
Informatica Economică vol. 17, no. 4/2013 5

DOI: 10.12948/issn14531305/17.4.2013.01

Tools for Empirical and Operational Analysis of Mobile Offloading in
Loop-Based Applications

Alexandru-Corneliu OLTEANU, Nicolae ŢĂPUŞ
University “Politehnica” of Bucharest, Romania

alexandru.olteanu@cs.pub.ro, nicolae.tapus@cs.pub.ro

Offloading for mobile devices is an increasingly popular research topic, matching the popu-
larity mobile devices have in the general population. Studying mobile offloading is challeng-
ing because of device and application heterogeneity. However, we believe that focusing on a
specific type of application can bring advances in offloading for mobile devices, while still
keeping a wide range of applicability. In this paper we focus on loop-based applications, in
which most of the functionality is given by iterating an execution loop. We model the main
loop of the application with a graph that consists of a cycle and propose an operational anal-
ysis to study offloading on this model. We also propose a testbed based on a real-world appli-
cation to empirically evaluate offloading. We conduct performance evaluation using both
tools and compare the analytical and empirical results.
Keywords: Mobile Computing, Offloading, Cloud Computing, Performance Evaluation

Introduction
Modern handheld devices, such as

smartphones and tablets, offer portability, in-
creased computational power, and communi-
cation capabilities. Thus, they are becoming
an attractive option for users to interact with
each other and with their environment.
The convergence of mobile and distributed
computing has been studied for a number of
years, with results in system design [1] [2],
job scheduling [3] [4], resource discovery [5]
[6] and so on. Mobile integration with vari-
ous other types of computing takes many
forms, such as mobile cloud computing, of-
floading, delegation, cyber foraging, and data
staging. Offloading is a form of transferring
tasks of various granularities to remote re-
sources. Offloading and delegation are very
similar approaches to use remote resources
and sometimes they are considered to be
complementary, as in the work published by
Flores [7]. Cyber Foraging is an opportunis-
tic approach of using remote resources from
mobiles. Satyanarayanan [8] introduced this
concept in 2001 as a pervasive computing
technique, and work within the same research
team [9] led to a scripting language for cyber
foraging. Verbelen et al. [2] introduced AI-
OLOS, a middleware to improve mobile ap-
plication performance through cyber foraging
and Kristensen [10] introduced scheduling

concepts in the topic.
Offloading for mobile devices is an increas-
ingly popular research topic, matching the
popularity mobile devices have in the general
population. With the first research efforts
targeted specifically on mobile devices da-
ting back in the 1990's, in the past couple of
years a vast material on offloading for mobile
devices has been published.
Several offloading systems have been pro-
posed, as middleware, frameworks, or ser-
vices. However, we find that few solutions
reach the point to have a big impact on live
systems and applications. Studying mobile of-
floading is challenging because of device and
application heterogeneity. However, we be-
lieve that focusing on a specific type of ap-
plication can bring advances in offloading for
mobile devices, while still keeping a wide
range of applicability. Thus, our approach is
to conduct an application domain exploration
and select a family of applications on which
to conduct analysis and evaluation of various
offloading mechanisms.
In this paper, we conduct experimental and
analytical evaluation for mobile offloading,
as a step towards an integrated offloading
system [11]. We also compare the two sets of
results to study the trade-offs of the two
methods.

1

6 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.01

2 Related Work
Analyzing power consumption is an interest-
ing research topic, as shown by various pro-
jects that can be found in the literature.
Caroll and Heiser [12] design multiple mi-
cro-benchmarks to associate the power costs
to modules of a mobile system. They try to
determine the power consumption of differ-
ent parts like CPU, GSM and WiFi. Zhang et
al. [13] describe a power module construc-
tion technique that they use to characterize
3G, GSM, WiFi, CPU and screen, and to in-
troduce PowerTutor, an Android application
that can use these models for power con-
sumption estimation on any device. We use
such tools to estimate the power consumption
of different components, but we found little
solutions on estimating power consumption
from the Bluetooth radio.
Balasubramanian et al. [14] show that 3G,
GSM and WiFi incur a high tail energy over-
head. Pering et al. [15] describe methods to
reduce the power consumption by switching
between Bluetooth and WiFi. The Bluetooth
module has power consumption as much as
10 times lower than WiFi. WiFi is intended
for high-bandwidth and 100 meters coverage
while Bluetooth is designed for low-
bandwidth and a coverage of 10 meters. The
authors also describe that power consumption
in idle mode compared to active mode is 4
times smaller for WiFi and 6 to 10 times
smaller for Bluetooth. We find this signifi-
cant as it justifies the need of advanced algo-
rithms that power down these interfaces
when communication is not necessary.
Various other papers try to determine algo-
rithms and technologies for reducing energy
consumption, by modeling optimum power
as a Nash equilibrium [16], by employing
back-off methods for synchronization [17],
or introducing an active-sleep duty cycle
[18]. We propose an adaptive algorithm for
reducing the polling rate in location-aware
applications, leveraging the fact that new
queries are not necessary if the location has
not changed significantly.
In our work we apply techniques of Comput-
er Systems Performance Analysis that are

well established in the field, providing very
useful tools in the form of analytical model-
ing. Kleinrock [19] provides a very thorough
introduction in the modeling of stochastic
systems of flow using queuing theory. By
understanding the stochastic processes that
describe the arriving stream and the structure
and discipline of the service facility, one can
mathematically obtain measures of perfor-
mance and effectiveness. Menasce [20] also
uses queuing networks to obtain descriptive
models for various types of systems, which
serve as basis for quantifying performance
models. Jain [21] offers a thorough reference
to fundamental and practical engineering
principles of computer systems evaluation
and King [22] extends the principles on
communication topics.

3 Tools for Operational and Empirical
Analysis of Loop-Based Applications
In our study, we focus on loop-based applica-
tions. A loop-based application is one in
which most of the functionality is given by
iterating an execution loop. All the Online
Social Applications, for which we built a
Workload Model in [23], have such a loop,
as it can be seen in the State Transition Dia-
gram, the component that models the states
in which a mobile online social application
can be. Moreover, for Online Social Applica-
tions, independent of their technology: Tight-
ly Coupled Simulations, Web 2.0 or Stream-
ing, some amount of functionality already
occurs remotely, this being one of the criteria
for which we chose them to conduct our
studies.

3.1 Formalism for Operational Analysis of
Mobile Offloading
We model the main loop of the application
with a graph that consists of a cycle, with
stages numbered from 1 to n, as depicted in
Figure 1. An example of such a loop is also
given in Figure 1, showing the main pro-
cessing loop of OpenTTD that consists of
stages such as input capture, synchronization
on the server, simulation, and rendering.

Informatica Economică vol. 17, no. 4/2013 7

DOI: 10.12948/issn14531305/17.4.2013.01

Fig. 1. Graph model of OpenTTD (left) and loop-based applications in general (right)

Based on this loop, and derived from the
metrics and the benefit assessment models
described in our taxonomy [26] we assess the
benefit of offloading in terms of time needed
to iterate the processing loop as:

where:
 T - time needed to perform computation

or a data transfer

 p/r - local/remote processing
 Q - quantity of data to be transferred
 B(s,d) - bandwidth when transferring da-

ta from source s to destination d
In the remainder of this section we make
some simplifications, to keep the formulas
concise, at the expense of some precision.
First, we consider the download speed and
the upload speed roughly the same size:

We also consider that passing data among lo-
cal stages, as well as passing data among re-
mote stages, is much quicker than passing

data from local to remote and vice versa, and,
therefore, we consider it as infinite:

In this analysis, we address loop-based appli-
cations and we model their processing with a
cyclic graph. We are also focused on applica-
tions that already have some form of com-
munication. We depict this by having a stage
being processed in the environment (see Fig-
ure 2a), as, for example, OpenTTD has the
synchronization stage being processed on the
server.
By offloading components we refer to mov-

ing the processing of additional stages in the
environment. For example, in OpenTTD, be-
sides doing the synchronization, we might
remote the execution of the simulation as
well. We generally note with k the stage
where local processing turns into remote pro-
cessing and with l the stage where processing
returns on the device. Offloading is thus rep-
resented by moving indexes k and l within
the loop, as described by Figure 2b. We use

8 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.01

this formalism to express the offloading deci-
sion logic, for the three main benefit assess-

ment models: performance, energy and cost.

Fig. 2. Graph model of loop-based applications when offloading

Inspired by [24] [25], we express perfor-
mance as the time it takes to perform the

loop:

where Tp

i is the local processing time of
stage i, Tr

i is the remote processing time of
stage i, and Tt

i is the transferring time of out-
put data from stage i. Transmission time can
be expressed as the quantity of data transmit-
ted divided by the transmission speed. At this

stage we make the simplification that the
sending and receiving speeds are similar. Lo-
cal and remote processing times can be
measured directly, and can also be expressed
as the quantity of code to be executed divid-
ed by the CPU speed. The equation becomes:

In general, offloading is beneficial if remote
processing has a better performance than lo-
cal processing, or, equivalently, if the penalty
for transmitting the data to the remote re-

source is less than gain in time obtained from
using a remote resource more capable than
the local one, expressed by the inequality:

Thus, the offload decision becomes the opti- mization problem expressed as:

This operational analysis can be extended for
the offloading mechanisms defined in our

Exploratory Space, such as partial offloading
and parallel offloading [11].

Informatica Economică vol. 17, no. 4/2013 9

DOI: 10.12948/issn14531305/17.4.2013.01

3.2 Design and Implementation of a
Testbed for Mobile Offloading
To conduct empirical evaluation of various
offloading mechanisms, we design and im-
plement a testbed based on OpenTTD, a
popular open-source game, the open-source
version of Transport Tycoon Deluxe, a busi-
ness simulation game developed by Chris
Sawyer in 1994.
As an open-source application, OpenTTD
has a community of developers that continu-
ously update the game and publish all
sources in a repository. Moreover, other de-
velopers port the game to other platforms.
For example, the Android port by Pelya has
hundreds of thousands of active users.
We select OpenTTD because it is a real pop-
ular application, which falls in the category
of online social applications, implemented as
a tightly coupled simulation, for which we
have a workload model, as proposed in [23].
Tightly Coupled Simulations are, among
Online Social Applications, the type of appli-
cations that provide opportunity for the
broadest range of experiments, because the

largest amount of processing takes place on
the mobile device. We conduct static and dy-
namic analysis on OpenTTD. We use Vprof
to profile OpenTTD on a Linux system and
Vtune on an Android system.
The basic functionality of the game consists
of iterating a loop, which means we can ap-
ply our operational analysis described in Sec-
tion 3.1.
In multiplayer mode, OpenTTD follows a
client-server architecture that currently sup-
ports up to 255 simultaneous users on the
same map, one of which must host the server.
There are some notable efforts to expand that
number of users with a Massively Multiplay-
er Online version of OpenTTD, named At
Large. In our testbed, we augment the client-
server architecture, by tapping into the nor-
mal data flow of the system and adding an
observer that also has the ability to control
the experiments (see Figure 3). The testbed
enables experiments for conducting offload-
ing from various clients to either a cloudlet
device, in the same LAN, or with powerful
cloud infrastructure, over the Internet.

Fig. 3. General Architecture of the Testbed

We implement the testbed by making several
changes to the community version. To con-
duct experiments, we need to repeat them for

a number of times and make sure they all be-
have the same way. Thus we replace the hu-
man player with an AI running on the device

10 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.01

and our implementation follows its opera-
tions on the screen. So, starting a game with
the same AI on the same scenario will recre-
ate in each run the same usage patterns and
the same operations. To enable running AI
players on the server, we adapt the code,
starting with the modifications implemented
by Otto Visser, from Delft University of
Technology. In addition, we also adapt the
starting procedure so that we can easily start
the game on the mobile device and on the
server through scripts. When starting An-
droid applications, it is not possible to give
the native code command line arguments, so
it was necessary to implement some addi-
tional configuration settings in the original
configuration file.
We also implement instrumentation in all the
components of the architecture, to collect
various metrics, as depicted in Figure 4:
 on the device, within OpenTTD: we

measure game specific metrics, like
frames per second and in-game time, as
well as component statistics, in terms of
processing time and quantity of data;

 on the device, at application level: we
run several profilers, such as vprof and
VTune, and tools, such as top and iftop
for Android, to collect metrics such as
CPU load, memory load, and network
load;

 on the device, in the kernel: hooks and
system calls can be placed for forward-
ing to higher levels essential information
captured from hardware counters on the
physical device, like the C-states; we
have investigated C-states for a better
understanding on CPU loads [27], but
we do not detail them in this testbed;

 at the network level, software known as
package sniffers, such as Fiddler and
Wireshark, capture packets and help
with statistics, such as sent and received
packets, sent and received bytes, session
length, inter-arrival times, and the size of
the input and output data;

 on the server side: we measure the num-
ber of clients and several hardware-
related metrics, such as CPU load,
memory load, and network load.

Fig. 4. Instrumentation in our Offloading System

We use top, iftop and the sysfs to monitor in-
ternal resources on the Android device. Net-
work load is monitored using iftop and
tcpdump. We use the tools AWS provide for

the cloud servers and simple Linux tools for
our cloudlet machines.
The OpenTTD implementation already han-
dles issues such as lagging clients and out of
order commands. Each client holds a tick-

Informatica Economică vol. 17, no. 4/2013 11

DOI: 10.12948/issn14531305/17.4.2013.01

based internal counter that serves as a refer-
ence for the client in executing commands. A
comprehensive error handling system can
press the client to speed up on executing old-
er commands, and can even go to the point of
kicking out a client that cannot keep the pace.
We have created a suite of bash scripts that,
when run from the observer, trigger the game
on the clients and the server, start the meas-
uring tools, wait for the time specified for the
experiment and cleanly close all the pro-
grams that they started. All communication
with the Android clients is done through adb,
or Android Debug Bridge, a tool offered by
Google, which enables file transfers and re-
mote connections to the Android devices.
Communication with the other devices in the
cloudlet and the cloud is done through SSH
and SCP, two popular communication proto-
cols for remote connections and file transfers,
with many clients on both Windows and
Linux. At the end of the experiment, all the
results are centralized on the observer, where
other scripts automatically compute statistics
and plot charts using gnuplot.

The system does not take a dynamic deci-
sion, but is instructed by the observer which
tests to run, because we are interested in
comparing various mechanisms. We imple-
ment several variants of OpenTTD, to of-
fload different amounts of components. We
also allow file configuration for varying pa-
rameters, such as graphics and user behavior.

4 Performance Evaluation Results
For the empirical evaluation, we use the
testbed described in Section 3.2 and for the
analytical evaluation we use the operational
analysis described in Section 3.1, as well as
the workload traces presented in [23].

4.1 Analytical Evaluation Results
We compare offloading the AI input collec-
tion stage with no offloading, using the oper-
ational analysis proposed in Section 3.1. We
also summarize in Table 1 the values we use,
based on the values from workload model-
ling (see [23]).

Table 1. Data used in analytical evaluation

 Stage name
and number

Local
Processing

Remote
Processing

Quantity
of Data

 Bandwidth

 Tp [ms] Tr [ms] Q [byte] B [Mbps]
 Human Input Collection (1) 1.2 0.7 40 8
 AI Input Collection (2) 48.2 4.3 40
 Command Synchronisation (3) 188.5 101.9 120
 Simulation (4) 9.3 2.6 1 068 576
 Rendering (5) 5.7 13.7 4 096 000

In the base case, without offloading,
k=j=l=3, indicating the remote operation of

command synchronization, the only stage
that needs to be performed remotely:

In a similar way, when offloading Stage 2,
the AI input collection, k=2, j=l=3, and the

formula becomes:

The smaller time for remote processing Stage 2 compared with local processing, as well as

12 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.01

the comparable output data size of Stage 1
and Stage 2, make offloading Stage 2 a better
option than no offloading.

In comparison, trying to offload Stage 4, the
simulation would lead to:

This would be an example when offloading is
not beneficial. Due to the large size of the
output data, one iteration of the loop would
take more than a second, which means that
the client device will be removed from the
multiplayer game because it is too slow.
We now consider Stage 2' to describe run-

ning 4 AI players instead of 1. Having multi-
ple AI players take a decision during an itera-
tion is an embarrassingly parallel task, thus
running N AI players on a serial processor
would take N times the time. This, for N=4
players, the base case can be represented as:

and offloading Stage 2' becomes:

Thus, when running 4 AI players locally, the
200 ms loop period is exceeded, and the cli-
ent will be removed from the multiplayer
game. In this case, offloading is necessary, as
it brings the iteration time below the 200 ms
threshold.

4.2 Empirical Evaluation Results
For this experiment, we explore the benefits
of offloading the AI Input Collection compo-

nent of the game. We represent the AI Input
Collection as a stage in the processing loop
of OpenTTD (see Section 3.1). Profiling
shows that the AI players can consume sig-
nificant amounts of processing power when
computing routes from one city or resource
to another, which they do by using algo-
rithms such as A*, especially when the tree
representation of the world is large.

Fig. 5. OpenTTD running on a tablet (left) has to keep up with the rest of the clients, other-

wise it will be removed from the game by the server (right)

However, the AI players have a bursty be-
havior, and compute such routes only when
they acknowledge they have enough in-game
money. It is therefore interesting to see what
impact has offloading the Squirrel Virtual

Machine, which runs the AI scripts and of-
fers an AI input.
For this experiment, we use the testbed (see
Section 3.2) we propose based on our
openttd-repeatable implementation, which

Informatica Economică vol. 17, no. 4/2013 13

DOI: 10.12948/issn14531305/17.4.2013.01

allows us to repeat the same scenario multi-
ple times. We run the client on an Asus
TF101 2-core @1GHz running Android 4.0.3
and the server on a Sony Vaio 4-core
@2.3GHz running Ubuntu 10.04. There is
one AI player running on the client to simu-
late a real player.
Using this experiment, we explore one of the
four main offloading mechanisms identified
in our Exploratory Space [11]. We compare
not offloading anything, running AIs on the
client device, with offloading the AI compo-
nent, which is running the AIs on the server.
We use our testbed and, as offloading target,
the cloudlet represented by a Sony Vaio lap-
top.
The scenario we investigate is that a human
player has a match against a number of AIs.

We have started with 16 AIs, but running the
game locally with that many AIs proves to be
unplayable on our device. So, to collect data
for a control test run, we repeatedly de-
creased the number of AIs until the game be-
came usable on our device. We have settled
to 4 AIs, that we picked from the most popu-
lar in the community, namely OtviAI, AIAI,
ChooChoo and Chopper.
Figure 6 reports two of the metrics we col-
lect, showing the first 10 minutes of the ex-
periment. The iteration time is a performance
metric, and shows how long an iteration of
the data takes to be processed through the
whole loop. The CPU Load is also a perfor-
mance metric, which shows how much of the
CPU is used in the system.

Fig. 6. Experimental results showing iteration time (left) and CPU load (right)

We log the iteration time in our modified
version of OpenTTD every time an iteration
completes. With roughly ten iterations per
second, during a 10 minute window we
would have roughly 6000 readings. To pre-
sent our findings in a friendly way, we ag-
gregate the readings on a per-minute basis,
and we only report the median value in the
left-hand chart in Figure 6. It can be seen
how in the no-offloading version, the itera-
tion time increases in the first 5-7 minutes of
the game and gets above the threshold in the
8th minute, when the client is removed from
the multiplayer. On the other hand, the medi-
an of the offloaded version is not affected
much and stays all the time in the range of
160-165ms.

The left-hand chart in Figure 6 shows a CPU
load of 40-50% most of the time, which cor-
responds to a high usage of one of the two
cores. The spikes are triggered by auto-saves,
which, in our setting, take place once per in-
game month. The auto-saves are performed
on a separate thread, which explains why the
CPU load exceeds the 50% threshold.
Both charts indicate that, without offloading,
the game slows down to compensate for the
lack of processing power of the client device.

4.3 Comparison of Analytical and Empiri-
cal Evaluation Results
In this section we compare the results we ob-
tained during our experiments with the ones
obtained by applying the operational analy-

14 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.01

sis, to validate our understanding on the two
offloading mechanism. In our operational
analysis, we refer to a couple of performance
metrics: total iteration time and quantity of
data transmitted over the network.
Table 2 summarizes the significant figures in
our comparison. We consider three cases:
 Base Case 1: No network - we run

OpenTTD in single-player mode on the
mobile client; no communication is per-
formed by OpenTTD, but it still has to
run 4 AI players;

 Base Case 2: No offloading - we run
OpenTTD in multiplayer mode, on the
mobile client and the laptop; now the
client needs to send commands to the
server for synchronization, but nothing
else is offloaded;

 Experiment: AI offloading - we run
OpenTTD in multiplayer mode, on the
mobile client, and on the laptop several
clients run an AI player each, but they

are all forced to work on a single core,
so they operate in serial.

In the base cases, the game stops in the mid-
dle of the experiment, being kicked out by
the server as being too slow, so we are not
able to compute an average consistent with
the method from the other experiments.
However, since the client was removed from
the game automatically, it must have exceed-
ed the threshold of 200ms repeatedly.
For quantity of data, we sum up the data
transmitted over the network, both sent and
received, over a period of 8 minutes that rep-
resents the maximum period for which we
have data in all 4 cases. In this sum, we ex-
clude the initialization phase, which does not
belong to the processing loop. To estimate
the analytical result, we assume an average
of 10 iterations per second, and thus a total of
4800 of round-trips, which include sending to
server data of 40 bytes each and receiving
120 bytes.

Table 2. Comparison between empirical and analytical results

Scenario Average iteration time Total data in 8 min
 T [ms] Q [bytes]
 empirical analytical empirical analytical
No network >200 265.64 64 211 0
No offloading >200 311.05 1 307 300 768 000
AI offloading 155.7 135.45 1 463 240 768 000

It can be noted that our observation, that run-
ning 4 AI players is prohibitive for clients
that do not offload, is consistent for both
methods. However, this is also the cause why
we were not able to assess empirically the
exact performance for the base cases.
In terms of data transfers, the analytical re-
sults do not match the empirical results,
probably because in reality there is more in-
formation passed between client and server
than the commands. In the no network case,
we can see an overhead of 64kB of data that
seems to be caused by other applications,
since OpenTTD has no network enabled. We
consider this background noise, having two
orders of magnitude less than the real mes-
sages, and relatively constant, as it is proba-
bly caused by services that synchronize in the
background. Even when subtracting this val-

ue from the empirical values, they still re-
main significantly higher than the ones from
the analytical evaluation. Therefore, it seems
that OpenTTD also transmits other data and
this data is larger when offloading AIs. How-
ever, data for serial and parallel AI offload-
ing does not differ much, which is consistent
with the analytical results.
We find that the operational analysis is a
promising tool. Although the actual values
are significantly different than the empirical
ones, many of the ideas behind the offloading
mechanisms are supported by both sets of re-
sults.

5 Conclusions
The recent popularity of smart mobile devic-
es is motivating many manufacturers to pro-
duce devices for many types of consumers,

Informatica Economică vol. 17, no. 4/2013 15

DOI: 10.12948/issn14531305/17.4.2013.01

thus leading to orders of magnitude in heter-
ogeneity. The processing unit may vary from
single-core CPU, to quad-core CPU, and
even to hybrid architectures that include a
multi-core CPU and a GPU. The battery life-
time may vary from tens to hundreds of
hours in standby, and is greatly influenced by
user behavior, as intense device usage can
reduce its battery life to barely a few hours.
The main challenge we are facing is to assess
the benefits of offloading under such hetero-
geneity.
We believe that focusing on a specific type
of application can bring advances in offload-
ing for mobile devices, while still keeping a
wide range of applicability. The idea of ap-
plying this research specifically to loop-
based applications is new. From the point of
view of the technology used to implement the
applications, our approach covers both web-
based applications, applications that send
messages with the user actions to be per-
formed on the server, and tightly coupled
simulations, which do some heavy pro-
cessing on the device and usually communi-
cate only control messages. Through our
workload model (see [23]) and our opera-
tional analysis (Section 3.1) we generalize
both types of technologies and refer to any
kind of loop-based application. We conduct
an innovative design space exploration,
based on the exploratory space we propose in
[26], through empirical and analytical eval-
uation.
In this paper, we propose a formalism that
can be used to conduct operational analysis
of the offloading mechanisms in the Explora-
tory Space (in Section 3.1), applied to any
application that functions by iterating over a
processing loop. We also propose a testbed
for empirical evaluation (in Section 3.2). In
Section 4.1 and Section 4.2 we present the
results of analytical and empirical evaluation,
respectively. Finally, in Section 4.3 we com-
pare analytical evaluation results with empir-
ical evaluation results.
We find that the operational analysis is a
promising tool. Although the actual values
are significantly different than the empirical
ones, many of the ideas behind the offloading

mechanisms are supported by both sets of re-
sults.

Acknowledgements
The authors would like to thank Alexandru
Iosup and Otto Visser from Delft University
of Technology for their invaluable support in
designing the offloading system and for their
effort to implement a massive multiplayer
online version of OpenTTD, which served as
basis for the first steps in the implementation
of the testbed.
This work is funded by the Sectoral Opera-
tional Programme Human Resources Devel-
opment 2007-2013 of the Romanian Ministry
of Labour, Family, and Social Protection
through the Financial Agreement
POSDRU/107/1.5/S/76909.

References
[1] B.G. Chun et al. "Clonecloud: elastic ex-

ecution between mobile device and
cloud." Proceedings of the sixth confer-
ence on Computer systems. ACM, 2011.

[2] T. Verbelen, et al. "AIOLOS: Middle-
ware for improving mobile application
performance through cyber foraging."
Journal of Systems and Software 85.11
(2012): 2629-2639.

[3] J. Ghosh, et al. "On profiling mobility
and predicting locations of wireless us-
ers." Proceedings of the 2nd international
workshop on Multi-hop ad hoc networks:
from theory to reality. ACM, 2006.

[4] K.A. Hummel, and J. Gerda, "A robust
decentralized job scheduling approach for
mobile peers in ad-hoc grids." Cluster
Computing and the Grid, 2007. CCGRID
2007. Seventh IEEE International Sym-
posium on. IEEE, 2007.

[5] D. Bruneo, et al. "Communication para-
digms for mobile grid users." Cluster
Computing and the Grid, 2003. Proceed-
ings. CCGrid 2003. 3rd IEEE/ACM In-
ternational Symposium on. IEEE, 2003.

[6] A.T. Gomes, et al. "DICHOTOMY: A re-
source discovery and scheduling protocol
for multihop ad hoc mobile grids." Clus-
ter Computing and the Grid, 2007.
CCGRID 2007. Seventh IEEE Interna-

16 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.01

tional Symposium on. IEEE, 2007.
[7] H. Flores, and N.S. Satish, "Adaptive

Code Offloading and Resource-intensive
Task Delegation for Mobile Cloud Appli-
cations."

[8] M. Satyanarayanan et al. "The case for
vm-based cloudlets in mobile compu-
ting." Pervasive Computing, IEEE 8.4
(2009): 14-23.

[9] R.K. Balan, et al. "Simplifying cyber for-
aging for mobile devices." Proceedings
of the 5th international conference on
Mobile systems, applications and ser-
vices. ACM, 2007.

[10] M. D. Kristensen and O. B. Niels,
"Scheduling and development support in
the scavenger cyber foraging system."
Pervasive and Mobile Computing 6.6
(2010): 677-692.

[11] A.C. Olteanu, A. Iosup and N. Ţăpuş,
Extending the capabilities of mobile de-
vices for online social applications
through cloud offloading. In The 13th
IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, pg.
160–163

[12] A. Carroll and H. Gernot, "An analysis
of power consumption in a smartphone."
Proceedings of the 2010 USENIX confer-
ence on USENIX annual technical con-
ference. 2010.

[13] L. Zhang et al. "Accurate online power
estimation and automatic battery behav-
ior based power model generation for
smartphones." Proceedings of the eighth
IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and
system synthesis. ACM, 2010.

[14] N. Balasubramanian, A. Balasubramani-
an and A. Venkataramani, "Energy con-
sumption in mobile phones: a measure-
ment study and implications for network
applications." Proceedings of the 9th
ACM SIGCOMM conference on Internet
measurement conference. ACM, 2009.

[15] T. Pering et al. "Coolspots: reducing the
power consumption of wireless mobile
devices with multiple radio interfaces."
Proceedings of the 4th international con-
ference on Mobile systems, applications

and services. ACM, 2006.
[16] W. Yu, G. Ginis and J.M. Cioffi, "An

adaptive multiuser power control algo-
rithm for VDSL." Global Telecommuni-
cations Conference, 2001.
GLOBECOM'01. IEEE. Vol. 1. IEEE,
2001.

[17] A. Agarwal and M. Cherian, Adaptive
backoff synchronization techniques. Vol.
17. No. 3. ACM, 1989.

[18] T. Van Dam, and K. Langendoen, "An
adaptive energy-efficient MAC protocol
for wireless sensor networks." Proceed-
ings of the 1st international conference
on Embedded networked sensor systems.
ACM, 2003.

[19] L. Kleinrock, Theory, volume 1, Queue-
ing systems. Wiley-interscience, 1975.

[20] D. A. Menascâe et al. Performance by
design: computer capacity planning by
example. Prentice Hall Professional,
2004.

[21] R. Jain, The art of computer systems
performance analysis. Vol. 182. Chiches-
ter: John Wiley & Sons, 1991.

[22] P. J. B. King, Computer and communi-
cation systems performance modelling.
Prentice Hall International (UK) Ltd.,
1990.

[23] A.C. Olteanu, A. Iosup and N. Ţăpuş.
"Towards a workload model for online
social applications: ICPE 2013 work-in-
progress paper." Proceedings of the
ACM/SPEC international conference on
International conference on performance
engineering. ACM, 2013.

[24] M. Ferber et al. "Resource allocation for
cloud-assisted mobile applications."
Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on. IEEE,
2012.

[25] I. Ivan and C. Ciurea. "Using very large
volume data sets for collaborative sys-
tems study." Informatica Economica
Journal 13.1 (2009).

[26] A.C. Olteanu and N. Ţăpuş, “Offloading
for mobile devices: A survey.” UPB Sci-
entific Bulletin

[27] A. Gherghina, A.C. Olteanu, and N. Ta-
pus. "Measuring performance and energy

Informatica Economică vol. 17, no. 4/2013 17

DOI: 10.12948/issn14531305/17.4.2013.01

consumption when offloading from mo-
bile devices." Systems and Computer Sci-

ence (ICSCS), 2013 2nd International
Conference on. IEEE, 2013.

Alexandru-Corneliu OLTEANU has graduated University Politehnica of
Bucharest, the Computer Science and Engineering Department in 2009, with
a graduating project at the National University of Singapore on GPU com-
puting. He is currently a Teaching Assistant and PhD student in the same
department within University Politehnica of Bucharest. As a Teaching As-
sistant, he specializes on distributed systems and mobile computing. His
PhD studies focus on cloud offloading for mobile devices, with internships

at Delft University of Technology, the Netherlands, and University of Applied Sciences in
Dresden, Germany. Alexandru led, since 2007, the organization team for the ACM ICPC
South-Eastern Europe Programming Contest, which gathers more than 150 participants from
8 countries from all over South-Eastern. He also participated as researcher in several national
and international programs from 2010 to present.

Nicolae ŢĂPUŞ has graduated the Politehnic Institute of Bucharest in 1972
specializing in computers. He finished his PhD in Computer Science in 1982.
Professor Ţăpuş is currently a professor and doctoral supervisor at the Uni-
versity Politehnica of Bucharest, the Head of the Computer Science and En-
gineering Department and Vice-President of the university’s Senate. He is the
author of numerous studies and also the project director of numerous research
projects in the fields of Computer Architecture, Computer Networks, Wire-

less Sensor Networks, Personal Computers, Simulation Languages, publishing more than 116
papers in the country and abroad, including 9 books and 12 textbooks. He got the Traian Vuia
Award of the Romanian Academy (1977) and Scientific Creativity Award of the Ministry of
Education (1984). Professor Ţăpuş is a Senior Member of IEEE and Chairman of the Roma-
nian Chapter, as well as CATC Coordinator at the Romanian CISCO. He led and participated
in numerous national and international programs as Project Director from 1994 to present.

