
Informatica Economică vol. 17, no. 3/2013 75

DOI: 10.12948/issn14531305/17.3.2013.07

Source Code Plagiarism Detection Method Using Protégé Built Ontologies

Ion SMEUREANU, Bogdan IANCU

The Bucharest University of Economic Studies

ion.smeureanu@csie.ase.ro, bogdan.iancu@ymail.com

Software plagiarism is a growing and serious problem that affects computer science

universities in particular and the quality of education in general. More and more students

tend to copy their thesis’s software from older theses or internet databases. Checking source

codes manually, to detect if they are similar or the same, is a laborious and time consuming

job, maybe even impossible due to existence of large digital repositories. Ontology is a way of

describing a document’s semantic, so it can be easily used for source code files too. OWL Web

Ontology Language could find its applicability in describing both vocabulary and taxonomy

of a programming language source code. SPARQL is a query language based on SQL that

extracts saved or deducted information from ontologies. Our paper proposes a source code

plagiarism detection method, based on ontologies created using Protégé editor, which can be

applied in scanning students’ theses’ software source code.

Keywords: Ontology, OWL, SPARQL, Plagiarism, Protégé

Introduction

In our days we have a huge volume of

digital information, thing that can be very

useful on one side, but a disadvantage on the

other. The useful part is that we can find any

needed information more quickly (at a click

of a button as we usually say) than in the past

by taking advantage of the digital

repositories. The disadvantage is that finding

similar or duplicated documents is very

difficult now, especially when this job is

made manually. That is why we try to find

alternative solutions in the field of plagiarism

detection systems [1].

The term “ontology” is inherited from

philosophy where it refers to existence and

the things that exist. In computer science

those things are represented by data and the

ontology generally describes the semantic of

terms used in a specific domain (in our case

programming), providing a vocabulary for

that domain as well as a computerized

specification of the meaning of terms used in

the vocabulary. Ontologies range from

taxonomies and classifications, database

schemas, to fully axiomatized theories. In

recent years, ontologies have been adopted in

many business and scientific communities as

a way to share, reuse and process domain

knowledge. Ontologies are now central to

many applications such as scientific

knowledge portals, information management

and integration systems, electronic

commerce, and semantic web services [2]. In

our work we will use ontologies for building

the knowledge graph specific to each source

code that we suspect of plagiarism.

OWL Web Ontology Language is a

specification by the World Wide Web

Consortium (W3C) and serves as a

fundamental component of the Semantic Web

initiative. OWL is based upon the Extensible

Markup Language (XML), XML Schema [3],

the Resource Description Framework (RDF)

and RDF Schema (RDF-S) [4]. It is

composed from three sublanguages OWL-

Lite, OWL-DL and OWL-Full, from those

OWL-DL being the one most often used

because it provides maximum

expressiveness.

The Resource Description Framework (RDF)

is a language for representing information

about resources in the World Wide Web. It is

particularly intended for representing

metadata about web resources, such as the

title, author, and modification date of a web

page, copyright and licensing information

about a web document, or the availability

schedule for some shared resource [4].

However, by generalizing the concept of a

web resource, RDF can also be used to

represent information about things that can

1

76 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.07

be identified on the web, even when they

cannot be directly retrieved on the web.

RDF is intended for situations in which this

information needs to be processed by

applications, rather than being only displayed

to people. RDF provides a common

framework for expressing this information so

it can be exchanged between applications

without loss of meaning. Since it is a

common framework, application designers

can leverage the availability of common RDF

parsers and processing tools. The ability to

exchange information between different

applications means that the information may

be made available to applications other than

those for which it was originally created.

We will use RDF and OWL in our method as

standards and formats for saving the

ontologies created via the Protégé editor. We

prefer this approach because they are W3C

standards and in this way we can provide

interoperability between our work and other

future related works.

Protégé is a free, open source ontology editor

and knowledge-base framework that provides

a suite of tools to construct domain models

and knowledge-based applications with

ontologies. At its core, Protégé implements a

rich set of knowledge-modeling structures

and actions that support the creation,

visualization, and manipulation of ontologies

in various representation formats. Protégé

can be customized to provide domain-

friendly support for creating knowledge

models and entering data [2].

SPARQL for RDF [5] is a query language

that can be used to retrieve information

across diverse data sources, whether the data

is stored natively as RDF or viewed as RDF

via middleware. SPARQL contains

capabilities for querying required and

optional graph patterns along with their

conjunctions and disjunctions. SPARQL also

supports extensible value testing and

constraining queries by source RDF graph.

The results of SPARQL queries can be results

sets or RDF graphs.

2 Proposed Method

Our method is a step by step algorithm build

with the help of the Protégé editor, version

4.3.0.

The Protégé platform supports two main

ways of modeling ontologies:

 the Protégé-Frames editor enables users

to build and populate ontologies that

are frame-based, in accordance with

the Open Knowledge Base Connectivity

protocol (OKBC). In this model, an

ontology consists of a set of classes

organized in a subsumption hierarchy to

represent a domain's salient concepts, a set

of slots associated to classes to describe

their properties and relationships, and a

set of instances of those classes -

individual exemplars of the concepts that

hold specific values for their properties;

 the Protégé-OWL editor enables users to

build ontologies for the Semantic Web, in

particular in the W3C's Web Ontology

Language (OWL). An OWL ontology may

include descriptions of classes, properties

and their instances. Given such an

ontology, the OWL formal semantics

specifies how to derive its logical

consequences, i.e. facts not literally

present in the ontology, but entailed by the

semantics. These entailments may be

based on a single document or multiple

distributed documents that have been

combined using defined OWL

mechanisms.

As we have already stated, we will choose

the second way of modeling ontologies

provided by Protégé and we will create

W3C's OWL based ontologies.

The first step in the development of the

source code plagiarism detection system is

building the needed OWL Classes [6]. This

approach is similar to the OOP paradigm [7].

We will implement classes like Variable,

Constant, DataType, ProgrammingStructure,

Comment, SystemFunction and Operator.

The classes created within the editor are

visible in Figure 1.

Informatica Economică vol. 17, no. 3/2013 77

DOI: 10.12948/issn14531305/17.3.2013.07

Fig. 1. OWL Classes

The OWL syntax specific to this classes is:

 <owl:Class rdf:about="&untitled-ontology-4;Comment"/>

 <owl:Class rdf:about="&untitled-ontology-4;Constant"/>

 <owl:Class rdf:about="&untitled-ontology-4;DataType"/>

 <owl:Class rdf:about="&untitled-ontology-4;Operator"/>

 <owl:Class rdf:about="&untitled-ontology-4;ProgrammingStructure"/>

 <owl:Class rdf:about="&untitled-ontology-4;SystemFunction"/>

 <owl:Class rdf:about="&untitled-ontology-4;Variable"/>

We can also define specialized concepts that

can therefore be used to build taxonomies.

This is the case of RepetitiveStructure and

ConditionalStructure from Figure 1. They are

defined as special programming structures

(subclasses of ProgrammingStructure).

The correspondent OWL syntax for this is:

 <owl:Class rdf:about="&untitled-ontology-4;ConditionalStructure">

 <rdfs:subClassOf rdf:resource="&untitled-ontology-4;ProgrammingStructure"/>

 </owl:Class>

 <owl:Class rdf:about="&untitled-ontology-4;RepetitiveStructure">

 <rdfs:subClassOf rdf:resource="&untitled-ontology-4;ProgrammingStructure"/>

 </owl:Class>

To define relations between the modeled

concepts we use ObjectProperty. These

relations can be marked as transitive,

symmetrical or functional. Two relations can

be marked as inverse to each other.

Furthermore relations can be specialized by

using subPropertyOf in analogy to

subClassOf for concepts. The following

example, shown in Figure 2, defines the

relation conditions with the concept

ConditionalStructure as domain and the

concept RepetitiveStructure as range. It is

inverse to another relation called

has_condition.

78 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.07

Fig. 2. Object Properties

OWL syntax for the new concepts is:

 <owl:ObjectProperty rdf:about="&untitled-ontology-4;conditions">

 <rdfs:domain>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&untitled-ontology-4;conditions"/>

 <owl:someValuesFrom rdf:resource="&untitled-ontology-

4;ConditionalStructure"/>

 </owl:Restriction>

 </rdfs:domain>

 <rdfs:range>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&untitled-ontology-4;conditions"/>

 <owl:someValuesFrom rdf:resource="&untitled-ontology-

4;RepetitiveStructure"/>

 </owl:Restriction>

 </rdfs:range>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&untitled-ontology-4;has_condition">

 <owl:inverseOf rdf:resource="&untitled-ontology-4;conditions"/>

 </owl:ObjectProperty>

Other defined relations in our ontology are

is_included_in (which is marked as

transitive) and is_type_of. We could limit

their domain and range as well, to

ProgrammingStructure or Variable and

DataType. The correspondent OWL syntax

for them is:

 <owl:ObjectProperty rdf:about="&untitled-ontology-4;is_included_in">

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&untitled-ontology-4;is_type_of"/>

The next step is to define facts upon the

previously defined concepts, attributes and

relations by instancing them. These instances

are called individuals (similar to the OOP

Informatica Economică vol. 17, no. 3/2013 79

DOI: 10.12948/issn14531305/17.3.2013.07

concept of object [7]). The following

example (Figure 3) states that For and While

are repetitive structures.

Fig. 3. Individuals

The specific OWL syntax for individuals is:

 <owl:NamedIndividual rdf:about="&untitled-ontology-4;While">

 <rdf:type rdf:resource="&untitled-ontology-4;RepetitiveStructure"/>

 </owl:NamedIndividual>

 <owl:NamedIndividual rdf:about="&untitled-ontology-4;For">

 <rdf:type rdf:resource="&untitled-ontology-4;RepetitiveStructure"/>

 </owl:NamedIndividual>

We will do the same for the rest of

individuals found in the investigated source

code. In this way we create an ontology for

each source code that is suspect of

plagiarism. We do this thing manually using

Protégé just for demonstration purposes only.

This process can be made automatically by

building a crawler that reads the source code

and builds the OWL file correspondent to it

[8]. The crawler will receive as input the raw

source code and will return as output the

OWL file corresponding to the built

ontology. In this way we will have an

ontology file for each source code no matter

of the programming language in which it is

written.

We choose as an example the following

source code written in C:

 int option = 0;

 int i;

 int numbers[3];

 while (option!=3)

 {

 printf("Please choose an option and press enter:\n");

 printf("1. Read 3 numbers\n 2. Print the max\n 3.Exit\n");

 scanf("%i",&option);

 if (option==1)

 {

 for (i=0; i<3; i++)

 {

 printf("\nnumbers[%i]=",i+1);scanf("%i",&numbers[i]);

 }

 }

 if (option==2)

 {

80 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.07

 int max = 0;

 for (i=0; i<3; i++)

 {

 if(numbers[i] > max)

 {

 max = numbers[i];

 }

 }

 printf("\nMax=%i",max);

 }

 }

The code displays a menu which has three

items: Read 3 numbers, Print the max and

Exit. Based upon the value that the user

provides the program reads three integer

numbers, computes the maximum from the

three of them or interrupts its execution.

The process of creating the ontology for the

current example (process that could be made

automatically by a crawler) is explained in

the following paragraph.

The crawler will read the code line by line

from top to bottom and will create the

specific individuals for each line of code. For

example, for the first three lines of code we

have three individuals of type Variable that

will have their object property is_type_of set

to individuals of type DataType called int and

array. On the following lines we have an

individual of type ProgrammingStructure

with three individuals of type

SystemFunctions included in it (object

property is_included_in). The same rules

apply to the next lines of code until we finish

parsing all the source code. To keep this

example as simple as possible we will not

use properties for each condition of the

conditional or repetitive programming

structures and we will name the individuals

based on their pseudocode name [9] and the

number of apparitions (e.g. for, for2, if, if2,

while, etc).

And in comparison we will take the

following code written in Javascript that do

the same thing. The differences are caused

only by the different syntaxes of the two

languages:

 var option = 0;

 var i=0;

 var numbers=new Array();

 while(option!=3)

 {

 document.write("Please choose an option and press enter:\n");

 document.write("1. Read 3 numbers\n 2. Print the max\n 3.Exit\n");

 option = prompt("Option");

 if (option==1)

 {

 for (i=0; i<3; i++)

 {

 numbers[i] = prompt("numbers[" + (i+1) + "]");

 }

 }

 if (option==2)

 {

 var max = 0;

 for (i=0; i<3; i++)

 {

 if(numbers[i] > max)

 {

 max = numbers[i];

 }

 }

 document.write("\nMax=" + max + "\n");

 }

 }

Similar to what we have done before we create an ontology for the Javascript source

Informatica Economică vol. 17, no. 3/2013 81

DOI: 10.12948/issn14531305/17.3.2013.07

code too.

The next step, and the final one, in our

proposed method is to find a way of

comparing the two ontologies obtained from

the presented process.

A solution is to take advantage of the fact

that OWL ontologies are based on RDF and

build different SPARQL queries for

comparing the source codes. The queries will

depend on the algorithms that we want to

test. For example we can choose some

metrics that will be measured using SPARQL

and then compared to see the plagiarism

degree.

SPARQL is the standard query language for

accessing RDF data [10], where the basic

access pattern is called the triple pattern. A

triple pattern has the same form as an RDF

triple, but with variables. Like the

counterpart of select-project-join queries in

SQL, the SPARQL query supports both

conjunctions and disjunctions of the triple

patterns. Furthermore, the predicates in the

SPARQL query can also be variables, which

allow “predicate-agnostic” queries.

Protégé editor provides us an user interface

where we can run SPARQL queries (as

shown in Figure 4), but limits our output to

results sets.

Fig. 4. Protégé SPARQL Query Editor

We will define ten metrics [11] (presented in

Table 1) that will be measured for each

ontology apart. Based on these metrics we

will compute a plagiarism degree.

Table 1. Metrics

No Metric SPARQL Query Result

on C

code
1

Result on

Javascript

code
2

Percentage

of similarity
(min(R

1
, R

2
)

/max(R
1
, R

2
)

* 100)

1. Total

number of

conditional

structures

SELECT ?subject

 WHERE { ?subject

rdf:type

<http://ontology_uri#Conditio

nalStructure>}

3 3 100%

2. Total

number of

repetitive

structures

SELECT ?subject

 WHERE { ?subject

rdf:type <http://

ontology_uri#RepetitiveStruct

ure>}

3 3 100%

82 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.07

3. Total

number of

variables

SELECT ?subject

 WHERE { ?subject

rdf:type

<http://ontology_uri#Variable

>}

4 4 100%

4. Total

number of

conditional

structures

included in

repetitive

structures

SELECT ?subject ?object

 WHERE { ?object

rdf:type <http://ontology_uri

#RepetitiveStructure> .

?subject untitled-ontology-

4:is_included_in ?object .

?subject rdf:type <http://

ontology_uri#ConditionalStruc

ture> }

3 3 100%

5. Total

number of

repetitive

structures

included in

repetitive

structures

SELECT ?subject ?object

 WHERE { ?object

rdf:type <http://ontology_uri

#RepetitiveStructure> .

?subject untitled-ontology-

4:is_included_in ?object .

?subject rdf:type

<http://ontology_uri

#RepetitiveStructure> }

0 0 100%

6. Total

number of

system

functions

called

SELECT ?subject

WHERE { ?subject rdf:type

<http://ontology_uri#SystemFu

nction>}

5 4 80%

7. Total

number of

system

functions

called in

conditional

structures

SELECT ?subject ?object

 WHERE { ?object

rdf:type

<http://ontology_uri#Conditio

nalStructure> .

?subject untitled-ontology-

4:is_included_in ?object .

?subject rdf:type

<http://ontology_uri#SystemFu

nction> }

1 1 100%

8. Total

number of

system

functions

called in

repetitve

structures

SELECT ?subject ?object

 WHERE { ?object

rdf:type

<http://ontology_uri#Repetiti

veStructure> .

?subject untitled-ontology-

4:is_included_in ?object .

?subject rdf:type

<http://ontology_uri#SystemFu

nction> }

4 3 75%

9. Total

number of

data types

used

SELECT ?subject

 WHERE { ?subject

rdf:type

<http://ontology_uri#DataType

>}

2 2 100%

10. Total

number of

variable of

type array

SELECT ?subject

 WHERE { ?subject

rdf:type

<http://ontology_uri#Variable

> .

1 1 100%

Informatica Economică vol. 17, no. 3/2013 83

DOI: 10.12948/issn14531305/17.3.2013.07

?subject untitled-ontology-

4:is_type_of

<http://ontology_uri#array> }

Total plagiarism degree (arithmetic mean of metrics) 95.5 %

As we can see this method is precise enough

for determining the plagiarism degree, but it

depends very much on the chosen metrics. So

if we choose to make a software application

for this, it is a better approach if the final user

will have the possibility to choose the interest

metrics and how they influence the final

result (in our case we consider them equal in

influencing the final result). Because this

method is not as accurate as we wish we have

searched for alternative solutions in the field

of ontologies to confirm the result obtained

in this way.

So we found that another method of

comparing two source codes ontologies is by

using the graphical representation of the

semantic networks. The semantic network

(called in some cases concept network) is a

graph, where the nodes represent concepts

and the arcs represent the relations between

the concepts [12].

Most semantic networks are cognitively

based. They also consist of arcs and nodes

which can be organized into a taxonomic

hierarchy. Semantic networks contributed

ideas of spreading activation, inheritance,

and nodes as proto-objects. They are

intractable for large domains.

Some properties are not easily expressed

using a semantic network, e.g., negation,

disjunction, and general non-taxonomic

knowledge. Expressing these relationships

requires workarounds, such as having

complementary predicates and using

specialized procedures to check for them, but

this was not a problem in our method.

A particular case of a semantic network

representation is the topic map. The Topic

Maps family of standards is designed to

facilitate the gathering of all the information

about a subject at a single location. The

information about a subject includes its

relationships to other subjects; such

relationships may also be treated as subjects

(subject-centric) [13].

These visual representations of ontologies

can help in our method. Topic models (which

can be viewed as the Bayesian version of

latent semantic analysis) are useful for

extracting semantic content from any type of

collections. After topic modeling, the topic

representation is projected onto two

dimensions to create the topic map

visualization [14].

Fig. 5. C Ontology - OntoGraph representation of Individuals

84 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.07

In our proposed algorithm we will use

OntoGraph representation of Protégé to

visually compare the two ontologies. In this

representation the nodes are individuals

(represented by a rectangle with a violet

diamond) and the arcs are relations between

them (with orange the is_included_in relation

and with yellow the is_type_of relation). The

arcs are oriented and show the direction of

the relation. We preferred the tree horizontal

view because our is_included_in and

is_type_of relations are hierarchical.

The first OntoGraph (shown in Figure 5) is

the representation of the C ontology with its

specific individuals. The second one (shown

in Figure 6) is the Javascript ontology. We

can see that this one has another set of

individuals.

Fig. 6. Javascript Ontology - OntoGraph representation of Individuals

To compare the two Topic Maps we can look

at them separately or we can create a new

topic map (eventually a plotted one) that

represents both source code ontologies in a

single graph, by using an existing

visualization tool or by creating a specific

one [15].

In our example the similarities between the

two source codes are obvious even in the

separated representations, so we can

conclude that the tested source codes are

copied one from another.

Combined, the two forms of plagiarism

detection solutions based on ontologies

(metrics measured with SPARQL and Topic

Maps) can be a very powerful and useful way

of determining if two source codes are

similar and in which percentage.

In Figure 7 we describe the architecture of

the method proposed by us with its necessary

steps:

1. Build the OWL ontology based on the

source code;

2. Query the RDF graph of the OWL based

ontology using SPARQL;

3. Measure metrics based on result sets;

4. Represent ontology’s topic map;

5. Determine the final plagiarism degree by

comparing these results with the results

obtained from another ontology.

Informatica Economică vol. 17, no. 3/2013 85

DOI: 10.12948/issn14531305/17.3.2013.07

Fig. 7. Architecture of the plagiarism detection method

3 Future Developments

To have a reliable detection system based on

this method, all the steps of the presented

architecture must be made automatically. So

to create such a system we will need a

crawler that will parse the code and extract

the OWL ontology, a set of defined metrics,

each one with its own dynamically generated

SPARQL query, and a custom representation

of all the involved topic maps. These

components will be created in our future

work.

4 Conclusions

In this paper it was shown that ontologies can

be used in detecting source code plagiarism.

By using the OWL Web Ontology Language

which is based on RDF Resource Description

Framework and the SPARQL RDF based

query language we can extract the needed

information from our ontology that was built

based on the vocabulary and taxonomy of a

programming language source code. We saw

that a way of constructing this kind of

ontology is Protégé, a free open source

ontology editor and that beside the metrics

that can be measured using SPARQL we can

see the graphic representation of the ontology

by using a topic map.

However, the real benefit of using ontologies

for complex software plagiarism detection

systems is that all the detection process can

be made automatically and in this way we

can improve the quality of students’ theses in

particular and the quality of education in

general. The introduced approaches are a

good starting point for the future work to

establish a fully automatically system for

source code plagiarism detection.

References

[1] M. K. Shenoy, K. C. Shet and U. D.

Acharya. (2012, May). Semantic

Plagiarism Detection System Using

Ontology Mapping. Advanced

Computing: An International Journal

[Online]. 3(3). Available:

http://airccse.org/journal/acij/papers/0512

acij06.pdf

[2] The Protégé Ontology Editor and

Knowledge Acquisition System. Internet:

http://protege.stanford.edu/ (2013, July

1).

[3] T. Bray, J. Paoli, C. M. Sperberg-

McQueen, E. Maler and F. Yergeau.

(2004, February 4). Extensible Markup

Language (XML) 1.0. W3C

Recommendation [Online]. Third

Edition. Available:

http://www.w3.org/TR/2004/REC-xml-

20040204/

[4] F. Manola and E. Miller (2004, February

10). RDF Primer. W3C Recommendation

[Online]. Available:

http://www.w3.org/TR/2004/REC-rdf-

primer-20040210/

[5] S. Harris, A. Seaborne. (2013, March 21).

SPARQL 1.1 Query Language. W3C

Recommendation [Online]. Available:

http://www.w3.org/TR/2013/REC-

sparql11-query-20130321/

[6] J. Bao, D. Calvanese, B. C. Grau, et al.

86 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.07

(2012, December 11). OWL 2 Web

Ontology Language. W3C

Recommendation [Online]. Second

Edition. Available:

http://www.w3.org/TR/owl2-overview/

[7] E Akin, Object Oriented Programming,

Houston: Rice University Publishing

House, 2001, pp. 33-34.

[8] S. Kara, O. Alan and O. Sabuncu, “An

ontology-based retrieval system using

semantic indexing”, Information

Systems, vol. 37, no. 4, pp. 294–305,

June 2012.

[9] Pseudocode Standards, California

Polytechnic State University Website,

Internet:

http://users.csc.calpoly.edu/~jdalbey/SW

E/pdl_std.html (2013, July 1).

[10] C. Liu, H. Wang, Y. Yu and L. Xu,

“Towards Efficient SPARQL Query

Processing on RDF Data”, Tsinghua

Science & Technology, vol. 15, no. 6, pp.

613–622, December 2010.

[11] I. Ivan and C. Boja, Metode Statistice in

analiza software. Bucharest: ASE

Publishing House, 2004, pp. 218-224.

[12] S. Russel and P. Norving, Artificial

Intelligence: A Modern Approach (2nd

edition). New Jersey: Pearson Education

Inc., 2003, pp. 350-352.

[13] P. Durusau, S. Newcomb and R. Barta

(2007, November). Topic Maps

Reference Model. International

Organization for Standardization

[Online]. Available:

http://www.isotopicmaps.org/TMRM/TM

RM-7.0/tmrm7.pdf

[14] D. Newman, T. Baldwin, L. Cavedon

and E. Huang, “Visualizing search results

and document collections using topic

maps”, Web Semantics: Science,

Services and Agents on the World Wide

Web, vol. 8, no. 2-3, pp 169–175, July

2010.

[15] A. Hatzigaidas, A. Papastergiou, G.

Tryfon and D. Maritsa, “Topic Map

Existing Tools: A Brief Review”, in Proc.

The International Conference on Theory

and Applications of Mathematics and

Informatics, Thessaloniki, Greece, 2004,

pp 185-201

Ion SMEUREANU has graduated the Planning and Economic Cybernetics

faculty in 1980, as promotion leader. He holds a PhD diploma in “Economic

Cybernetics” from 1992 and has a remarkable didactic activity since 1984

when he joined the staff of Bucharest Academy of Economic Studies.

Currently, he is a full Professor of Economic Informatics within the

Department of Economic Informatics and the dean of the Faculty of

Cybernetics, Statistics and Economic Informatics. He is the author of more

than 16 books and an impressive number of articles. He was also project director or member

in many important research projects. He was awarded the General Romanian Economist

Association Excellence Diploma 2010, the Virgil Madgearu Excellence Award 2006, the

award for the entire research activity offered by the Romanian Statistics Society in 2007 and

many others.

Bogdan IANCU has graduated The Faculty of Cybernetics, Statistics and

Economic Informatics from The Bucharest University of Economic Studies

in 2010. He has a master in Economic Informatics (2012) and he is a PhD

Candidate in Economic Informatics starting from 2012 in the field of

Ontologies and eLearning. He is a teaching assistant in The Department of

Economic Informatics of The Bucharest University of Economic Studies.

His current work focuses on the analysis of semantic web and ontologies

innovations. Other fields of interest include data mining, multimedia, object oriented

programming in C++, windows applications programming in C# and Business Intelligence

tools.

