
84 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.07

SOA based Data Architecture for HTML5 Web Applications

Cătălin STRÎMBEI

Al. I. Cuza University of Iasi, Faculty of Economics and Business Administration

Department of Business Information Systems

linus@uaic.ro, catalin.strimbei@gmail.com

Web Services based architectures have already been established as the preferred way to

integrate SOA specific components, from the front-end to the back-end business services. One

of the key elements of such architecture are data-based or entity services. In this context, SDO

standard and SDO related technologies have been confirmed as a possible approach to

aggregate such enterprise-wide federation of data services, mainly backed by database

servers, but not limited to them. In the followings, we will discuss an architectural purpose

based on SDO approach to seamlessly integrate presentation and data services within an

enterprise SOA context. This way we will outline the benefits of a common end-to-end data

integration strategy. Also, we will try to argue that using HTML5 based clients as front end

services in conjunction with SDO data services could be an effective strategy to adopt the

mobile computing in the enterprise context.

Keywords: SDO-Service Data Objects, Data Access Services, HTML5, Web Services, Cloud

Computing, SQL, Data Integration, Mobile Computing

Introduction: Data Architectures and

Enterprise Mobile Computing

Although Service Oriented Architecture

(SOA) have became a well established and

widely acknowledged computing paradigm,

its proliferation into the enterprise

environment still struggles to resolve some

crucial issues as heterogeneous data source

integration. In fact, an entire class of SOA

services is responsible with the data level and

most often these are known as entity

services. Their most obvious function is to

abstract and then to integrate different data

source providers (mostly database servers)

across the enterprise, often very distinctive in

their internal nature [1:293-323].

As such, the Enterprise Data Source

Integration [2] process ultimately assumes

some kind of global and centralized data

model, but in a decoupled, transparent and

technologically independent manner. This

process could be regarded as a Federative

Data Integration strategy that assumes two

aspects:

● schema integration/denomination: the

data services will use a common meta-

data layer to describe composite data

structures, integrity rules and quality

rules, that will hide the schema

complexities and manage the changes of

the data structures in evolution;

● actual data integration: the data services

will use a common data type system to

operate on the data coming from a wide

range of heterogeneous data sources. This

data type system will provide a common

data format layer that will hide the

specific data formats and manage their

changes in evolution.

The Service Data Objects (SDO) based

approach to integrate data services could be

easily extend-able to standardize service-

data-based communication across the entire

SOA stack, as in Figure 1. The “traditional”

web presentation services, heavily based on

server-side computing, seem to be a natural

fit, but the adoption of the HTML5-based

autonomous applications, easy to deploy in

mobile computing context, might prove to be

a very promising approach.

1

http://h
http://h

Informatica Economică vol. 17, no. 2/2013 85

DOI: 10.12948/issn14531305/17.2.2013.07

Fig. 1. SDO-based Data Integration Architecture

In short, SDO is just another standardized

specification aimed to handle data across

multiple heterogeneous data source types.

Among the most interesting characteristics of

the SDO programming model [3], [4] we

could mention:

● offers a common platform to standardize

access across heterogeneous data source

types;

● offers support for both static and dynamic

data types; also SDO data model is

grounded on data-graphs which do not

consist only into a single data set, but into

a cluster of data-sets containing inter-

referenced data-objects;

● offers support to query, update, and to

introspect data: SDO data structures are

strong typed by separated metadata

objects that come along with data-graphs;

moreover, the SDO data model defines a

special kind of transactional structures,

named data object sequences, to describe

CRUD changes on interchangeable data

objects;

● offers clean separation model of

application code from data access code;

● uses a feature-rich, very adaptive XML

based data type format.

The mobile computing paradigm proliferated

in the consumer area, but still struggles in the

enterprise area. In our opinion, the following

issues could represent some key aspects to

overcome this blocking stage in the mobile

enterprise evolution:

● adopting a common access and

processing paradigm to enterprise data

(as in SOA);

● building feasible frameworks and

architectures to develop presentation

layer services across multi-device

environments (as could be HTML5).

Anyone could note that the SOA approach

already provides some reasonable answers to

the first issue, but regarding the second one,

many authors consider that the new HTML5

framework for web applications will

represent one of the most prolific

environments for the next generation of

mobile applications taking into consideration

the followings [5],[6],[7],[8]:

● the new HTML standard was headed to

support multiple environments: desktop

and mobile;

● there is already a strong mobile browser

support to HTML5, taking into

consideration HTML5 Mobile

Frameworks like jQueryMobile

(http://jquerymobile.com/), Jo

(http://www.joapp.com/), Sproutcore

86 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.07

(http://sproutcore.com/) or SenchaTouch

(http://www.sencha.com/products/touch);

● HTML5 based applications could inherit

the enterprise maturity of the existing

web based computing frameworks;

● HTML5 proposes an improved

Communication API and a new

WebSocket protocol to integrate with

business backend;

● in the HTML5 specs there are many other

new and interesting capabilities like local

storage, offline web applications,

improved AJAX communication API,

etc.

Consequently, the new HTML5 standard

could represent a solid enterprise mobile

computing foundation and a feasible path

towards the proliferation of this kind of

applications.

In the context of SOA and SDO marriage to

effective integration of entity services, we

will try to prove that the same SDO based

integration approach could be used to

achieve the integration of the HTML5-based

presentation services with the enterprise data

services. In figure 2 we have tried to envision

a conceptual and synthetic perspective of

such architecture.

Fig. 2. SDO-based Conceptual Architecture for HTML5 based application

2 Server Side Architecture with SDO Data

Services
At conceptual level, our vision concerning

SDO potential to leverage data integration

efforts is structured as a construction with

three, partial concentric, levels (see figure 3):

● Core-DIA (Data Interchange

Architecture) covering the reference

data models formalized on SDO

specifications;

● DAS-DIA (Data Information

Architecture) covering the data

interoperability protocols intra, inter

and outer enterprise context, based on

SDO data interchange specifications;

● E-DIA (Enterprise Data Integration

Architecture) covering the enterprise

view on data access services integrated

at DAS-DIA level using SDO standard.

Fig. 3. SDO-based Architectural Layers

http://sproutcore.com/
http://www.sencha.com/products/touch

Informatica Economică vol. 17, no. 2/2013 87

DOI: 10.12948/issn14531305/17.2.2013.07

Consequently, Core-DIA represents the key

layer as the foundation to the entire

integration infrastructure to be used among

the enterprise-internal data services and

further to internal or external presentation

services, as mobile and autonomous HTML5

applications will be.

Our efforts to build a feasible Core-DIA

layer yielded an architecture who’s the most

important components are rendered in Figure

4.

Fig. 4. SDO Data Integration Architectural Components

88 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.07

To preserve the objective of achieving a

SDO-based, dynamic, versatile and

straightforward data integration model, we

had to manage a complex of Java based

technologies like Javaasist (to introduce

dynamics into otherwise static and strong

typed Java context), JDBC (to get a

straightforward connection with SQL data

source), JAXB (to convert Java beans to

XML format), Eclipse-Link as an open

source implementation of SDO standard.

Our first concern was to provide the

possibility to work with dynamic typed data

objects, a feature uncommon to most Java

business applications. For this purpose we

have used a special Java library to

manipulate or to generate Java bytecode at

runtime. Listing 1 tries to show how, starting

from a collection containing field names,

we’ve build a dynamic data type schema.

Listing 1. Generating Dynamic Data Object Types
public static Class getBeanClass(String beanName, Set<String> classFields)
throws Exception {
 // Create dynamic class
 ClassPool pool = ClassPool.getDefault();
 CtClass cc = null;
 try{
 cc = pool.get(beanName);
 return Class.forName(beanName);
 }
 catch(javassist.NotFoundException ex){
 cc = pool.makeClass(beanName);
 cc.setSuperclass(pool.get("org.open.core.GenericType"));
 }
 // Decorate with properties
 CtField field = null;
 String getterName = null;
 String setterName = null;
 CtMethod getter = null;
 CtMethod setter = null;
 for (String fieldName: classFields){
 field = CtField.make("private Object " + fieldName + ";", cc);
 cc.addField(field);
 getterName = "get" + fieldName.substring(0, 1).toUpperCase()
 + fieldName.substring(1);
 getter = CtNewMethod.getter(getterName, field);
 cc.addMethod(getter);
 setterName = "set" + fieldName.substring(0, 1).toUpperCase()
 + fieldName.substring(1);
 setter = CtNewMethod.setter(setterName, field);
 cc.addMethod(setter);
 }
 return cc.toClass();
}

Further we struggled to create or initialize the

actual dynamic Java objects using the

dynamic types from generated above. Listing

2 shows two sampling collections, one

containing the property names and the other

containing the actual values, and, finally,

how to get, in first instance, a dynamic Java

data bean, and further an entire Java data

bean collection.

Listing 2. Generating Dynamic Java Data Beans
// Getting a dynamic data bean from a list of property values
public static Object getDynamicTypeInstance(Set<String> propList,
 List<Object> propBeanValues, Class dynaClass)
 throws Exception {
 Object bean = dynaClass.newInstance();
 Iterator<String> propListIterator = propList.iterator();
 Iterator<Object> propBeanValuesIterator = propBeanValues.iterator();
 String propBean;
 Object propValue;
 while (propListIterator.hasNext() && propBeanValuesIterator.hasNext()){
 propBean = propListIterator.next();
 propValue = propBeanValuesIterator.next();
 setPropertyValue(bean, propBean, propValue);

Informatica Economică vol. 17, no. 2/2013 89

DOI: 10.12948/issn14531305/17.2.2013.07

 }
 return bean;
}
// Getting a dynamic data bean from an array of property values
public static Object getDynamicTypeInstance(Set<String> propList, Object[]

propBeanValues,Class dynaClass)
 throws Exception {
 List<Object> propBeanValuesList = new ArrayList<Object>();
 for (Object propValue: propBeanValues){
 propBeanValuesList.add(propValue);
 }
 return getDynamicTypeInstance(propList, propBeanValuesList, dynaClass);
}
// Getting a dynamic data bean collection
public static List<Object> getDynamicTypeInstances(Set<String> propList, List<Object[]>

propBeansValues)
 throws Exception {
 Class dynaClass = getBeanClass(DYNAMIC_CLASS_NAME, propList);
 List<Object> beans = new LinkedList<Object>();
 for (Object[] propBeanValues : propBeansValues){
 beans.add(getDynamicTypeInstance(propList, propBeanValues, dynaClass));
 }
 return beans;
}

But our main goal is to get a dynamic Java

data bean collection from a data structure

coming straight from the JDBC context. The

data structure that is specific to the JDBC

framework is the java.sql.ResultSet.

Therefore we reused the logic from Listing 2

to build a method that could generate the data

bean collection starting from a ResultSet, as

in Listing 3.

Listing 3. Generating Dynamic Data Object for JDBC
public static List<Object> getDynamicTypeInstances(ResultSet rSetvalues)
throws Exception{
 Set<String> propList = new HashSet<String>();
 ResultSetMetaData meta = rSetvalues.getMetaData();
 for (int i=1; i <= meta.getColumnCount(); i++){
 propList.add(meta.getColumnName(i));
 }
 List<Object[]> propBeansValues = new LinkedList<Object[]>();
 Object[] propBeanValues;
 while (rSetvalues.next()){
 propBeanValues = new Object[meta.getColumnCount()];
 int i = -1;
 for(String prop: propList){
 i++;
 propBeanValues[i] = rSetvalues.getObject(prop);
 }
 propBeansValues.add(propBeanValues);
 }
 return getDynamicTypeInstances(propList, propBeansValues);
}

The dynamic nature of our process to

generate Java data beans is very important

because the ResultSet can be created in an

offhand manner starting from a declarative

SQL-SELECT phrase that could invoke any

relation or table from database schema with

any column projection on it.

The next step is essential regarding the

conversion process of the Java data beans

into Service Data Objects. Specifically, the

final result consist in an XSD file that

describe SDO schema and an XML file that

will contain the serialization form of Service

Data Objects. The Listing 4 suggests how to

use SDO API implemented by the Eclipse-

Link project to materialize SDO data objects

from JDBC result set.

Listing 4. Generating Dynamic SDO schema and XML format
public void getDynamicSDO(ResultSet rSetvalues) throws Exception{
 // Generate Java Data beans to be converted in SDOs

90 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.07

 List<Object> dataBeans = getDynamicTypeInstances(rSetvalues);
 if (dataBeans.isEmpty())
 throw new Exception("There is no JDBC data beans to convert!");
 Class dataBeanDynamicType = dataBeans.get(0).getClass();
 // Eclipse-Link SDO Infrastructure
 JAXBContext jaxbContext = JAXBContext.newInstance(dataBeanDynamicType);
 JAXBHelperContext jaxbHelperContext = new JAXBHelperContext(jaxbContext);
 // Generate SDO-XSD schema file
 MySchemaOutputResolver sor = new MySchemaOutputResolver(
 "http://www.example.org",
 "org/sdo/dynamicSDO.xsd");
 jaxbContext.generateSchema(sor);
 FileInputStream fileInputStream =

new FileInputStream("org/sdo/dynamicSDO.xsd");
 jaxbHelperContext.getXSDHelper().define(fileInputStream, "dynamicSDO.xsd");
 File file = new File("org/sdo/dynamicSDO.xsd");
 fileInputStream = new FileInputStream(file);
 XMLDocument xsdDocument =

 jaxbHelperContext.getXMLHelper().load(fileInputStream);
 jaxbHelperContext.getXMLHelper().save(xsdDocument, System.out, null);

 // Generate SDO-XML data file
 DataObject sdo = null;
 File fileSDO = new File("org/sdo/dynamicSDO.xml");
 XMLDocument xmlDocument = jaxbHelperContext.getXMLHelper()

.createDocument(sdo, "", "logs") ;
 for (Object dataBean: dataBeans){
 sdo = jaxbHelperContext.wrap(dataBean);
 jaxbHelperContext.getXMLHelper().save(sdo, null, null);
 }
 jaxbHelperContext.getXMLHelper().save(xmlDocument, System.out, null);
 jaxbHelperContext.getXMLHelper().save(xmlDocument,

new FileOutputStream(fileSDO), null);
}

Some samples, of the two SDO related files

(XSD and XML), that will be dynamically

generated could look like in Listing 5.

Listing 5. SDO related files
File: dynamicSDO.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="address">
 <xsd:sequence>
 <xsd:element name="city" type="xsd:string" minOccurs="0" />
 <xsd:element name="street" type="xsd:string" minOccurs="0" />
 <xsd:element name="no" type="xsd:string" minOccurs="0" />
 <xsd:element name="zipcode" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="customer">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:integer" minOccurs="0" />
 <xsd:element name="name" type="xsd:string" minOccurs="0" />
 <xsd:element name="address" type="address" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

File: dynamicSDO.xml
<?xml version="1.0" encoding="UTF-8"?>
<customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="customer">
 <id>1001</id>
 <name>First Customer</name>
 <address>
 <city>A City</city>
 <street>A Street</street>
 <no>123</no>
 <zipcode>700701</zipcode>
 </address>
</customer>

Informatica Economică vol. 17, no. 2/2013 91

DOI: 10.12948/issn14531305/17.2.2013.07

The Java context, where SQL Data are

translated to Service Data Objects, could be

entirely operational within the Oracle

database system (the Oracle instance). In this

regard, we have managed to load all the

support libraries into an Oracle schema in

order to exploit the built-in support for Java-

to-PL/SQL interoperability. This kind of

interoperability was used to publish our

OJDBC-EclipseLink-based SDO-engine as a

PL/SQL Web service through DBMS_XDB

and ULT_HTTP package functionality.

Consequently, the starting point to deliver

such Oracle database “native” web service is

a plain simple PL/SQL procedure that will

invoke the Java method from Listing 6. This

method will be accessible in the PL/SQL

context using an Oracle Object Type mapped

on the Java class that will host this method.

Loading and mapping Java classes as Oracle

Object Types is a very interesting feature of

Oracle 11g modern database. Another

approach is to build a “natural” pure Java-

based Rest service using JAX-RS API with

an implementation like Jersey.

Listing 6. SDO related files
@GET
@Produces(MediaType.TEXT_XML)
@Path("/getsdocustomers")
public String getXMLCustomersData() throws IOException {
 String xmlTagSchema =

"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>";
 String xmlTagData = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>";
 String beginEnvelope = "<envelope>\n";
 String endEnvelope = "\n</envelope>";

 String schema = convertXMLFileToString("sdo/data/customerSDO.xsd")
 .replace(xmlTagSchema, "");
 String data = convertXMLFileToString("sdo/data/customerSDO.xml")
 .replace(xmlTagSchema, "\n");

 String beginSDOData = "\n<sdodata>";
 String endSDOData = "\n</sdodata>";
 return beginEnvelope
 + schema
 + beginSDOData
 + data
 + endSDOData
 + endEnvelope;
}
private String convertXMLFileToString(String fileName) {
 try{
 DocumentBuilderFactory documentBuilderFactory =

DocumentBuilderFactory.newInstance();
 InputStream inputStream =

Thread.currentThread().getContextClassLoader()
.getResourceAsStream(fileName);

 org.w3c.dom.Document doc =
documentBuilderFactory.newDocumentBuilder().parse(inputStream);

 StringWriter stw = new StringWriter();
 Transformer serializer = TransformerFactory.newInstance().newTransformer();
 serializer.transform(new DOMSource(doc), new StreamResult(stw));
 return stw.toString();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
}

3 HMTL 5 Client Side Architecture to

Consume SDO Based Data Services
In the previous section we’ve tried to outline

how could look like the server-side backend

of the proposed SDO operational

architecture. In the followings we will try to

outline the HTML5-based front end, or the

client-side of our construction. The actual

architectural components of the client side

are represented in the Figure 5.

92 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.07

Fig. 5. Client side SDO architectural components

One could easily conclude that the

architecture from the figure 5 is quite simple

and straightforward, the only a bit more

complex aspect is related to how to manage

SDO data (LocalStoreFactory), consumed

from the source Web Service (via

XMLSDORequest), as a local updatable data

cache (LocalStore) using HTML5

localStorage feature.

In this context, our request object used to

invoke the backend data services could look

like the one in the listing 7, where the

XMLSDORequest extended the original

XMLHttpRequest through the “traditional”

prototyping mechanism specific to JavaScript

language.

Listing 7. Adapted XML HTTP Request
var SDO = SDO || {};
SDO.XMLSDORequest = function(_wsurl, _wsquery){
 this.wsurl = _wsurl;
 this.wsquery = _wsquery;
 this.sdodata = null;
 this.storeFactoryCallback = null;

 this.execute = function(_storeFactoryCallback){
 this.storeFactoryCallback = _storeFactoryCallback;
 var url = wsurl + "?query=" + wsquery;
 open("GET", url);
 send(null);
 };

 this.onload = function(){
 if (this.status == 200){
 var xotree = new XML.ObjTree();

Informatica Economică vol. 17, no. 2/2013 93

DOI: 10.12948/issn14531305/17.2.2013.07

 this.sdodata = xotree.parseXML(reqRest.responseText);
 // callback
 this.storeFactoryCallback(this);
 }else{
 console.log("REST Request problem or ERROR !");
 }
 };

 this.getSDOSchema = function(){
 return this.sdodata["envelope"]["xsd:schema"];
 };

 this.getSDOData = function(){
 return this.sdodata["envelope"]["sdodata"];
 };

};
SDO.XMLSDORequest.prototype = new XMLHttpRequest();

We’ve implemented a rough local mini-

database mechanism by leveraging the

localStorage specific functionality of

HTML5 through the LocalStore object

summarized in Listing 8.

Listing 8. LocalStore as base data structures of HTML5 localStorage
SDO.LocalStore = function(_storeid, _wsurl,_wssql, _keyName){
 this.id = _storeid;
 this.wsurl = _wsurl;
 this.wsquery = _wsquery;
 this.keyName = _keyName;
 this.schema = null;
 // add new data
 this.add = function(data){
 if (!validateDataConformance(data))
 throw new TypeError("Schema non conformance!");
 var storedHashKey = computeHashKey(this.id, data[this.keyName]);
 var storedData = getStoreData(storedHashKey);
 if (storedData)
 throw new Error("Uniqueness non conformance!");
 // persist data
 localStorage.setItem(storedHashKey, data);
 };
 this.addAll = function(dataArray){
 for(var i in dataArray)
 this.add(dataArray[i]);
 };
 // check data against this.schema
 var validateDataConformance = function(data){

 return true;
 };
 // restore persistent data from localStorage
 var getStoreData = function(hashKey){
 return localStorage.getItem(hashKey);
 };
 // return hash value from store id and key value
 var computeHashKey = function(){

 return hKey;
 };
 this.removeAll = function(){

 };
};

Additionally, taking into account the well

known “Factory” design pattern, we’ve

defined a separated JavaScript object to

define and manage these data local stores.

The LocalStoreFactory will create the local

store definitions and will persist their

metadata in the localStorage. Also, this

object will invoke XMLSDORequest to

asynchronously load data from

remote/backend SDO-based data services

94 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.07

into local data stores. A short definition of such object is presented in the Listing 9.

Listing 8. LocalStoreFactory to manage local stores
SDO.LocalStoreFactory = function(){

 // create new LocalStore and persist metadata

 this.defineDataStore = function(_wsurl,_wssql, _keyName){

 var storeHashId = computeStoreHashId(_wsurl,_wssql);

 var storeDef = {wsurl: _wsurl, wssql: _wssql};

 localStorage.setItem(storeHashId, storeDef);

 };

 // load data in store

 this.loadData = function(localStore){

 var dataRequest =

new SDO.XMLSDORequest(localStore.wsurl, localStore.wsquery);

 dataRequest.execute(this.xmlSDORequestReadyCallback);

 };

 // callback

 this.xmlSDORequestReadyCallback = function(sdoRequest){

 var storeHashId = computeStoreHashId(sdoRequest.wsurl,sdoRequest.wssql);

 var localStore = localStorage.getItem(storeHashId);

 if(localStore.schema === "undefined")

 localStore.schema = sdoRequest.getSDOSchema();

 localStore.removeAll();

 localStore.addAll(sdoRequest.getSDOData());

 };

 // return hash value url and sql

 var computeStoreHashId = function(){

 return hKey;

 };

};

4 Conclusions

In this paper we have struggled to prove that

the conceptual architecture proposed in

Figure 1 could be feasible and materialized

into a real computing environment as the one

from Figure 6.

Fig. 6. The deployment architecture of a SDO-based Architecture ready for HTML5 based

application

Beyond the SDO potential as a federative

data integration strategy in the SOA context,

we have tried to argue another two promising

points in the actual and future enterprise

environment:

● SDO versatility to be used in presentation

layer;

● HTML based mobile computing path to

enterprise data integration by leveraging

SDO-based web services.

Informatica Economică vol. 17, no. 2/2013 95

DOI: 10.12948/issn14531305/17.2.2013.07

We are aware that we only proved the

possibility to build such wide-integration

architecture. Other conceptual and

experimental efforts are necessary to prove

the real feasibility of this architecture taking

into consideration at least the following

questions:

● performance issues from simple to

complex query tasks, or scalability (some

benchmark tests need to be run);

● developing complexity and developers’

acceptance;

● productivity and supporting tools (MDA

with modeling tools based on UML meta-

models seems to be a promising

strategy);

● security issues concerning access control

to enterprise data assets;

● SDO transaction management in the

context of inter-architectural levels.

References
[1] T. Erl, SOA Principles of Service Design,

Prentice Hall, Crawfordsville, Indiana,

USA, 2008, ISBN-13: 9780132344821

[2] D. Fotache, L. Hurbean, O Dospinescu,

V. Pavaloaia (2010). Procese

organizaţionale şi integrare

informaţională. Editura Universitatii “Al.

I. Cuza” Iaşi.

[3] L. Resende, Handling heterogeneous data

sources in a SOA environment with

service data objects (SDO), SIGMOD

'07: Proceedings of the 2007 ACM

SIGMOD international conference on

Management of data, ACM, New York,

NY, USA, 2007, pp. 895–897.

[4] B. Portier, F. Budinsky, Introduction to

Service Data Objects. Next-generation

data programming in the Java

environment, IBM developerWorks;

2004; http://www.ibm.com/

developerworks/java/library/j-sdo/

[5] P. Lubbers, B. Albers, F. Salim, Pro

HTML5 Programming, Second Edition,

Publisher: Apress; 2 edition (November

30, 2011)

[6] D. Oehlman, S. Blanc, Pro Android Web

Apps: Develop for Android Using

HTML5, CSS3 & JavaScript, Publisher:

Apress; 1 edition (February 22, 2011)

[7] S. Ritu, 10 OpenSource HTML5 Mobile

App Development Frameworks,

Available: http://www.toolsjournal.com/

mobile-articles/item/1189-10-open

source-html5-mobile-app-development-

frameworks

[8] R. Ghatol, Y. Patel, Beginning

PhoneGap: Mobile Web Framework for

JavaScript and HTML5, Publisher:

Apress; 1 edition (February 24, 2012)

Cătălin STRÎMBEI has graduated the Faculty of Economics and Business

Administration of Al. I. Cuza University of Iaşi in 1997. He holds a PhD

diploma in Cybernetics, Statistics and Business Informatics from 2006 and he

has joined the staff of the Faculty of Economics and Business Administration

as teaching assistant in 1998 and as senior lecturer in 2005. Currently he is

teaching Object Oriented Programming, Software Development

Environments and Database Design and Administration within the

Department of Business Information Systems, Faculty of Economics and Business

Administration, Al. I. Cuza University of Iaşi. He is the author and co-author of four books

and over 25 journal articles in the field of object oriented development of business

applications, databases and object oriented software engineering.

