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Offloading for mobile devices is an increasingly popular research topic, matching the popu-
larity mobile devices have in the general population. Studying mobile offloading is challeng-
ing because of device and application heterogeneity. However, we believe that focusing on a 
specific type of application can bring advances in offloading for mobile devices, while still 
keeping a wide range of applicability. In this paper we focus on loop-based applications, in 
which most of the functionality is given by iterating an execution loop. We model the main 
loop of the application with a graph that consists of a cycle and propose an operational anal-
ysis to study offloading on this model. We also propose a testbed based on a real-world appli-
cation to empirically evaluate offloading. We conduct performance evaluation using both 
tools and compare the analytical and empirical results. 
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Introduction 
Modern handheld devices, such as 

smartphones and tablets, offer portability, in-
creased computational power, and communi-
cation capabilities. Thus, they are becoming 
an attractive option for users to interact with 
each other and with their environment. 
The convergence of mobile and distributed 
computing has been studied for a number of 
years, with results in system design [1] [2], 
job scheduling [3] [4], resource discovery [5] 
[6] and so on. Mobile integration with vari-
ous other types of computing takes many 
forms, such as mobile cloud computing, of-
floading, delegation, cyber foraging, and data 
staging. Offloading is a form of transferring 
tasks of various granularities to remote re-
sources. Offloading and delegation are very 
similar approaches to use remote resources 
and sometimes they are considered to be 
complementary, as in the work published by 
Flores [7]. Cyber Foraging is an opportunis-
tic approach of using remote resources from 
mobiles. Satyanarayanan [8] introduced this 
concept in 2001 as a pervasive computing 
technique, and work within the same research 
team [9] led to a scripting language for cyber 
foraging. Verbelen et al. [2] introduced AI-
OLOS, a middleware to improve mobile ap-
plication performance through cyber foraging 
and Kristensen [10] introduced scheduling 

concepts in the topic. 
Offloading for mobile devices is an increas-
ingly popular research topic, matching the 
popularity mobile devices have in the general 
population. With the first research efforts 
targeted specifically on mobile devices da-
ting back in the 1990's, in the past couple of 
years a vast material on offloading for mobile 
devices has been published. 
Several offloading systems have been pro-
posed, as middleware, frameworks, or ser-
vices. However, we find that few solutions 
reach the point to have a big impact on live 
systems and applications. Studying mobile of-
floading is challenging because of device and 
application heterogeneity. However, we be-
lieve that focusing on a specific type of ap-
plication can bring advances in offloading for 
mobile devices, while still keeping a wide 
range of applicability. Thus, our approach is 
to conduct an application domain exploration 
and select a family of applications on which 
to conduct analysis and evaluation of various 
offloading mechanisms.   
In this paper, we conduct experimental and 
analytical evaluation for mobile offloading, 
as a step towards an integrated offloading 
system [11]. We also compare the two sets of 
results to study the trade-offs of the two 
methods. 
 

1 
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2 Related Work 
Analyzing power consumption is an interest-
ing research topic, as shown by various pro-
jects that can be found in the literature. 
Caroll and Heiser [12] design multiple mi-
cro-benchmarks to associate the power costs 
to modules of a mobile system. They try to 
determine the power consumption of differ-
ent parts like CPU, GSM and WiFi. Zhang et 
al. [13] describe a power module construc-
tion technique that they use to characterize 
3G, GSM, WiFi, CPU and screen, and to in-
troduce PowerTutor, an Android application 
that can use these models for power con-
sumption estimation on any device. We use 
such tools to estimate the power consumption 
of different components, but we found little 
solutions on estimating power consumption 
from the Bluetooth radio. 
Balasubramanian et al. [14] show that 3G, 
GSM and WiFi incur a high tail energy over-
head. Pering et al. [15] describe methods to 
reduce the power consumption by switching 
between Bluetooth and WiFi. The Bluetooth 
module has power consumption as much as 
10 times lower than WiFi. WiFi is intended 
for high-bandwidth and 100 meters coverage 
while Bluetooth is designed for low-
bandwidth and a coverage of 10 meters. The 
authors also describe that power consumption 
in idle mode compared to active mode is 4 
times smaller for WiFi and 6 to 10 times 
smaller for Bluetooth. We find this signifi-
cant as it justifies the need of advanced algo-
rithms that power down these interfaces 
when communication is not necessary. 
Various other papers try to determine algo-
rithms and technologies for reducing energy 
consumption, by modeling optimum power 
as a Nash equilibrium [16], by employing 
back-off methods for synchronization [17], 
or introducing an active-sleep duty cycle 
[18]. We propose an adaptive algorithm for 
reducing the polling rate in location-aware 
applications, leveraging the fact that new 
queries are not necessary if the location has 
not changed significantly. 
In our work we apply techniques of Comput-
er Systems Performance Analysis that are 

well established in the field, providing very 
useful tools in the form of analytical model-
ing. Kleinrock [19] provides a very thorough 
introduction in the modeling of stochastic 
systems of flow using queuing theory. By 
understanding the stochastic processes that 
describe the arriving stream and the structure 
and discipline of the service facility, one can 
mathematically obtain measures of perfor-
mance and effectiveness. Menasce [20] also 
uses queuing networks to obtain descriptive 
models for various types of systems, which 
serve as basis for quantifying performance 
models. Jain [21] offers a thorough reference 
to fundamental and practical engineering 
principles of computer systems evaluation 
and King [22] extends the principles on 
communication topics. 
 
3 Tools for Operational and Empirical 
Analysis of Loop-Based Applications 
In our study, we focus on loop-based applica-
tions. A loop-based application is one in 
which most of the functionality is given by 
iterating an execution loop. All the Online 
Social Applications, for which we built a 
Workload Model in [23], have such a loop, 
as it can be seen in the State Transition Dia-
gram, the component that models the states 
in which a mobile online social application 
can be. Moreover, for Online Social Applica-
tions, independent of their technology: Tight-
ly Coupled Simulations, Web 2.0 or Stream-
ing, some amount of functionality already 
occurs remotely, this being one of the criteria 
for which we chose them to conduct our 
studies. 
 
3.1 Formalism for Operational Analysis of 
Mobile Offloading 
We model the main loop of the application 
with a graph that consists of a cycle, with 
stages numbered from 1 to n, as depicted in 
Figure 1. An example of such a loop is also 
given in Figure 1, showing the main pro-
cessing loop of OpenTTD that consists of 
stages such as input capture, synchronization 
on the server, simulation, and rendering. 
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Fig. 1. Graph model of OpenTTD (left) and loop-based applications in general (right) 

 
Based on this loop, and derived from the 
metrics and the benefit assessment models 
described in our taxonomy [26] we assess the 
benefit of offloading in terms of time needed 
to iterate the processing loop as: 

 
where: 
 T - time needed to perform computation 

or a data transfer 

 p/r - local/remote processing 
 Q - quantity of data to be transferred 
 B(s,d) - bandwidth when transferring da-

ta from source s to destination d 
In the remainder of this section we make 
some simplifications, to keep the formulas 
concise, at the expense of some precision. 
First, we consider the download speed and 
the upload speed roughly the same size:

 

 
 
We also consider that passing data among lo-
cal stages, as well as passing data among re-
mote stages, is much quicker than passing 

data from local to remote and vice versa, and, 
therefore, we consider it as infinite:

 

 
 
In this analysis, we address loop-based appli-
cations and we model their processing with a 
cyclic graph. We are also focused on applica-
tions that already have some form of com-
munication. We depict this by having a stage 
being processed in the environment (see Fig-
ure 2a), as, for example, OpenTTD has the 
synchronization stage being processed on the 
server. 
By offloading components we refer to mov-

ing the processing of additional stages in the 
environment. For example, in OpenTTD, be-
sides doing the synchronization, we might 
remote the execution of the simulation as 
well. We generally note with k the stage 
where local processing turns into remote pro-
cessing and with l the stage where processing 
returns on the device. Offloading is thus rep-
resented by moving indexes k and l within 
the loop, as described by Figure 2b. We use 



8  Informatica Economică vol. 17, no. 4/2013 

DOI: 10.12948/issn14531305/17.4.2013.01 

this formalism to express the offloading deci-
sion logic, for the three main benefit assess-

ment models: performance, energy and cost.

 

 
Fig. 2. Graph model of loop-based applications when offloading 

 
Inspired by [24] [25], we express perfor-
mance as the time it takes to perform the 

loop: 

 

 
 
where Tp

i is the local processing time of 
stage i, Tr

i is the remote processing time of 
stage i, and Tt

i is the transferring time of out-
put data from stage i. Transmission time can 
be expressed as the quantity of data transmit-
ted divided by the transmission speed. At this 

stage we make the simplification that the 
sending and receiving speeds are similar. Lo-
cal and remote processing times can be 
measured directly, and can also be expressed 
as the quantity of code to be executed divid-
ed by the CPU speed. The equation becomes:

 

 
 
In general, offloading is beneficial if remote 
processing has a better performance than lo-
cal processing, or, equivalently, if the penalty 
for transmitting the data to the remote re-

source is less than gain in time obtained from 
using a remote resource more capable than 
the local one, expressed by the inequality:

 

 
 
Thus, the offload decision becomes the opti- mization problem expressed as: 
 

 
 
This operational analysis can be extended for 
the offloading mechanisms defined in our 

Exploratory Space, such as partial offloading 
and parallel offloading [11]. 
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3.2 Design and Implementation of a 
Testbed for Mobile Offloading 
To conduct empirical evaluation of various 
offloading mechanisms, we design and im-
plement a testbed based on OpenTTD, a 
popular open-source game, the open-source 
version of Transport Tycoon Deluxe, a busi-
ness simulation game developed by Chris 
Sawyer in 1994. 
As an open-source application, OpenTTD 
has a community of developers that continu-
ously update the game and publish all 
sources in a repository. Moreover, other de-
velopers port the game to other platforms. 
For example, the Android port by Pelya has 
hundreds of thousands of active users. 
We select OpenTTD because it is a real pop-
ular application, which falls in the category 
of online social applications, implemented as 
a tightly coupled simulation, for which we 
have a workload model, as proposed in [23]. 
Tightly Coupled Simulations are, among 
Online Social Applications, the type of appli-
cations that provide opportunity for the 
broadest range of experiments, because the 

largest amount of processing takes place on 
the mobile device. We conduct static and dy-
namic analysis on OpenTTD. We use Vprof 
to profile OpenTTD on a Linux system and 
Vtune on an Android system. 
The basic functionality of the game consists 
of iterating a loop, which means we can ap-
ply our operational analysis described in Sec-
tion 3.1.  
In multiplayer mode, OpenTTD follows a 
client-server architecture that currently sup-
ports up to 255 simultaneous users on the 
same map, one of which must host the server. 
There are some notable efforts to expand that 
number of users with a Massively Multiplay-
er Online version of OpenTTD, named At 
Large. In our testbed, we augment the client-
server architecture, by tapping into the nor-
mal data flow of the system and adding an 
observer that also has the ability to control 
the experiments (see Figure 3). The testbed 
enables experiments for conducting offload-
ing from various clients to either a cloudlet 
device, in the same LAN, or with powerful 
cloud infrastructure, over the Internet.

 

 
Fig. 3. General Architecture of the Testbed 

  
We implement the testbed by making several 
changes to the community version. To con-
duct experiments, we need to repeat them for 

a number of times and make sure they all be-
have the same way. Thus we replace the hu-
man player with an AI running on the device 
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and our implementation follows its opera-
tions on the screen. So, starting a game with 
the same AI on the same scenario will recre-
ate in each run the same usage patterns and 
the same operations. To enable running AI 
players on the server, we adapt the code, 
starting with the modifications implemented 
by Otto Visser, from Delft University of 
Technology. In addition, we also adapt the 
starting procedure so that we can easily start 
the game on the mobile device and on the 
server through scripts. When starting An-
droid applications, it is not possible to give 
the native code command line arguments, so 
it was necessary to implement some addi-
tional configuration settings in the original 
configuration file.  
We also implement instrumentation in all the 
components of the architecture, to collect 
various metrics, as depicted in Figure 4: 
 on the device, within OpenTTD: we 

measure game specific metrics, like 
frames per second and in-game time, as 
well as component statistics, in terms of 
processing time and quantity of data; 

 on the device, at application level: we 
run several profilers, such as vprof and 
VTune, and tools, such as top and iftop 
for Android, to collect metrics such as 
CPU load, memory load, and network 
load; 

 on the device, in the kernel: hooks and 
system calls can be placed for forward-
ing to higher levels essential information 
captured from hardware counters on the 
physical device, like the C-states; we 
have investigated C-states for a better 
understanding on CPU loads [27], but 
we do not detail them in this testbed; 

 at the network level, software known as 
package sniffers, such as Fiddler and 
Wireshark, capture packets and help 
with statistics, such as sent and received 
packets, sent and received bytes, session 
length, inter-arrival times, and the size of 
the input and output data; 

 on the server side: we measure the num-
ber of clients and several hardware-
related metrics, such as CPU load, 
memory load, and network load. 

 

 
Fig. 4. Instrumentation in our Offloading System 

 
We use top, iftop and the sysfs to monitor in-
ternal resources on the Android device. Net-
work load is monitored using iftop and 
tcpdump. We use the tools AWS provide for 

the cloud servers and simple Linux tools for 
our cloudlet machines. 
The OpenTTD implementation already han-
dles issues such as lagging clients and out of 
order commands. Each client holds a tick-
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based internal counter that serves as a refer-
ence for the client in executing commands. A 
comprehensive error handling system can 
press the client to speed up on executing old-
er commands, and can even go to the point of 
kicking out a client that cannot keep the pace.  
We have created a suite of bash scripts that, 
when run from the observer, trigger the game 
on the clients and the server, start the meas-
uring tools, wait for the time specified for the 
experiment and cleanly close all the pro-
grams that they started. All communication 
with the Android clients is done through adb, 
or Android Debug Bridge, a tool offered by 
Google, which enables file transfers and re-
mote connections to the Android devices. 
Communication with the other devices in the 
cloudlet and the cloud is done through SSH 
and SCP, two popular communication proto-
cols for remote connections and file transfers, 
with many clients on both Windows and 
Linux. At the end of the experiment, all the 
results are centralized on the observer, where 
other scripts automatically compute statistics 
and plot charts using gnuplot. 

The system does not take a dynamic deci-
sion, but is instructed by the observer which 
tests to run, because we are interested in 
comparing various mechanisms. We imple-
ment several variants of OpenTTD, to of-
fload different amounts of components. We 
also allow file configuration for varying pa-
rameters, such as graphics and user behavior. 
 
4 Performance Evaluation Results 
For the empirical evaluation, we use the 
testbed described in Section 3.2 and for the 
analytical evaluation we use the operational 
analysis described in Section 3.1, as well as 
the workload traces presented in [23]. 
 
4.1 Analytical Evaluation Results 
We compare offloading the AI input collec-
tion stage with no offloading, using the oper-
ational analysis proposed in Section 3.1. We 
also summarize in Table 1 the values we use, 
based on the values from workload model-
ling (see [23]). 

 
Table 1. Data used in analytical evaluation 

 Stage name  
and number 

Local 
Processing

Remote 
Processing

Quantity 
of Data 

 Bandwidth

  Tp [ms] Tr [ms] Q [byte]  B [Mbps] 
 Human Input Collection (1) 1.2 0.7 40  8 
 AI Input Collection (2) 48.2 4.3 40   
 Command Synchronisation (3) 188.5 101.9 120   
 Simulation (4) 9.3 2.6 1 068 576   
 Rendering (5) 5.7 13.7 4 096 000   
 
In the base case, without offloading, 
k=j=l=3, indicating the remote operation of 

command synchronization, the only stage 
that needs to be performed remotely:

 

 
 
In a similar way, when offloading Stage 2, 
the AI input collection, k=2, j=l=3, and the 

formula becomes: 

 

 
The smaller time for remote processing Stage 2 compared with local processing, as well as 
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the comparable output data size of Stage 1 
and Stage 2, make offloading Stage 2 a better 
option than no offloading. 

In comparison, trying to offload Stage 4, the 
simulation would lead to: 

 
 
This would be an example when offloading is 
not beneficial. Due to the large size of the 
output data, one iteration of the loop would 
take more than a second, which means that 
the client device will be removed from the 
multiplayer game because it is too slow. 
We now consider Stage 2' to describe run-

ning 4 AI players instead of 1. Having multi-
ple AI players take a decision during an itera-
tion is an embarrassingly parallel task, thus 
running N AI players on a serial processor 
would take N times the time. This, for N=4 
players, the base case can be represented as:

 
 

and offloading Stage 2' becomes: 

 
 
Thus, when running 4 AI players locally, the 
200 ms loop period is exceeded, and the cli-
ent will be removed from the multiplayer 
game. In this case, offloading is necessary, as 
it brings the iteration time below the 200 ms 
threshold. 
 
4.2 Empirical Evaluation Results 
For this experiment, we explore the benefits 
of offloading the AI Input Collection compo-

nent of the game. We represent the AI Input 
Collection as a stage in the processing loop 
of OpenTTD (see Section 3.1). Profiling 
shows that the AI players can consume sig-
nificant amounts of processing power when 
computing routes from one city or resource 
to another, which they do by using algo-
rithms such as A*, especially when the tree 
representation of the world is large. 

 

 
Fig. 5. OpenTTD running on a tablet (left) has to keep up with the rest of the clients, other-

wise it will be removed from the game by the server (right) 
 
However, the AI players have a bursty be-
havior, and compute such routes only when 
they acknowledge they have enough in-game 
money. It is therefore interesting to see what 
impact has offloading the Squirrel Virtual 

Machine, which runs the AI scripts and of-
fers an AI input. 
For this experiment, we use the testbed (see 
Section 3.2) we propose based on our 
openttd-repeatable implementation, which 
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allows us to repeat the same scenario multi-
ple times. We run the client on an Asus 
TF101 2-core @1GHz running Android 4.0.3 
and the server on a Sony Vaio 4-core 
@2.3GHz running Ubuntu 10.04. There is 
one AI player running on the client to simu-
late a real player. 
Using this experiment, we explore one of the 
four main offloading mechanisms identified 
in our Exploratory Space [11]. We compare 
not offloading anything, running AIs on the 
client device, with offloading the AI compo-
nent, which is running the AIs on the server. 
We use our testbed and, as offloading target, 
the cloudlet represented by a Sony Vaio lap-
top. 
The scenario we investigate is that a human 
player has a match against a number of AIs. 

We have started with 16 AIs, but running the 
game locally with that many AIs proves to be 
unplayable on our device. So, to collect data 
for a control test run, we repeatedly de-
creased the number of AIs until the game be-
came usable on our device. We have settled 
to 4 AIs, that we picked from the most popu-
lar in the community, namely OtviAI, AIAI, 
ChooChoo and Chopper. 
Figure 6 reports two of the metrics we col-
lect, showing the first 10 minutes of the ex-
periment. The iteration time is a performance 
metric, and shows how long an iteration of 
the data takes to be processed through the 
whole loop. The CPU Load is also a perfor-
mance metric, which shows how much of the 
CPU is used in the system. 

 

 
Fig. 6. Experimental results showing iteration time (left) and CPU load (right) 

 
We log the iteration time in our modified 
version of OpenTTD every time an iteration 
completes. With roughly ten iterations per 
second, during a 10 minute window we 
would have roughly 6000 readings. To pre-
sent our findings in a friendly way, we ag-
gregate the readings on a per-minute basis, 
and we only report the median value in the 
left-hand chart in Figure 6. It can be seen 
how in the no-offloading version, the itera-
tion time increases in the first 5-7 minutes of 
the game and gets above the threshold in the 
8th minute, when the client is removed from 
the multiplayer. On the other hand, the medi-
an of the offloaded version is not affected 
much and stays all the time in the range of 
160-165ms. 

The left-hand chart in Figure 6 shows a CPU 
load of 40-50% most of the time, which cor-
responds to a high usage of one of the two 
cores. The spikes are triggered by auto-saves, 
which, in our setting, take place once per in-
game month. The auto-saves are performed 
on a separate thread, which explains why the 
CPU load exceeds the 50% threshold.  
Both charts indicate that, without offloading, 
the game slows down to compensate for the 
lack of processing power of the client device. 
 
4.3 Comparison of Analytical and Empiri-
cal Evaluation Results 
In this section we compare the results we ob-
tained during our experiments with the ones 
obtained by applying the operational analy-
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sis, to validate our understanding on the two 
offloading mechanism. In our operational 
analysis, we refer to a couple of performance 
metrics: total iteration time and quantity of 
data transmitted over the network. 
Table 2 summarizes the significant figures in 
our comparison. We consider three cases: 
 Base Case 1: No network - we run 

OpenTTD in single-player mode on the 
mobile client; no communication is per-
formed by OpenTTD, but it still has to 
run 4 AI players; 

 Base Case 2: No offloading - we run 
OpenTTD in multiplayer mode, on the 
mobile client and the laptop; now the 
client needs to send commands to the 
server for synchronization, but nothing 
else is offloaded; 

 Experiment: AI offloading - we run 
OpenTTD in multiplayer mode, on the 
mobile client, and on the laptop several 
clients run an AI player each, but they 

are all forced to work on a single core, 
so they operate in serial. 

In the base cases, the game stops in the mid-
dle of the experiment, being kicked out by 
the server as being too slow, so we are not 
able to compute an average consistent with 
the method from the other experiments. 
However, since the client was removed from 
the game automatically, it must have exceed-
ed the threshold of 200ms repeatedly. 
For quantity of data, we sum up the data 
transmitted over the network, both sent and 
received, over a period of 8 minutes that rep-
resents the maximum period for which we 
have data in all 4 cases. In this sum, we ex-
clude the initialization phase, which does not 
belong to the processing loop. To estimate 
the analytical result, we assume an average 
of 10 iterations per second, and thus a total of 
4800 of round-trips, which include sending to 
server data of 40 bytes each and receiving 
120 bytes. 

 
Table 2. Comparison between empirical and analytical results 

Scenario  Average iteration time Total data in 8 min 
  T [ms] Q [bytes] 
  empirical analytical empirical analytical 
No network  >200 265.64 64 211 0 
No offloading  >200 311.05 1 307 300 768 000 
AI offloading  155.7 135.45 1 463 240 768 000 

 
It can be noted that our observation, that run-
ning 4 AI players is prohibitive for clients 
that do not offload, is consistent for both 
methods. However, this is also the cause why 
we were not able to assess empirically the 
exact performance for the base cases.  
In terms of data transfers, the analytical re-
sults do not match the empirical results, 
probably because in reality there is more in-
formation passed between client and server 
than the commands. In the no network case, 
we can see an overhead of 64kB of data that 
seems to be caused by other applications, 
since OpenTTD has no network enabled. We 
consider this background noise, having two 
orders of magnitude less than the real mes-
sages, and relatively constant, as it is proba-
bly caused by services that synchronize in the 
background. Even when subtracting this val-

ue from the empirical values, they still re-
main significantly higher than the ones from 
the analytical evaluation. Therefore, it seems 
that OpenTTD also transmits other data and 
this data is larger when offloading AIs. How-
ever, data for serial and parallel AI offload-
ing does not differ much, which is consistent 
with the analytical results. 
We find that the operational analysis is a 
promising tool. Although the actual values 
are significantly different than the empirical 
ones, many of the ideas behind the offloading 
mechanisms are supported by both sets of re-
sults. 
 
5 Conclusions 
The recent popularity of smart mobile devic-
es is motivating many manufacturers to pro-
duce devices for many types of consumers, 
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thus leading to orders of magnitude in heter-
ogeneity. The processing unit may vary from 
single-core CPU, to quad-core CPU, and 
even to hybrid architectures that include a 
multi-core CPU and a GPU. The battery life-
time may vary from tens to hundreds of 
hours in standby, and is greatly influenced by 
user behavior, as intense device usage can 
reduce its battery life to barely a few hours. 
The main challenge we are facing is to assess 
the benefits of offloading under such hetero-
geneity. 
We believe that focusing on a specific type 
of application can bring advances in offload-
ing for mobile devices, while still keeping a 
wide range of applicability. The idea of ap-
plying this research specifically to loop-
based applications is new. From the point of 
view of the technology used to implement the 
applications, our approach covers both web-
based applications, applications that send 
messages with the user actions to be per-
formed on the server, and tightly coupled 
simulations, which do some heavy pro-
cessing on the device and usually communi-
cate only control messages. Through our 
workload model (see [23]) and our opera-
tional analysis (Section 3.1) we generalize 
both types of technologies and refer to any 
kind of loop-based application. We conduct 
an innovative design space exploration, 
based on the exploratory space we propose in 
[26], through empirical and analytical eval-
uation. 
In this paper, we propose a formalism that 
can be used to conduct operational analysis 
of the offloading mechanisms in the Explora-
tory Space (in Section 3.1), applied to any 
application that functions by iterating over a 
processing loop. We also propose a testbed 
for empirical evaluation (in Section 3.2). In 
Section 4.1 and Section 4.2 we present the 
results of analytical and empirical evaluation, 
respectively. Finally, in Section 4.3 we com-
pare analytical evaluation results with empir-
ical evaluation results. 
We find that the operational analysis is a 
promising tool. Although the actual values 
are significantly different than the empirical 
ones, many of the ideas behind the offloading 

mechanisms are supported by both sets of re-
sults.   
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