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The main aim of the paper is to briefly investigate the most significant topics of the currently 

used methodologies of solving and implementing SVM-based classifier. Following a brief in-

troductory part, the basics of linear SVM and non-linear SVM models are briefly exposed in the 

next two sections. The problem of soft margin SVM is exposed in the fourth section of the paper. 

The currently used methods for solving the resulted QP-problem require access to all labeled 

samples at once and a computation of an optimal solution is of complexity O(N
2
). Several ap-

proaches have been proposed aiming to reduce the computation complexity, as the interior 

point (IP) methods, and the decomposition methods such as Sequential Minimal Optimiza-

tion – SMO, as well as gradient-based methods to solving primal SVM problem. Several ap-

proaches based on genetic search in solving the more general problem of identifying the op-

timal type of kernel from pre-specified set of kernel types (linear, polynomial, RBF, Gaussian, 

Fourier, Bspline, Spline, Sigmoid) have been recently proposed. The fifth section of the paper 

is a brief survey on the most outstanding new techniques reported so far in this respect.  
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Introduction 

Support Vector Machines (SVMs) belong 

to the class of most effective and popular 

classification learning tools [1], [2]. The 

learning problem for SVMs can be briefly 

described as follows. Let us denote by S a 

system of unknown input-output dependency, 

the unknown dependency being of determin-

istic/non-deterministic, linear/non-linear type. 

Besides, it is possible that the output is in-

fluenced by the observable input as well as a 

series of unobservable latent factors. Being 

given the lack of information about the in-

put-output dependency of S, the most rea-

sonable modeling should be in probabilistic 

terms. Unfortunately, in real world problems, 

there is no information about the underlying 

joint probability distribution corresponding 

to the (possible) non-linear dependency 

 xfy   between the high dimensional 

space of inputs x and the output space of S. 

The estimates of the unknown input-output 

dependency are obtained by a supervised dis-

tribution-free method, on the basis of a finite 

size training set consisting of input-output 

pairs of observations. The SVM methods be-

long to the classification class in the sense 

that the output space of it is a two-valuate 

domain, conventionally denoted by       . 
Accordingly, a SVM can be viewed as a 

classifier discriminating between the inputs 

coming from two classes and the training set 

corresponds to a sequence of labeled inputs. 

In spite of the fact that initially the people 

involved in the field of statistical machine 

learning believed that the SVM approaches 

are mostly of a theoretical value, the devel-

opments based on SVMs proved significant 

qualities from applicative perspective. So far 

a tremendous volume of efforts have been 

invested in research concerning SVMs, lead-

ing to a long list of publications in this area.  

From mathematical point of view, the core 

problem of learning SVM is a quadratic pro-

gramming problem [1], [3]. The research in 

the SVMs area focused mainly on designing 

fast algorithms for solving the QP optimiza-

tion problem, refining the concepts aiming to 

extend the SVMs for discriminating between 

non-separable classes, and on developing 
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mixture models resulted by combining the 

SVM with boosting type techniques [4].   

The main aim of the paper is to briefly inves-

tigate the most significant topics of the cur-

rently used methodologies of solving and 

implementing SVM-based classifier. Fol-

lowing a brief introductory part, the basics of 

linear SVM and non-linear SVM models are 

briefly exposed in the next two sections. The 

problem of soft margin SVM is exposed in the 

fourth section of the paper.  

The currently used methods for solving the 

resulted QP-problem require access to all la-

beled samples at once and a computation of 

an optimal solution is of complexity O(N
2
). 

Several approaches have been proposed 

aiming to reduce the computation complexity, 

as the interior point (IP) methods, and the 

decomposition methods such as Sequential 

Minimal Optimization – SMO, as well as 

gradient-based methods to solving primal 

SVM problem. Several approaches based on 

genetic search in solving the more general 

problem of identifying the optimal type of 

kernel from pre-specified set of kernel types 

(linear, polynomial, RBF, Gaussian, Fourier, 

Bspline, Spline, Sigmoid) have been recently 

proposed. The fifth section of the paper is a 

brief survey on the most outstanding new 

techniques reported so far in this respect.  

 

2 The Basic Linear SVM Model  

Let us assume that the inputs of S are repre-

sented by the values of n pre-specified attrib-

utes, that is the input space can be taken as 

  , therefore the sequence of observations 

on input-output dependency of S can be rep-

resented as 

    Niiyn
ixiyix  1,1,1,R,,S , 

where for each component   Sii yx , , iy is 

the output of S as the response to the input ix . 

We say that S  is linearly separable if there 

exists a hyperplane that correctly separates 

the positive inputs from the negative ones. 

Obviously, since S is a finite set, if it is 

linearly separable, then the family of cor-

rectly separable hyperplanes is infinite. From 

intuitive point of view, being given the fact 

that the only information concerning the un-

known input-output dependency of S is rep-

resented by the finite set S , in order to as-

sure good generalization capacities, the 

hyperplane should be as equidistant as possi-

ble to the positive and negative examples. 

The linear SVM implements a linearly pa-

rameterized classification decision rule, cor-

responding to a hyperplane almost equidis-

tant to the subsamples labeled by 1 and -1 

respectively. The classification decision rule 

is given by 

                 ,           












0,1

0,1

**

**

bxw

bxw

T

T

, 

where the parameters         should be 

such that the hyperplane of equation 

  0*
,

* xh
wb

 separates the positive and the 

negative training examples from S  with 

the largest “gap” between them (optimal 

margin linear classifier). 

From mathematical point of view, an optimal 

margin classifier is a solution of the quadratic 

programming (QP) problem [1] 

 







 Nibxwy

w

i
T 1,1
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1
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The dual problem of (1) is a QP problem on 

the objective function 
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If  TN
**

2
*

1
*

,...,,    is a solution of 

(2), then the optimal value of the parameter w 

is 



N

i

iii xyw
1

**  . If   
    for some i, 
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then    is called a support vector. The bias 

term b cannot be determined by solving the 

SVM problem (1), a convenient choice of b 

being expressed in terms of the support vec-

tors and 
*w as follows. 

According to the Karush-Kuhn-Tucker (KKT) 

complementarity conditions  

Nibxwy i

T

ii 















 1,01

**  
 

hence the value of the parameter b should be 

such that 1
*

i 







bxwy i

T
holds for any 

support vector   . Also, taking into account 

the constraints of (1), the value of the bias b 

should be set such that 1
*









bxwy i

T

i  

holds for all examples, that is 

i

T

iy
i

i

T

iy
i

xwbxw *

1

*

1

max1min1



 . Taking 

b as the middle of the interval, the parameters 

of the classification decision rule *
,

* wb
h  are 

        where  
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(3) 

 
 

3 The Non-Linear SVM 

Usually, in real world problems, there is no 

enough evidence to set suitable models for 

the classes of interest, the whole information 

concerning them being contained in the set of 

samples 

    Niiyn
ixiyix  1,1,1,R,,S  

and it is either very difficult or even impossi-

ble to check whether S is linearly separable.  

Moreover, even when S  happens to be 

linearly separable, there are no reasons to 

assume that the provenance classes are also 

linearly separable. Consequently, in case the 

provenance classes are not linearly separable, 

the use of any classification decision rule 

based on a linear-type approach would lead 

to poor results when it classifies new test da-

ta.    

In order to cope with such a possibility, a 

non-linear transform of the given data onto a 

new space are hoped to provide more infor-

mation about the provenance classes, there-

fore the parameters of a classification deci-

sion rule would be better tuned to separate 

the data coming from these classes, the ideal 

case being to find a non-linear transform 

such that in the new space the classes are 

linearly separable. Obviously, being given 

the finite type description of the classes rep-

resented by S , it is impossible to guarantee 

that the classes are indeed linearly separable 

in the new space, therefore we at most could 

hope that S becomes linearly separable. In 

such a case, the main problem is to formulate 

an option concerning the functional expres-

sion of a particular non-linear transform 

without increasing significantly the computa-

tional complexity.  

From mathematical point of view, the 

non-linear transform is a vector valued func-

tion       , the image of S  in the 

space   being given by the set of new rep-

resentations of the given data 

     Niiyn
ixiyixg  1,1,1,R,,gS

. The transform g is referred as a feature ex-

tractor, and   is called the feature space, its 

dimension being not necessarily finite.  

Assuming that the g
S  is at least “almost 

linearly separable”, it appears quite natural to 

use a linear classifier in the feature space, the 

separating surface in   between the images 

of the provenance classes being a hyperplane 

of equation   0bxgwT
. Consequently, 

we get a non-linear classifier of particular 

type, where the decision rule combines a pa-

rameterized expression of linear type to a 

non-linear dependency of the values of the 

initial attributes of the form,  

wbh ,  1,1R: n ,  

  xh wb ,

 

 









0,1

0,1

bxgw

bxgw

T

T

. 

Note that the expression of wbh , can be 

viewed as a combination of a linear filter de-
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fined by the parameters R,R  bw m  and 

the non-linear filter represented by g.     

The performance of the resulted classifier is 

essentially determined by the quality of the 

feature extractor g, the main problem be-

coming the design of a particular informa-

tional feature extractor. Another problem is 

related to the computational complexity in-

volved by the estimation process of the clas-

sifier parameters and the classification of 

new data. The “kernel trick” provides a solu-

tion to these problems. It consists in selecting 

a function K that “covers” the explicit func-

tional expression of g, therefore the evalua-

tion of wbh ,  is performed exclusively in 

terms of K. Since g is “hidden” by K, the re-

sulted feature space cannot be explicitly 

known, therefore its dimension may be even 

infinite. The core result in approaches of this 

type is the celebrated theorem due to Mercer 

[3], [5]. According to this results, if 

K:R
n
xR

n
→  ,0  is a continuous symmetric 

function, the existence of a function g such 

that for any ', xx R
n
 ,      '', xgxgxxK

T
  

holds, is guaranteed in case K satisfies a set 

of quite general additional conditions.  

Some of the most frequently used kernels are 

presented in Table 1. 

 

Table 1. Examples of kernels 

  ', xxK  

Linear 'xx T  
Polynomial of degree d   11  dxx

dT ,'  

Gauss RBF    0
2

  ,'exp xx  

Exponential RBF   0  ,'exp xx  

Since g
S  is finite, in case it is linearly sep-

arable in the space  , there are an infinite 

number of classifiers wbh ,  
that separate the 

given data without errors. Let us assume that 

for a selected kernel K, g
S  is linearly sepa-

rable. Then we could search for a linear clas-

sifier in   that  offers the best generaliza-

tion capacity in the sense that it still classifies 

at least “almost correctly”, new, unseen yet 

examples. This requirement may be formu-

lated as the task to determine the parameters 

 bw,  such that the hyperplane of equation 

  0, xh wb  is as equidistant as possible to 

all images of the training data in the feature 

space, therefore it is aimed to separate the 

examples of g
S  with the largest “gap” be-

tween positive and negative examples. Such 

a classifier is referred as an optimal margin 

classifier.  

Stated in mathematical terms, the problem is 

formulated as follows. Let K be a kernel and 

g be the induced feature extractor, 

     '', xgxgxxK
T

 . An optimal margin 

classifier is a solution of the constrained QP 

problem [3], 

  







 Nibxgwy

w

i
T 1,1

2

1
minimize

i

2

   (4) 

its corresponding dual problem being the 

constrained QP problem imposed on the ob-

jective function  Q , 
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According to the developments presented in 

the previous section, if 

 TN
**

2
*

1
*

,...,,    is a solution of (5), 

then the optimal parameters are 
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
N

i

iii xgyw
1

**  , and  
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
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1
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2
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Note that although apparently the parameters 

depend on the hidden feature extractor g, the 

resulted classifier is based exclusively on the 

values of the particular selected kernel, 

                ,           
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4 Soft Margin SVM 

The aim of the developments presented in 

this section is to present a modified approach 

in order to cope with cases when the particu-

lar kernel fails to extract enough information 

from data to discriminate without errors be-

tween the positive and negative examples, 

that is Sg is not linearly separable in  . In 

such a case we could search for a classifier 

hb,w that classifies at least “as correct as pos-

sible” the data. This idea can be formulated 

in mathematical terms as follows. 

Let g be a particular feature extractor and 

      
        ,  
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a classifier of parameters w and b.  

We include in the model a set of slack varia-

bles 
N ,...,1

, defined by 

   bxgwyi i
T  i1,0max . Obviously, 

for any misclassified example  
iyix , , the 

value of i  expresses the magnitude of the 

error committed by hb,w with respect to 

 
iyix , . The overall importance of the cu-

mulated errors is expressed as 
















N

i

t
iF

1

 , 

where F is a convex and monotone increasing 

function and t>0 is a weight parameter.  

An optimality criterion can be expressed in 

terms of an objective function that combines 

additively 
2

w with the overall effect of the 

errors, for instance 













 



N

i

t
iCFw

1

2

2

1
 .  

In this case an optimal classifier (w
*
,b

*
) is a 

solution of the constrained QP-problem 
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where C is a conventionally selected con-

stant.  

Unfortunately, stated in this general form, the 

problem (8) cannot be solved, but, for partic-

ular functional expressions of F and the 

weight parameter t, its solution can be com-

puted explicitly. The simplest model uses 

F(u)=u and t=1, the problem (8) becoming 

the constrained QP-problem 
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Using similar arguments as in case of (1), the 

dual QP-problem of (9) is  
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The parameters of an optimal hyperplane are  
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where  TN

**** ,...,,  21  is a solution 

of (10) and the expression of the decision 

function of the classifier is given by (7). 

 

5 Methods of Learning Parameters of 

SVMs 

As it was pointed out in the previous sections, 

the support vector machines are a class of 

linear or kernel-based binary classifiers that 

attempt to maximize the minimal distance 

between each member of the class and sepa-

rating surface. In most cases, the task of 

learning a support vector machine is cast as a 

constraint quadratic programming problem. 

The currently used methods for solving the 

resulted QP-problem require access to all la-

beled samples at once and a computation of 

an optimal solution is of complexity O(N
2
). 

Several approaches have been proposed 

aiming to reduce the computation complexity, 

as the interior point (IP) methods [6], and the 

decomposition methods such as Sequential 

Minimal Optimization – SMO [7], as well as 

gradient-based methods to solving primal 

SVM problem. These methods exhibit con-

vergence rate independent of the number of 

samples, which particular useful in case of 

large datasets. 

A long series of generalizations and im-

provements have also been recently proposed 

by many authors. For instance, in [8] a paral-

lel version of SMO is proposed to accelerate 

the SVM training. Also, boosting algorithms 

were proved to be closely related to the pri-

mal formulation for SVM [9]. 

IP methods cast SVM learning formulated as 

a QP-problem subject to linear constraints by 

replacing the constraints with a barrier func-

tion yielding to a sequence of unconstrained 

problems which can be optimized efficiently 

using Newton or Quasi-Newton methods. To 

overcome the quadratic memory requirement 

of IP methods, several decomposition meth-

ods such as SMO [7], SVM
light 

[10], and 

SVM-Perf [11] switch to the dual representa-

tion of the SVM QP optimization problem 

and employ an active set of constraints thus 

working on a subset of dual variables. The 

algorithms belonging to this family are fairly 

simple to implement and entertain good as-

ymptotic convergence properties, but the 

time complexity is typically super linear in 

the training set size N. Moreover, since de-

composition methods aim to maximize the 

dual objective function, they often result in a 

rather slow convergence rate to the optimum 

of the primal objective function.  

The SMO algorithm [7] allows to solve the 

SVM-QP dual problem without extra-matrix 
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storage. The idea is to use the Osuna’s theo-

rem [12] for decomposing the overall QP 

problem into smaller size QP sub-problems, 

the smallest size optimization problem being 

solved at each step.  

Unconstrained gradient methods were very 

common in solving optimization problems 

until the emergence of the ultra-fast IP 

methods. While gradient –based methods are 

known to exhibit slow convergence rate, the 

computational demands imposed by large 

scale classification and regression problems 

of high dimension feature space revived the 

theoretical and applied interest in gradient 

methods.  

A refined method combining gradient ascent 

algorithm with decomposition scheme in-

cluding heuristic parameters for solving the 

dual problem of nonlinear SVM was intro-

duced in [13], [14]. The proposed refinement 

consists of the use of heuristically established 

weights in correcting the search direction at 

each step of the learning algorithm that 

evolves in the feature space. The use of 

weights is justified by the idea of getting 

better tuning effect to the particular training 

sequence. The tests pointed out good con-

vergence properties and, moreover, the pro-

posed modified variant proved higher con-

vergence rates as compared to the Platt’s 

SMO algorithm. 

The main objectives of the research were to 

evaluate the influence of magnitude of the 

exponential RBF kernel parameter on the 

number of iterations required to obtain sig-

nificant accuracy, as well as on the magni-

tude of the inter-sample distance, and sample 

variability and separability degrees. The ex-

perimental analysis aimed also to derive con-

clusions on the recognition rate as well as on 

the generalization capacities. All linear clas-

sifiers proved almost equal recognition rate 

and generalization capacities, the difference 

being given by the number of iteration re-

quired for learning the separating 

hyperplanes.   

The tests pointed out that the variation of the 

recognition rates depends also on the inner 

structure of the classes from which the 

learning data come as well as on their sepa-

rability degree. Consequently, the results are 

encouraging and entail future work toward 

extending these refinements to multi-class 

classification problems and approaches in a 

fuzzy-based framework. 

The Pegasos (Primal Estimated sub-GrAdient 

SOlver for SVM) algorithm [15] is an im-

proved stochastic sub-gradient method that 

uses fixed size subsamples of the training set 

to compute approximate sub-gradient, two 

concrete algorithms that are closely related to 

the Pegasos algorithm being the NORMA 

algorithm [16] and a stochastic gradient al-

gorithm proposed by Zhang [17]. At it is re-

ported in [15], on the basis of a large series 

of tests, the Pegasos algorithm is substantial-

ly faster than SVM-Perv. 

Boosting is a meta-algorithm for supervised 

learning that combines several weak classifi-

ers that can label examples only slightly bet-

ter than random guessing into a single strong 

classifier with far better classification accu-

racy. Some of the most successful boosting 

methods in problems as text recognition, fil-

tering, feature selection and face recognition 

are AdaBoost and its variants [18], [19].    

Recently, a new boosting type algorithm 

based on Pegasos and stochastic gradient de-

scent-based SVM training method was pro-

posed and its performance was experimen-

tally evaluated  for both the linear and the 

kernel-based case [4]. The algorithm is a 

two-phases SVM allowing the use of gradi-

ent descent-based methods without the need 

to fine-tune the kernel parameters. A long 

series of tests proved that the algorithm is 

much more efficient than the kernel-based 

SVM algorithms, both in terms of computing 

and storage requirements, due to the fact that 

each weak classifier requires only a single 

inner product calculation, while the evalua-

tion of kernel expansion terms involved by 

the use of NORMA and Pegasos algorithms 

are substantially more computationally ex-

pensive to achieve the same accuracy levels. 

Also, the combination of boosting and online 

SVM training has the potential to create effi-

cient algorithms that outperform standard 

training algorithms when the kernel parame-

ters are not known.  
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Moreover, one of the core problem in im-

proving the efficiency of the classifier is to 

identify the optimal types of kernels and for 

each type of kernel its optimal parameters 

and then apply the standard techniques for 

solving the resulted QP problem. In other 

words, in these approaches, the problem is to 

tune the type of kernel together with its pa-

rameters to the particular problem at hand. In 

[14] is reported an experimental analysis on 

the parameter   of the RBF type kernels, the 

tests being performed on simulated data. 

Several approaches based on genetic search 

in solving the more general problem of iden-

tifying the optimal type of kernel from 

pre-specified set of kernel types (linear, pol-

ynomial, RBF, Gaussian, Fourier, Bspline, 

Spline, Sigmoid) were reported in [20] and 

[21].  

A new class of approaches contains algo-

rithms, referred as Genetic Algorithms-SVM 

(GA-SVM or GSVM), and Hybrid Genetic 

Algorithms SVM (HGA-SVM). In the novel 

HGA-SVM model [20], the type of kernel 

and the parameters of SVM are dynamically 

optimized by implementing an evolutionary 

process, the approach simultaneously deter-

mining the appropriate type of kernel func-

tion and optimal kernel parameter values for 

optimizing the SVM model to fit various da-

tasets. The types of kernel functions (RBF 

kernel, polynomial kernel and linear kernel) 

together with all the values of the parameters 

are directly encoded into the chromosomes 

using integers and real-valued numbers re-

spectively. Therefore each chromosome is 

represented by a triple whose entries are the 

particular type of kernel function, and the 

first and second parameter values in this par-

ticular chromosome in population respec-

tively, the type of the kernel being repre-

sented by an integer number, the second and 

the third parameters coded in terms of real 

valued numbers. The proposed model can 

implement either the roulette-wheel or the 

tournament method for chromosome selec-

tion. The chromosomes are modified using 

the crossover operator and boundary muta-

tion method introduced by Adewuya [22], the 

method being of elitist type in the sense that 

only the one best chromosome in each gener-

ation is allowed to survive in the succeeding 

generation.    

In [21] the GSVM algorithm was applied for 

effective detection of the Doppler heart 

sounds. The GSVM algorithm is a genetic 

algorithm-based SVM classification tech-

nique defined in terms of a kernel function 

type, kernel function parameters, and the soft 

margin constant C that represents the penalty 

parameter of support vector machine classi-

fier. The proposed model uses a 28-bits 

chromosome, grouped as follows. The genes 

of the first group are the kernel function type 

represented by 3 bits, the value of the C pa-

rameter (3 bits), the value of Gaussian kernel 

parameter (7 bits). The genes belonging to 

the second set represent the value of the pol-

ynomial kernel parameter (2 bits), the value 

of the Sigmoid kernel parameter (2 bits), the 

value of the Bspline kernel parameter (2 bits). 

The next group of genes encode the value of 

the RBF (7 bits) and the value of the Fourier 

kernel parameter (2 bits). The fitness func-

tion used in GSVM is based on classification 

accuracy of the trained SVM classifier, the 

initial population consisting of 30 chromo-

somes, each of chromosomes having 28 bits. 

The new populations are generated in the 

search initiated by the GSVM algorithm us-

ing the crossover and mutation operations. 

The most important 15 chromosome in pop-

ulation are saved for composing the next 

population, the chromosomes that have low 

fitness values being eliminated. A subsample 

of 40% portion of the optimum chromosomes 

are randomly selected and subjected to 

crossover operator. Therefore 10 chromo-

somes are subjected to crossover operator, 5 

bits of the each of the random 2 chromo-

somes are randomly selected and replaced 

each other, yielding to a 10 new chromo-

somes. The bit inversion method is used as a 

mutation operator and it is applied to 0.4% 

portion of the total bits numbers of other 5 

chromosomes.  

 

6 Conclusions 

Support Vector Machines are maybe the 

most effective and popular classification 
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learning tool, the task of learning a SVM be-

ing cast as a constrained QP-problem. The 

respective dual problem is also a constrained 

QP-problem whose solution can be approxi-

mated by an adaptive learning scheme to as-

sure the maximization of the objective func-

tion. One of the main benefits of SVMs is 

their ability to incorporate and construct 

non-linear predictors using kernels which 

satisfy Mercer’s conditions, the common ap-

proach for solving the optimization problem 

for SVM when kernels are employed being to 

switch to the dual problem and find the op-

timal set of dual variables. The performance 

of the resulted classifier is essentially condi-

tioned by the quality of the feature extractor 

induced by the selected kernel. The most 

frequently used kernels belong to polynomial 

class, or are of exponential type, as for in-

stance Gaussian kernels.    

Some of the trends in optimizing the learning 

process of SVM-based classifier aim to de-

sign hybrid architectures and to develop 

methods “tuned” to the particular problem by 

including special tailored genetic algorithms.  
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