
60  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

Efficient Architectures for Low Latency and High Throughput Trading 

Systems on the JVM 

 
Alexandru LIXANDRU 

Bucharest University of Economic Studies 

alex.lixandru@gmail.com 

 

The motivation for our research starts from the common belief that the Java platform is not 

suitable for implementing ultra-high performance applications. Java is one of the most widely 

used software development platform in the world, and it provides the means for rapid devel-

opment of robust and complex applications that are easy to extend, ensuring short time-to-

market of initial deliveries and throughout the lifetime of the system. The Java runtime envi-

ronment, and especially the Java Virtual Machine, on top of which applications are executed, 

is the principal source of concerns in regards to its suitability in the electronic trading envi-

ronment, mainly because of its implicit memory management. In this paper, we intend to iden-

tify some of the most common measures that can be taken, both at the Java runtime environ-

ment level and at the application architecture level, which can help Java applications achieve 

ultra-high performance. We also propose two efficient architectures for exchange trading sys-

tems that allow for ultra-low latencies and high throughput. 

Keywords: Trading Systems, Software Architectures, High Performance, Low Latency, High 

Throughput, Java Virtual Machine 

 

Introduction 

The technological platforms used by se-

curities exchanges have always been subject 

to increased exigencies coming, on one side, 

from the need to meet the demands of the 

trading firms, and, on another side, from the 

ever-changing financial environment. Trad-

ing platforms are at the core of exchanges 

and they have a direct impact on the competi-

tiveness of the market place. For this reason, 

they need to be secure, scalable, and failure-

tolerant and to perform well, in order to effi-

ciently handle an ever-increasing transaction 

volume [1]. 

It is not only the volumes of transaction 

which are continuously growing, but also the 

demands for better access to markets and 

faster execution times. As algorithmic trad-

ing begins to be widely used by more and 

more trading firms, the exchanges' trading 

systems need to be continuously improved to 

keep up with the new requirements. Perfor-

mance is probably the most dynamic coordi-

nate of the electronic trading processing 

chain. Exchanges which were performing 

well a few years ago might not be able to 

handle the algorithmic trading and high fre-

quency trading activity from nowadays. 

Moreover, recent changes in the trading regu-

lations has led to the emergence of new trad-

ing venues, in the form of multilateral trading 

facilities (MTF) or alternative trading sys-

tems (ATS). These new venues created added 

value for investors through reduced transac-

tion costs and access to equity markets 

worldwide [6]. Alternative trading systems 

were notable for high trading speeds, making 

their platforms attractive to high frequency 

traders, for innovative fee structures and trad-

ing incentives and for enabling their custom-

ers to choose among customized market 

models. 

These made the new venues highly attractive 

and caused an intensification of competition 

for order flow [7]. Regular exchanges had to 

find ways to keep their customer base, by of-

fering discounts, improving their service of-

ferings and by optimizing their trading plat-

forms. 

In this landscape, the characteristics of the 

software platforms offered by the trading 

venues have become one of the key decision 

factors for the trading firms when choosing a 

market place.  

The pervasive impact of the trading systems 

on an exchange’s service level and profit and 

1 



Informatica Economică vol. 17, no. 3/2013  61 

DOI: 10.12948/issn14531305/17.3.2013.06 

loss statement has put a lot of pressure on 

software engineers and architects to optimize 

these platforms for ultra-high performance. 

Special attention was directed towards all of 

the aspects which have an impact on the sys-

tem’s reliability: availability, volume capaci-

ty, execution speed, scalability, fault toler-

ance and recoverability. In order to achieve a 

high level of performance, software engi-

neers typically resorted to low-level technol-

ogies, highly specialized software solutions 

and even hardware-accelerated software 

components, deployed on high performance 

clusters of servers.  

However, these overly complex architectures 

created challenges for developers and im-

pacted the time-to-market periods. For this 

reason, more and more exchanges turned to 

using mainstream software technologies. 

The motivation for our research starts from 

the common belief that the Java platform is 

not suitable for implementing and running ul-

tra-high performance applications. Java is 

one of the most widely used software devel-

opment platform in the world, and it provides 

the means for rapid development of robust 

and complex applications that are easy to ex-

tend, ensuring short time-to-market of initial 

deliveries and throughout the lifetime of the 

system [8]. The Java runtime environment, 

and especially the Java Virtual Machine, on 

top of which applications are executed, is the 

principal source of concerns in regards to its 

suitability in the electronic trading environ-

ment, mainly because of its implicit memory 

management [16]. 

In this paper, we intend to identify some of 

the most common measures that can be tak-

en, both at the Java runtime environment lev-

el and at the application architecture level, 

which can help Java applications achieve ul-

tra-high performance. We also propose two 

efficient architectures for exchange trading 

systems that allow for ultra-low latencies and 

high throughput. 

 

2 The Electronic Trading Requirements 

For a trading venue to be competitive and at-

tract a high number of participants it has to 

keep up with the latest technological im-

provements and to offer fast execution times 

and fast dissemination of trade confirma-

tions. Speed and response time are among the 

most conclusive characteristics which define 

the performance profile of a trading venue, 

and they are critical in making a clear dis-

tinction between regular trading platforms 

and high-performance ones. 

One of the factors that have the biggest im-

pact on the speed of a system is the latency. 

Latency is a measure of the delay experi-

enced by the components of a system during 

their processing of a request. Latency exists 

at every stage of the trading execution chain 

[9]. The following diagram shows the layers 

where different types of latency can occur. 

 

 
Fig. 1. Different layers of latency 

 

Latency in the network layer is inherent, 

mainly because of the physical distance be-

tween the trading firms and the trading ven-

ue. Other factors which contribute to the 

network latency are the type of the commu-

nication media, the network architecture and 

the network protocols used. Choosing the 

most efficient network equipment and the 

appropriate communication protocols does 

help with reducing the network latency, but 

in most cases delays cannot be completely 

eliminated. 

The IT infrastructure layer covers everything 

which is not related to network or the trading 

applications. This includes the hardware plat-

form (the physical machine with all its devic-

es), the operation system and all auxiliary 

software (virtual machines, messaging mid-

dleware, and databases). Along with the trad-

ing application layer, this is the area where 

latency can be reduced the most if proper so-

lutions are employed. System architects and 

developers make every effort to identify the 

components which generate the highest de-



62  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

lays, since optimizing those components will 

have the most impact on overall system la-

tency. 

Latency is also not constant and can be influ-

enced by many factors external to the trading 

infrastructure [9]. Transaction volumes fluc-

tuate based on regular events, such as market 

openings, and on outstanding events, such as 

news reports, announcements or corporate 

events. The execution of an algorithm and 

even the matching of two orders might trig-

ger an explosion of messages routed towards 

the electronic trading system of an exchange. 

Spikes in message rates tend to impact the la-

tency on systems which are not highly de-

terministic. This phenomenon is called jitter. 

Keeping jitter at a minimum is another chal-

lenge for a trading system, especially because 

these spikes appear at the moments which are 

the most visible for the trading participants 

and which have the biggest impact on their 

operations. 

Another characteristic which is often used to 

assess the performance of a system is the 

number of requests it can process during a 

given time interval. This is represented by 

throughput, which is defined as the aggregat-

ed capacity of the exchange [11]. The ability 

of the system to execute large amounts of in-

structions gives the trading venues a com-

petitive advantage by allowing the partici-

pants to get more order executions during the 

same unit of time. 

The maximum throughput of a system usual-

ly has a direct influence on the latency. The 

following graph shows how the two 

measures vary in relation to each other. 

 
Fig. 2. The influence of maximum through-

put on latency 

 

As the number of messages received into the 

trading system continues to increase, 

throughput will increase in a linear fashion 

and the latency will stay relatively constant 

until the system reaches saturation load. 

From this moment throughput remains con-

stant while latency begins to increase. If the 

load continues to increase, the system per-

formance will degrade up to a point when 

participants will see the system as stalled. 

For this reason, many trading platforms have 

in place mechanisms that prevent the system 

from getting overloaded when the input mes-

sage rates become too high. This protection 

is usually activated before the system reaches 

saturation and even if it limits the maximum 

throughput, it is critical for keeping the entire 

system stable. In practice, trading platforms 

increase throughput by distributing the pro-

cessing logic on multiple machines, given 

that transactions on different instruments are 

independent. Nevertheless, designing the 

trading system so that it achieves the highest 

possible throughputs is still a priority for 

most trading venues, whether they employ 

distributed computing or not. 

Achieving high performance and keeping it 

stable throughout the entire trading day are a 

necessary but not a sufficient condition. For 

many trading firm, there are other system re-

quirements which weigh as much as the per-

formance criteria when a decision is to be 

made whether the firm will activate on that 

trading venue or not. Scalability and func-

tional expandability are two of them. Scala-

bility allows the trading system to grow as 

markets grow, while expandability refers to 

the ability to add and integrate new function-

al components within the system. These two 

factors are particularly important in the 

emerging markets where new trading prod-

ucts and instruments are being constantly 

added.  

Fast recoverability is also a key factor in be-

coming a competitive trading venue. In case 

of a system failure, the trading activity needs 

to be resumed as fast as possible, without any 

data loss. A trading system should be capable 

of starting up in a matter of seconds and 



Informatica Economică vol. 17, no. 3/2013  63 

DOI: 10.12948/issn14531305/17.3.2013.06 

should recreate the entire state from before 

the failure so that it can restart its operations. 

This leads to other requirements in regards to 

data persistence, data replication and hot-

standby and data consistency. Although not 

all of these are enforced for all trading pro-

cesses or markets, they are adopted by most 

exchanges. 

Other key requirements for high-performance 

trading systems are deterministic behavior, 

which allows for predictability of perfor-

mance, visibility which allows for identifica-

tion of performance issues and other threats 

and fast time-to-market, which allows the 

trading system with keep up with the ever-

evolving market places [10]. 

Traditionally, trading platforms have been 

deployed on high performance hardware, 

sometimes using specialist processing com-

ponents, like Field Processor Gate Arrays 

(FPGAs), Graphics Processing Units (GPUs) 

and similar technology. These usually had 

high costs and were creating challenges for 

developers and architects. However, thanks 

to recent advances in the processing technol-

ogy, great performances can now be achieved 

on commodity hardware, allowing trading 

venues to move away from highly special-

ized hardware. This allowed trading systems 

to achieve better visibility and faster time-to-

market, but also favored the adoption and use 

of mainstream software technologies, like the 

Java platform. 

 

3 Java Technology and Its Limitations 
Java technology is one of the most widely 

used solutions for enterprise-level applica-

tions in the world. It features excellent de-

veloper tools as well as key characteristics, 

like portability, resilience and scalability, 

which make it a good platform candidate for 

almost any type of application. Many high 

performance applications have been written 

in Java to take advantage of its ecosystem. 

However, for solutions that require ultra-low 

latency, Java technology has some inherent 

limitations. 

The nature of the Java platform itself and its 

execution model impose concerns in choos-

ing it for ultra-high performance systems. Ja-

va applications are executed on top of a 

runtime environment, by a component called 

the Java Virtual Machine (JVM). This ap-

proach allows for portability, since the appli-

cation source code is not compiled to ma-

chine code specific to a certain processor ar-

chitecture, but to an intermediary portable 

format called byte-code [2]. The byte code is 

then executed by virtual machines specifical-

ly created for different hardware and soft-

ware platforms. Most JVM implementations 

have two modes for running the byte code: 

by interpreting it and by compiling it to na-

tive machine code on the fly, a process called 

just-in-time compilation (JIT). When being 

interpreted, the byte code runs slower than 

compiled machine code, however, the JIT 

compilation offers far better performance. In 

addition, in certain cases JIT code can per-

form even faster than native code [4]. This is 

possible because the JVM can make global 

optimizations at runtime, like in-lining of li-

brary methods and rearranging execution in-

structions, which is not possible with statical-

ly compiled code. Also, the compilation can 

be optimized for the targeted CPU and the 

operating system where the application runs. 

By performing the compilation at runtime, 

the system is able to collect statistics about 

how the program is actually running and 

based on these statistics it can perform the 

appropriate optimizations.  

However, there is a limited amount of code 

which can be JIT compiled. The virtual ma-

chine keeps all the compiled code in 

memory, in a code cache. When the cache 

fills the compilation has to stop and no other 

portions of the byte code can be further op-

timized. For this reason, the JVM implemen-

tations have in place specific rules about 

what code is translated to native code and 

how the compiled code is marked obsolete 

and removed from the code cache. A com-

mon approach, also used in the reference im-

plementation of the Java Virtual Machine, 

the Oracle HotSpot JVM, is to monitor which 

sequences of the byte code are frequently ex-

ecuted (the hot spots) and translate only those 

sequences to machine code for direct execu-

tion on the hardware. This approach is based 



64  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

on the observation that programs spend most 

of the time executing a minority of their 

code, so it is not efficient to compile portions 

of the code which are not going to be execut-

ed too many times. Instead, only hot se-

quences will be translated to machine code, 

thus reducing the time needed for compila-

tion. 

Another limitation of the Java platform 

which prevents Java applications from easily 

achieving ultra-low latencies is the Garbage 

Collector. Java is a managed environment in 

which objects cannot be explicitly de-

allocated. It is the runtime environment 

which performs all memory reclamation 

when objects are no longer in use. The com-

ponent responsible with all memory man-

agement is called Garbage Collector. All 

JVM implementations have a garbage collec-

tor which deletes objects as they become un-

used. Since there is no specific collection 

mechanism imposed by the Java platform, a 

large variety of algorithms have been devel-

oped, including reference counting, mark-

sweep, mark-compact, copying, and non-

copying implicit collection. Most of these 

techniques halt the processing of application 

logic when garbage collection is needed, 

generating pauses in the program execution. 

These pauses highly depend on a number of 

factors, like the total amount of memory al-

located by the program, the number of ob-

jects that need to be reclaimed and the avail-

able free memory [3]. In practice, for appli-

cations requiring large amounts of memory, 

the pauses generated by the garbage collector 

can take from a few milliseconds to a few 

seconds, which is unacceptable for high per-

formance systems.  

In order to avoid these interruptions, new 

garbage collections techniques have been de-

veloped that allow the collection process to 

be interleaved with the main program execu-

tion. Other techniques, known as generation-

al collection, attempt to improve efficiency 

and memory locality by working on smaller 

areas of memory called generations. With 

this technique, most of the new objects are 

created in a memory zone called young gen-

eration. This is the area where short-lived ob-

jects will reside and on which the garbage 

collector is usually more active, given the 

observation that recently allocated objects are 

likely to become garbage within a short peri-

od of time. When the young generation fills, 

the garbage collector performs a minor col-

lection, in which only this memory zone is 

cleaned. Minor collections can be optimized 

assuming that most objects in the young gen-

eration are unused and can be deleted. As ob-

jects survive minor collection cycles they are 

promoted to another memory zone called old 

generation. When this zone becomes full, the 

garbage collector performs a major collec-

tion, in which the entire memory is cleaned. 

Major collections usually last much longer 

than minor collections because a significantly 

larger number of objects are involved.  

The garbage collection process imposes a 

penalty on the application performance. Con-

sequently, it is important that the garbage 

collector is efficient and interferes with pro-

gram execution as little as possible. 

 

4 Tuning Java Applications for Ultra-High 

Performance 

There are multiple steps to perform in order 

for a Java application to be able to achieve 

ultra-low latency performance. These in-

clude, but are not limited to: network and 

hardware configuration, operating system 

and auxiliary software configuration, proper 

design of application architecture and prepa-

ration of the runtime environment. This paper 

does not cover hardware or OS configuration, 

and concentrates on the optimizations taken 

from a software architecture and develop-

ment perspective. 

Given the nature of the Java platform, devel-

opers must pay special attention to both the 

application itself, and to its runtime environ-

ment, specifically the Java Virtual Machine. 

Incorrect configuration of the JVM can cause 

the application to perform badly or may pre-

vent the runtime platform from taking ad-

vantage of the performance optimizations 

available in modern JVM implementations. 

The most common configurations of the Java 

Virtual Machine are those related to the max-

imum amount of heap space the application 



Informatica Economică vol. 17, no. 3/2013  65 

DOI: 10.12948/issn14531305/17.3.2013.06 

can use, and to the Garbage Collector activi-

ty. The two are tightly interconnected be-

cause the total available memory is the most 

important factor affecting the performance of 

the garbage collection process.  

There are two primary measures of the gar-

bage collector impact on the running applica-

tion: execution time, which is the total time 

not spent in garbage collection, and pauses, 

which are the times when application execu-

tion is interrupted for the collection to occur. 

Other common measures are footprint, which 

is the total amount of memory used by the 

application process, and promptness, which 

refers to the amount of time between the 

moment when the object becomes unused 

and the one when the memory is freed [5]. 

In general, most configurations try to ac-

commodate all of these four aspects. Howev-

er, in a high-performance application, like a 

trading system, execution time and pauses 

are more critical measures than the others. 

Footprint will likely not make a difference, 

since trading systems are generally memory-

intensive and have large working sets, while 

promptness has little overall impact.  

A common solution to reduce the impact of 

the garbage collector is to design the system 

so that garbage is collected only one time a 

day, during off business hours or during a 

daily maintenance window. This can be 

achieved by giving the application a large 

heap, enough to hold all of the objects allo-

cated during the program execution, 

throughout the day. By having a heap which 

never fills there will be no need for garbage 

collection. This is the desirable approach, 

since it completely eliminates the overhead 

caused by garbage collection and also the 

need to tune the Garbage Collector configu-

ration. However, the application itself must 

be developed so that it uses mostly long-lived 

objects, and that it creates as few short-lived 

objects as possible, in order to prevent even 

the young generation of the heap from filling. 

It also requires the data structures to be sim-

ple, and its objects to have a simple life cycle 

which allow object reuse. 

Although not impossible, this is difficult to 

implement, so a trade-off must be found. De-

pending on execution time that needs to be 

achieved, the young generation area of the 

heap may be sized so that it permits a small 

number of minor collections, while the old 

generation is sized so that it does not get 

filled. Since minor collections perform rela-

tively fast, very short GC pauses can be 

achieved. To reduce the pauses even more, 

alternative collection techniques can be used, 

like concurrent collection. The concurrent 

collector is designed specifically for applica-

tions that prefer shorter garbage collection 

pauses and that can afford to share processor 

resources with the garbage collector while 

the application is running [5]. 

Choosing a correct size for the entire heap or 

for each of its memory areas is not a straight-

forward process, because the amount of 

available memory affects the performance of 

the garbage collector. A decision about the 

memory size must be taken only after exten-

sive performance testing and monitoring of 

the GC activity. The general recommenda-

tions made by JVM implementers usually do 

not apply to ultra-low latency applications, 

therefore measurements are the only valuable 

information upon which a decision may be 

made. 

Other configurations that affect the perfor-

mance of the application are those related to 

the JIT compiler. As mentioned above, the 

JVM can compile portions of byte code to 

native machine code and execute them di-

rectly on hardware, dramatically improving 

execution time. Since the compiled machine 

code is kept in a memory cache, it is possible 

that this cache get filled, preventing further 

JIT compilation. This usually happens when 

a complex application performs repetitive 

operations during startup, before commenc-

ing the actual execution. In such a case, the 

code cache needs to be sized to accommodate 

the compilation of the actual business logic 

of the application, or the JIT compiler needs 

to be given a hint on when byte code should 

be translated to native code, so that it bypass-

es the startup processing. 

Turning a Java application into an ultra-low 

application is not easy. This often involves 

using low-level solutions, optimization tech-



66  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

niques targeted to specific platforms or even 

native solutions implemented directly at the 

operating system level. All these increase the 

complexity of the application code and re-

duce its portability and maintainability for 

the benefit of having latencies of less than a 

millisecond. While not all trading venues re-

quire this level of performance, there are sys-

tems which need to take advantage of all 

possible solutions.  

Some of the implementation techniques and 

architectural optimizations commonly used 

to get the best performance for a Java appli-

cation are detailed in the following sections. 

 Simplicity 

Simplicity and understandability are 

key factors in designing an ultra-high 

performance system. They allow de-

velopers and software architects to 

easily identify performance bottle-

necks and to reason about what parts 

for the flow need to be optimized. 

Overly complex architectures will 

make it hard to test and improve the 

system and will impact the perfor-

mance. This is why the trading appli-

cation logic must be kept simple and 

must not contain any functionality 

that can be performed by components 

or processes. 

 Use of memory 

Garbage collection can become prob-

lematic when developing ultra-low la-

tency systems in a managed environ-

ment like Java. The more objects are 

allocated, the more work the Garbage 

Collector has to do. In order to keep 

the collection cycles at a minimum, a 

common practice is for the applica-

tions to create as few garbage objects 

as possible. This can be achieved 

through reutilization of objects. It is, 

therefore, a good practice for applica-

tions to pre-allocate a set of objects 

which are reused throughout the exe-

cution of the program. These objects 

will exist as long as the application 

runs so they will not impact the gar-

bage collection process. The pre-

allocation is also beneficial for cach-

ing and improving memory access, as 

data is likely to be laid out contigu-

ously in main memory. 

 Use of parallelism 

Traditionally, trading systems have 

been single-threaded, due to the re-

quirement to process all requests in 

the order they are received. However, 

as the number of order requests con-

tinued to grow, the single-thread de-

sign started to show its limitations. In 

order to keep up with high capacity 

requirements, systems had to start 

processing data in parallel. A com-

mon approach, which is still used 

nowadays, is to keep the main pro-

cessing logic single-threaded, but to 

perform the preparations and other 

auxiliary tasks in parallel. This allows 

for a better utilization of the existing 

processing power, which leads to 

higher throughput and, in some cases, 

to overall better latencies.  

It is advisable to simplify the execu-

tion model and to parallelize as much 

work as possible, keeping on the main 

execution thread only those tasks 

which require strict sequential pro-

cessing, like matching orders. The 

rest could all be done in parallel: dis-

tributing trade confirmations, pushing 

market data to feed handlers, or even 

aggregating data for reporting ser-

vices. It is not uncommon in trading 

environments to have data eventual 

consistent, meaning that at the peaks 

of activity, reports might contain data 

which is not consistent with what ex-

ists in the trading system’s memory. 

Some of the trading systems even 

save the exchange state asynchro-

nously on storage devices in their at-

tempt to achieve ultra-low latency. 

 Use of lock-free techniques 

Although parallel processing brings 

many benefits, it also introduces 

complexity and limits the ability of 

the developers and software architects 

to optimize the application. Moreo-

ver, the use of traditional solutions to 



Informatica Economică vol. 17, no. 3/2013  67 

DOI: 10.12948/issn14531305/17.3.2013.06 

solve multi-threading issues - locks, 

for synchronizing concurrent access 

to data, and queues, for communica-

tion between components - is not al-

ways suitable in the trading environ-

ment, where large volumes of data are 

coming in very short periods of time. 

Large volumes and very short 

timeframes means a lot of locks will 

be performed within short periods of 

time and data contention will be fre-

quent. 

The problem with locks is that they 

require arbitration when contended 

[15]. The arbitration is achieved by a 

context switch to the operating sys-

tem kernel, to allow the kernel to sus-

pend other threads waiting on the 

lock. During a context switch the con-

trol of execution is transferred to the 

operating system, which might 

choose to perform additional tasks. 

Moreover, the execution context can 

lose previously cached data and in-

structions. Since it is very likely to 

have data contention in a high per-

formance application, using locks will 

inherently lead to jitter and high la-

tencies. 

For this reason, a high performance 

system should use lock-free solutions 

and alternative concurrent data struc-

tures. Lockless architectures have the 

great benefit of being able to avoid 

data contention which dramatically 

improves performance. Alternative 

data structures do not use locks for 

synchronizing access to resources 

shared by multiple threads. Instead 

other mechanisms are used, like com-

pare-and-swap (CAS) operations, and 

busy spins, which prevent kernel arbi-

tration. They offer steady perfor-

mance up to the point of load satura-

tion, and allow the system to scale 

when necessary. 

 Use of low-level techniques 

In some edge cases, when a trading 

system needs ultra-high performance, 

beyond what the Java Virtual Ma-

chine can offer, it can resort to the use 

of low-level solutions which are at 

the boundary between the JVM and 

the operating system.  

Thread affinity refers to binding a 

thread to a physical CPU or core, so 

that the execution of the thread will 

be performed only by of the designat-

ed CPU or core [13]. This has the ad-

vantage that the cache of the CPU 

will not be polluted with data from 

other threads, thus reducing the need 

of the CPU to fetch data from main 

memory. Setting the thread affinity is 

not possible with the standard Java 

API, and it must be performed 

through native operating system calls. 

Optimizing code for CPU cache is 

another low-level technique, which is 

based on the observation that data in 

the CPU cache is not stored as objects 

but rather as blocks of data with a 

specific size, called cache lines. This 

means that more than one object can 

be cached at a time, which might be 

beneficial in some case, for example 

when using arrays, or might create is-

sues in other cases (the false sharing 

phenomenon). False sharing occurs 

when two threads own two different 

objects which reside in the CPU 

cache and one thread modifies its ob-

ject, forcing the other thread to reload 

the whole cache, even if the object it 

was trying to access was up to date 

[14]. Moreover, if the two threads try 

to write to their own object at the 

same time, the CPU will consider it 

as a write to the same variable - there-

fore a contended write. In order to 

minimize these situations, a high per-

formance application should make 

sure that concurrent written variables 

do not get fetched in the same cache 

line, for example by utilizing variable 

padding techniques. 

 

5 Efficient Trading Platform Architec-

tures 

The specifics of the trading industry and spe-



68  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

cifically the requirements in regards to the 

flow of the order execution process impose 

the existence of certain technical components 

within the trading system. Each of these 

components is responsible for a specific pro-

cessing stage from the order request life-

cycle. 

Typical components of a trading system are 

presented in the diagram below. 

 

 
Fig. 3. Core technical components of an exchange trading system 

 

The role of each of these components within 

the processing workflow is detailed below. 

 The gateway is the entry point in the 

trading system. It might be represent-

ed by a FIX session handler, a native 

connection listener, or an API handler 

accepting external connections. The 

gateway usually performs some light 

validations on the incoming messag-

es, like format or syntax verifications 

and simply forwards the requests on 

to the next component. Gateways are 

also responsible with delivering mes-

sages generated by the trading system 

to the external connections they are 

managing. 

 The pre-processor component might 

consist of one or more sub-

components responsible with differ-

ent tasks, according to the specifics of 

the trading system. Typical such sub-

components are: 

o Journaling module, which persists 

the input message to a durable 

event log, allowing the application 

to recreate its state by replaying 

the entries from the log; 

o Replicator, which sends the input 

messages to a replica of the trading 

system, usually residing on another 

physical machine; 

o Un-marshaling module, which 

converts the input messages to ob-

jects that are used by the trading 

application logic; 

o Validator, which verifies the integ-

rity of the received messages, as 

well as the access level and per-

missions of the trading participant 

who initiated the message. 

 The business logic processor is the 

central component of a trading system 

responsible with the matching of or-

ders and with other tasks critical to 

the proper functioning of the market 

place, like scheduling and handling 

market events, opening and closing of 

trading sessions, monitoring price 

variations and handling administra-

tive tasks. Most of the business logic 

processors work with data from 

memory, in order to perform very fast 

and they usually interact only with in-

ternal components. 

 The data persistence component is 

responsible with storing the state of 

the exchange to a database for report-

ing purposes. It is different from a 

journaling module, which only stores 

the input messages to a journal or 

event log, without any information 

about the effects of those messages. 

Instead, the persistence component 

will save the data as it exists after a 

message has been processed. For 

most of the systems, this will be per-

formed synchronously, offering a 

consistent view of the data, as it ex-

ists in the trading application 

memory. However, for some systems 

that require ultra-high performance, 

the persistence may be done asyn-

chronously, in order to avoid the 

overhead incurred by the relatively 

slow performance of the storage de-

vices. In this case, the reporting data-

base will be eventual consistent with 

the actual trading system state. 



Informatica Economică vol. 17, no. 3/2013  69 

DOI: 10.12948/issn14531305/17.3.2013.06 

 The distributor component delivers 

the results of the trading activity to 

other components of trading venue in-

frastructure, to post-trading systems 

and to external clients. Consequently, 

there might be multiple distributors in 

a trading system: output routers, 

which send messages back to gate-

ways, for delivery to FIX sessions or 

native connections, and data handlers, 

which delivers messages to trade 

management modules, market sur-

veillance and monitoring applica-

tions, data feed consumers and other 

external systems. 

From a functional point of view, order re-

quests must be handled by each component 

sequentially, even if from the execution point 

of view, systems might parallelize some of 

the tasks. It is also not a requirement for trad-

ing systems to have separate functional mod-

ules corresponding to each of these compo-

nents. Most traditional trading system archi-

tectures would combine more components in-

to a single monolith, all-purpose processing 

module, as presented in Figure 4. 

 
Fig. 4. The high-level architecture of a traditional trading system 

 

As seen in the diagram, a traditional trading 

system usually contains two gateways, one 

for FIX connections and one for native con-

nections, a general processor and multiple 

parallel distributor components. The general 

processor is usually single-threaded, consum-

ing all messages sequentially and being re-

sponsible with all the processing, from un-

marshalling and validation, to order matching 

and persistence. The communication between 

the components is done through queues. 

This architecture is still common among trad-

ing venues which don’t have strict require-

ment for latency or throughput. The use of 

blocking queues and the single-threaded pro-

cessing limits the ability of the system to 

scale up or to optimize its performance. 

An improved system architecture, which of-

fers low latencies and very high throughput, 

is presented in Figure 5. 



70  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

 

 
Fig. 5. The high-level architecture of a trading system based on circular buffers 

 

This system tries to parallelize as many tasks 

as possible, so most of the components will 

run in separate threads. The communication 

between components is done through two 

circular data structures, called ring buffers, 

one for input messages (the input ring buffer) 

and one for execution results (the output ring 

buffer). Ring buffers are essentially linear da-

ta structures, usually arrays, which overwrite 

the oldest entries of the data structure as it 

fills up, hence the circular nature. Ring buff-

ers have in place well-defined mechanisms 

for components to put data into the ring 

structure and to read it. There is also a pro-

tection which does not allow the ring to over-

lap and overwrite entries which have not 

been processed by all consumers. For this 

reason, the size of the ring buffers is usually 

very large, in order to accommodate the situ-

ation when consumers are slow and cannot 

keep up with the rates at which messages are 

put into the ring structure. 

The processing stages might differ from one 

implementation to another, but a typical flow 

is presented below: 

1. Data is fed into the system through the 

two gateways and put into the input ring 

buffer 

2. Different components of the system, like 

the replicator, the journaling or the un-

marshalling modules, which run in paral-

lel, take data from the ring buffer and 

process it in the same order as it arrived 

in the system. Since these components 

are independent from each other, their 

processing can be performed concurrent-

ly without any conflicts. The un-

marshalling component is the only one 

which needs to put data back into the 

ring buffer after it finishes translating it 

into an internal representation format. 

3. The business logic processor waits until 

the un-marshalling module puts the 

transformed data into the circular buffer. 

Since it needs the data to be represented 

as internal objects, rather than a stream 

of characters, it cannot continue until at 

least one message has been un-



Informatica Economică vol. 17, no. 3/2013  71 

DOI: 10.12948/issn14531305/17.3.2013.06 

marshalled. This is the only place where 

a component needs to wait for another 

one, but the coordination is done without 

the use of locks. Once the business logic 

processor finishes its tasks, it puts the re-

sults into the output ring buffer. 

4. Different output components running in 

parallel read results from the output ring 

buffer and deliver them to their destina-

tions. The output routers send results to 

the gateways, data services component 

sends data to external systems and feed 

handlers while the reporting component 

stores data for reporting purposes. 

With ring buffers, each component processes 

all messages in the same order they were re-

ceived in the system. By coordinating the ac-

tivity of some components, like the un-

marshalling module and the business logic 

processor, the system can guarantee that all 

messages are handled in sequential order.  

This architecture also has the advantage that 

the behavior of the system can be easily ad-

justed by defining new dependencies be-

tween different modules. For example, the 

un-marshalling process could be configured 

to wait for the journaling module to finish 

saving the messages to the event log; or the 

output routers could start delivering data only 

after the reporting component finished saving 

it to the database. 

High performance is achieved mainly be-

cause most of the processing tasks are exe-

cuted in parallel. Also, by avoiding the use of 

locks and queues, stable performance can be 

achieved even at bursts of activity. 

Another efficient architecture, offering ultra-

low latencies and high throughputs is depict-

ed in Figure 6. 

 
Fig. 6. The high-level architecture of a trading system based on memory-mapped files 

This architecture is based on a different con-

cept: memory-mapped files. A memory-

mapped file is a segment of virtual memory 

which is directly correlated with some por-



72  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

tion of a physical file present on the disk. 

This byte-for-byte correlation between the 

file and the memory space permits the appli-

cation to treat the mapped portion as if it 

were primary memory, while the operating 

system transparently deals with loading the 

requested data and writing it into the underly-

ing file. The main benefit of this approach is 

enhanced performance; accessing memory-

mapped files is faster than using direct read 

and write operations on a file [12]. This is 

mainly because writing to a memory-mapped 

file only consists in changing the program’s 

local memory, while regular read and write 

operations on files involve expensive system 

calls. Moreover, in most operating systems, 

the memory region is mapped in kernel 

space, so no copies of data need to be created 

in user space [17]. 

Another advantage of memory-mapped files 

is the ability to safely share them between 

multiple threads or even multiple processes. 

Two or more threads or applications can 

simultaneously map a single physical file in-

to memory and access this memory concur-

rently. This is how the components in the 

above diagram communicate with each other. 

For example, each of the two gateways 

writes all input messages to a memory-

mapped file. The Business Logic Processor 

maps both of these files in memory and waits 

for messages to arrive. Once a message is 

written in the local memory of any of the 

gateways, and implicitly stored in the 

mapped file, the memory region of business 

logic processor correlated with that file will 

be updated as well. Thus, the business logic 

processor component simply needs to read 

the new data from memory and start pro-

cessing it. Coordination is still required, but 

it is performed through lock-free mechanisms 

to avoid high latencies. 

There is, however, a disadvantage in working 

with memory-mapped files: for large files, 

only a portion of the file is loaded in memory 

and if the application requests a block of data 

which is not present in memory, a page fault 

will be raised and, as a result, the portion of 

the file containing the requested data will be 

brought to memory. Since page faults are ex-

pensive, they may degrade the performance 

of the entire application if they occur at high 

rates. It is, however, possible to prevent page 

faults from happening, if the consumer 

thread, reading messages from the memory-

mapped file is at least as fast as the producer. 

By processing messages which have been re-

cently written to the mapped file, it is very 

likely that the new data is still loaded in 

memory, so when the consumer requests it, 

no page fault will occur. 

The typical process flow of a trading system 

based on memory-mapped files, as seen in 

the above diagram is presented below: 

1. Requests received by the gateways are 

written to memory-mapped files. These 

files also serve as event logs which can 

be used for replay in case the system 

needs to restart. 

2. The Business Logic Processor maps both 

of the input files in memory and reads 

new messages as they arrive. In such ar-

chitecture, this component is usually 

very efficient and very lightweight, in 

order to keep up with the gateways. In 

practice, the gateways will always be 

slower due to their interaction with the 

network, so the business logic processor 

will be able to read the input messages 

while they are still mapped in memory, 

keeping the page faults to a minimum. 

The results of the processing are written 

to another memory-mapped file. 

3. Different components running in parallel 

will map the output file in memory and 

process the results written by the Busi-

ness Logic Processor. 

As seen above, no explicit persisting of the 

data is required throughout the process flow, 

except for storing data for reporting purpos-

es. The operating system will automatically 

update the underlying memory-mapped files 

on the disk once the mapped memory region 

is changed throughout the execution of the 

program. This yields ultra-low latencies, 

since all I/O operations are performed at op-

erating system level. Moreover, by pro-

cessing most of the tasks in parallel, and by 

having fast consumers that help reduce the 

number of page faults, the system is able to 



Informatica Economică vol. 17, no. 3/2013  73 

DOI: 10.12948/issn14531305/17.3.2013.06 

achieve ultra-high performance. 

 

6 Conclusions and Further Research 

Java technology has been successfully used 

by many large-scale high performance appli-

cations throughout many industries. Howev-

er, software developers have faced some in-

trinsic limitations of the Java platform which 

prevent applications from meeting the rigors 

imposed by the financial market place. Chief 

among these limitations are the pauses 

caused by the garbage collector and the 

slowness of program execution. Achieving 

ultra-low latencies and high throughput using 

Java is not unfeasible and, with proper con-

figuration of the runtime environment, and a 

careful application design, it is possible to 

overcome these limitations. This paper has 

presented a summary of the most important 

measures that can be taken on the Java Virtu-

al Machine configuration and the Java appli-

cation itself in order to optimize for ultra-

high performance. In the last part of the pa-

per, two efficient architectures have been 

presented. They make use of parallelism and 

implement alternative data structures for 

passing data between components. Initial 

tests have shown that these architectures per-

form better than the traditional systems under 

all conditions tested. Our ongoing research 

aims to explore the performance characteris-

tics of the proposed system architectures and 

to identify key points for further increasing 

their performance. 

 

References 

[1] A. R. Schwartz, R. Francioni, Equity 

Market in Action (The Fundamentals of 

Liquidity, Market Structure & Trading), 

John Wiley & Sons, Inc., 2004 

[2] I. H. Kazi, H. H. Chen, B. Stanley, D.J. 

Lilja, “Techniques for Obtaining High 

Performance in Java Programs”, ACM 

Computing Surveys, 2000 

[3] S. M. Blackburn, P. Cheng, and K. S. 

McKinley, “Myths and Realities: The 

Performance Impact of Garbage Collec-

tion”. Proceedings of the ACM Confer-

ence on Measurement & Modeling Com-

puter Systems, pages 25–36, ACM, New 

York, 2004. 

[4] Oracle, “The Java HotSpot Performance 

Engine Architecture”, white paper, 

http://www.oracle.com/technetwork/java/

whitepaper-135217.html 

[5] Oracle, “Java SE 6 HotSpot Virtual Ma-

chine Garbage Collection Tuning”, tech-

nical paper, 

http://www.oracle.com/technetwork/java/

javase/gc-tuning-6-140523.html 

[6] M. Mühlberger, “Alternative Trading 

Systems: A Catalyst of Change in Securi-

ties Trading”, Deutsche Bank Research, 

2005 

[7] L. Harris, Trading and Exchanges, Ox-

ford University Press, Oxford, 2003  

[8] Cinnober Financial Technology AB, “The 

Benefits of Using Java as a High-

Performance Language for Mission Criti-

cal Financial Applications”, white paper, 

2012 

[9] Sun Microsystems, Inc., “Building a Low 

Latency Infrastructure for Electronic 

Trading”, white paper, 2009 

[10] CDW LLC, “High-Performance Compu-

ting: Capital Markets”, white paper, 2012 

[11] Cinnober Financial Technology AB, 

“Latency”, white paper, 2009 

[12] P. Lawrey, “When Using Direct 

Memory Can Be Faster”, technical arti-

cle, 2012, 

http://vanillajava.blogspot.ro/2012/11/w

hen-using-direct-memory-can-be-

faster.html 

[13] C. Terboven, D. an Mey, D. Schmidl, H. 

Jin, T. Reichstein, "Data and Thread Af-

finity in OpenMP Programs", Proceed-

ings of the 2008 workshop on Memory 

access on future processors: a solved 

problem?, pages 377-384, ACM, New 

York, 2008  

[14] T.E. Jeremiassen, S.J. Eggers, “Reduc-

ing False Sharing On Shared Memory 

Multiprocessors Through Compile Time 

Data Transformations”, ACM, Vol. 30, 

No. 8, 1995 

[15] M. Thompson, D. Farley, M. Barker, P. 

Gee, A. Stewart, “High Performance Al-

ternative To Bounded Queues For Ex-



74  Informatica Economică vol. 17, no. 3/2013 

DOI: 10.12948/issn14531305/17.3.2013.06 

changing Data Between Concurrent 

Threads”, technical paper, LMAX Ex-

change, 2011 

[16] G. Tene, “Java without the Jitter: 

Achieving Ultra-Low Latency”, white 

paper, Azul Systems, 2013 

[17] G. Back, W. Hsieh, “Drawing the Red 

Line in Java”, Proceedings of the Seventh 

Workshop on Hot Topics in Operating 

Systems, pages 116-121, IEEE, 1999 

 

 

Ionuţ-Alexandru LIXANDRU graduated from the Bucharest Academy of 

Economic Studies in 2008. He is a Ph.D. candidate in the field of Economic 

Informatics at the Bucharest Academy of Economic Studies. Alexandru is 

currently working at the Bucharest Stock Exchange, as a Software Developer 

within the Trading System Development department. Previously he has been 

for 5 years with TechTeam Global within the Global Business Applications 

department. His main areas of interest are system integrations, web technolo-

gies, and low-latency trading systems. 

 


