs. Also, the program 
behavior checking provides valuable 
information about third-party application, 
identifying the suspicious behaviors of the 
programs from unsecure sources. 
 
3 Methods and Techniques of Binary Code 
Injection 
Binary code injection inserts a binary 
sequence into a binary computer program to 
change the intended course of execution.  
A way to change the course of execution in 
native executable files is altering of IP 
register. IP is a special-purpose register that 
stores the memory address of the next 
instruction to be executed. It cannot be 



60  Informatica Economică vol. 17, no. 4/2013 

DOI: 10.12948/issn14531305/17.4.2013.05 

programmatically accessed and its content is 
altered by instructions such as jmp, call 
and ret. These instructions permit the 
access to old IP values automatically pushed 
onto stack.  
The stack content for x86-16bit computer 
architecture when a function is called is 
depicted in Figure 2. 
 

 
Fig. 2. Accessing stack content in a far 

function  
The above stack content is available after a 
far function call with two arguments. All 
local variables are allocated on stack at lower 
memory addresses, and the return address to 
caller has the offsets from the current BP as 2 

bytes for IP register restore and 4 bytes for 
CS register restore.  
The IP content is restored when the ret 
instruction is executed. All these issues 
together with a stack content management 
may cause the change the course of 
execution. 
To get the current value of the IP register, a 
dummy function is defined and its call is 
followed by extracting the value from the top 
of the stack. Therefore, the stack portion 
where the return address is stored may be 
overwritten by the extracted value of IP, and 
the program execution is altered.  
For x86-16bit computer architecture, the 
register size is 16 bits. Also, the computer 
word has 16 bits length. For x86-32bit 
computer architecture, the register size and 
computer word are extended to 32 bits. The 
IP, BP and SP registers are included in the 
extended versions called EIP, EBP and ESP 
registers. 
An example for IP content handling is 
presented below. The binary code of the 
sequence is injected into the binary code of 
the Employee constructor method 
presented in chapter 1. 

 
Table 6. Native code injection 

Method header Memory 
address 

Binary assembly 
instruction 

Assembly instruction 

Employee(char*,int); ;previous 
addresses 
 
00FF146B 
00FF146E 
00FF1471 
 
 
 
00FF1474 
00FF1479 
00FF147A 
 
 
00FF147D 
00FF1480 
00FF1481 
00FF1484 
00FF14A3 

;previous binary 
instructions 
 
8B 45 F8 
8B 4D 0C 
89 48 04 
 
;injected binary 
instructions 
E8 00 00 00 00 
59 
89 4D 08 
;old binary 
sequence 
8B 45 0C 
50 
8B 4D 08 
51 
C2 08 00 

;previou asm instructions 
 
 
mov eax,dword ptr [this]   
mov ecx,dword ptr [nr]   
mov dword ptr [eax+4],ecx 
  
;injected asm instructions 
 
call dummy (0FF1479h) 
pop ecx 
mov dword ptr [aName],ecx    
;old asm sequence 
 
mov eax,dword ptr [nr]   
push eax   
mov ecx,dword ptr [aName]   
push ecx   
ret 8   
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The effect of the injected Employee code in 
constructor method is a wrong aName string 
parameter passed to procData method. The 
IP content popped by ECX register is the 
address of the pop ecx instruction. A 
disastrous effect is produced when the 
restored IP register contains a malicious code 
address. 
Also, elaborated stack buffer overflow 
attacks can be carried out by redirecting the 
execution flow to the shellcode that 
overwrites the vulnerable buffer of the target 
host.  
The bytecode injection consists in changing 
the existing bytecode to redirect the 
execution flow built by virtual machine. For 
Java programming language, that means 
modification of the compiled file stored by 
the class file and interpreted by the Java 
Virtual Machine. That issue is available for 
programs with malicious intent. However, 
there are situations when code injection 
techniques are used for bytecode 
instrumentation of the third-party libraries 
which the source code is not available or a 
debugger or a profiler cannot be used. Also, 
the bytecode injection is used in performance 
monitoring of the application [12]. 
The bytecode injection allows modification 
of third-party bytecode without the source 
code availability. The injection is asked by 
existence of some bugs or limitations of the 
third-party software to see the behavior 
change and possible solutions to pass over 
the software problems. The following 
considerations are taken into account by [12] 
as good reasons to apply injection 
techniques: 
 The exception generated by a method 

during a data set processing provides no 
information about what data element has 
caused it; 

 Collecting performance statistics; 
 The failure of a data batch processing 

when a data set is send to a database by 
Java Database Connectivity (JDBC). 

Advantages of Java bytecode injection are 
presented in [12]: 
 Modification of the binary code when 

the source code is not available; 

 Collecting run-time information when 
tools like debuggers and profilers cannot 
be used; 

 Modularity of the injected bytecode; 
 Keeping the original bytecode by using 

tools for bytecode injection; 
 Doing injection at compile-time when 

the bytecode is built or run-time when 
the target classes are loaded by the JVM. 

The Java bytecode format is presented in [1], 
[2], [4], [5], [6], [8] and [9]. Depending on 
level of abstraction, the injection tools aim 
[12]: 
 Direct bytecode manipulation (ASM 

tool)– Java bytecode understanding is 
needed because the level of abstraction 
is very low; the developer has to work 
with operation codes, the operand stack 
and bytecode instructions; 

 Intermediate level (Javassist tool) – the 
code is given in strings, the classfile 
structure has a level of abstraction; 

 Advices in Java (AspectJ tool) – the 
code to be injected has a syntax-checked 
format and it is compiled. 

The injection techniques are classified by 
[12] into the following categories: 
 Manual injection – the developer knows 

the place where the code is injected; to 
do that, the developer must know the 
classfile format; 

 Primitive pointcuts – pointcut is an 
expression telling the place where a 
particular bytecode must be injected; this 
injection techniques has limitation about 
the place: a particular method, all public 
methods of a class and so forth; 

 Pattern matching pointcut expressions – 
match the target bytecode based on a 
number of criteria. 

The bytecode injection time may be [12]: 
 Manually at run-time – the bytecode 

asks for injected bytecode; 
 Load-time – bytecode injection is 

performed when the target bytecode is 
loaded by the JVM; 

 Build-time – the bytecode is modified by 
injection before packaging and 
deploying the software application. 
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According to [1], [2], [4], [5], [6], [8] and [9] 
where the Java classfile structure is 
explained, injection of a new method into 
classfile involves the structure information 
modifications inside the classfile in addition 
to the method bytecode. Modifications are 
manually done in the classfile or 
implemented in libraries as injection tool. 
The operations needed to keep a viable 
classfile to be correctly interpreted by the 
JVM are: 
 Addition of the method in the Constant 

Pool – write the information as a 
constant pool entry: 
- Adding UTF8 method name to 

constant pool; 
- Adding UTF8 descriptor index to 

constant pool; 
- Adding method name type to 

constant pool; 
- Adding method type to constant 

pool; 
 Injection of the method bytecode – 

inserting the method binary code into the 
classfile: 
- Insertion of the method bytecode; 
- Write the bytecode image; 
- Adjusting the offsets: code length, 

maximum stack, exception table, 
code attributes, and attribute length. 

The new content of the classfile has to meet 
the structural constraints to pass the 
verification proceeded by JVM in order to 
interpret the bytecode correctly. 
 
4 Conclusions 
Binary code instrumentation offers the tools 
needed to increase the security and reliability 
of a software application. Therefore, the 
developers are able to understand how an 
exploit is created to pass the security 
mechanisms of the application in order to 
build defense techniques. 
Also, the binary code instrumentation may be 
used reverse engineering of malwares in 
order to detect them and implement 
protection techniques.  
The system security depends on the safety of 
running binary code, operating system kernel 
internals, linker and loader internals that have 

to be known and understood by software 
developers. 
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