
Informatica Economică vol. 17, no. 2/2013 41

DOI: 10.12948/issn14531305/17.2.2013.04

NoSQL and SQL Databases for Mobile Applications.

Case Study: MongoDB versus PostgreSQL

Marin FOTACHE, Dragos COGEAN

Al. I. Cuza University of Iasi, Romania

fotache@uaic.ro, dragos.cogean@gmail.com

Compared with “classical” web, multi-tier applications, mobile applications have common

and specific requirements concerning data persistence and processing. In mobile apps, data-

base features can be distinctly analyzed for the client (minimalistic, isolated, memory-only)

and the server (data rich, centralized, distributed, synchronized and disk-based) layers. Cur-

rently, a few lite relational database products reign the persistence for client platforms of

mobile applications. There are two main objectives of this paper. First is to investigate stor-

age options for major mobile platforms. Second is to point out some major differences be-

tween SQL and NoSQL datastores in terms of deployment, data model, schema design, data

definition and manipulation. As NoSQL movement lacks standardization, from NoSQL prod-

ucts family MongoDB was chosen as reference, due to its strengths and popularity among de-

velopers. PostgreSQL serves the position of SQL DBMSs representative due to its popularity

and conformity with SQL standards.

Keywords: Mobile Applications, NoSQL, SQL, PostgreSQL, MongoDB

Introduction

“Mobile world” is one of the most dy-

namic areas of Information Technology to-

day. Smartphones and tablets explosion have

created a huge market for mobile applica-

tions. Consequently there is an increasing

demand for mobile application developers so

that, even when taking into account just the

case of Romania, many books [1] [2] [3] and

articles (e.g. [4], [5], [6], etc.) have been pub-

lished. Also many Business Information Sys-

tems/Business Informatics undergraduate and

master programs introduced in their curricu-

lum courses related to mobile devices and

applications (e.g.

http://dice.ase.ro/?page_id=31,

http://ism.ase.ro/ curriculum_2012_2014.jsp,

http://www.feaa.uaic.ro/ro/main/page/335,

http://www.econ.ubb

cluj.ro/planuri_invatamant/master/planuri_m

aster_2012_2013/E-Business.pdf).

Almost all of the mobile applications require

a persistent data layer, including options for

queries. So the interest of database profes-

sionals, academics and researchers for mo-

bile technologies is increasing. Mahmoud et

al. [7] even suggest including mobile storage

topics, devices and applications into database

courses.

This paper presents technologies and tools

for deployment of the data layer in mobile

applications on some major platform focus-

ing on a NoSQL datastore, MongoDB. Sec-

tion 2 deals with some specific requirements

of mobile software in terms of storage and

databases. Section 3 deepens the discussion

of data storage features for major mobile

platforms. The arguments for a NoSQL solu-

tion, including a basic description of mobile

cloud solution implemented in MongoDB are

subjects of section 4. Sections 5, 6 and 7 ana-

lyse some of the main differences in terms of

database schema, Data Definition Language

(DDL), Data Manipulation Language (DML)

and database query between SQL

(PostgreSQL dialect) and MongoDB.

2 Common Issues of Mobile Applications

Storage Layer

Mobile applications share many features of

“classical” client/server or web multi-layered

applications architecture. Figure 1 depicts a

classical six-layered (Security layer covers

all the other five layers) framework [8] for

enterprise mobile application development.

1

http://dice.ase.ro/?page_id=31
http://ism.ase.ro/%20curriculum_2012_2014.jsp
http://www.feaa.uaic.ro/ro/main/page/335

42 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

Fig. 1. Layers of the enterprise Mobile Applications Development Framework [8]

Persistence layer have similar requirements

in terms of storage, DDL, DML and database

query. Also the data accessibility mecha-

nisms from application layers are similar to

other web applications.

The most striking difference between mobile

and web application databases concerns is

that while server persistence layer is similar,

the client platforms of mobile apps (running

mainly on smartphones and tablets) have a

smaller scale of available resources

(memory, processing power). Many mobile

applications require replication and synchro-

nization mechanisms for data persistent on

smartphone with a centralized large scaled

database available on a server [9] [10]. Data

storage for client must be processed without

hard disk techniques [11] [12].

Nori [13] identifies 11 characteristics that

have to be provided, partially or fully, by the

mobile and embedded DBMSs:

a. Embeddable in applications – sometimes

requiring no administration.

b. Small footprint – in order to be down-

loadable in broader range of mobile de-

vices

c. Run on mobile devices and operates in

conditions of small amount of processor

power, RAM and permanent memory.

d. Componentized DBMS – supports from

all DBMS functions only the ones re-

quired by the specific application.

e. Self-managed DBMS, with no hope for

the user to be a DBA who can ne able to

restore a crashed database.

f. In-memory DBMS – requiring special

query processing and indexing technics

which are optimized for main memory

usage.

g. Portable databases with very simple de-

ployment.

h. No code in the database that protects

against viruses and malware.

i. Synchronize with back-end data sources.

j. Remote management – especially in the

case of enterprise-wide applications.

k. Custom programming interfaces for spe-

cialized data-centric applications.

Mahmoud et al. [7] point out the most com-

mon software options for storage in mobile

applications:

 HTML5 (localStorage API which stores

objects as key-value pairs and IndexDB

which implements relational technology);

Informatica Economică vol. 17, no. 2/2013 43

DOI: 10.12948/issn14531305/17.2.2013.04

 SQLLite – a over-simplified relational

database server;

 Cloud storage (Apple iCloud, Dropbox,

Google Drive, etc.);

 Device specific storage (APIs, tools,

frameworks such as WebWorks, Shared

Preferences, Network IO, WebView,

Core Data.

Next section deepens the discussion of data

storage features for each of the major mobile

platforms.

3 Data Layer Options on Some Major

Mobile Platforms. From Local to the

Cloud
Microsoft and Blackberry are struggling to

get more users, by renewing their operations

systems with Windows Phone 8 and Black-

berry OS 10. But Android and iOS, produced

by Google and Apple, are still ahead of the

pack with a combined market share over 87%

in 2012. When customer decide, not only the

features provided by the operation system are

significant, but also hardware characteristics,

applications available on the market, social

status, durability and so on.

Most of the applications developed for mo-

bile devices need storage options for user’s

data, session data, life-cycle timestamps (es-

pecially for states la pause or suspend). Stor-

age requirements can go from user specific

options (simple values for dimensions, user

accounts, etc.) to significant amounts of data

gather by sensor, received from internet or

internet by the user himself.

When using Android, there are several op-

tions for saving data. Among them, shared

preferences are based on key-value pairs

mechanism, only usable for primitive data

types and limited by the current user session.

A developer can use the SDK to retrieve,

add, delete and modify preferences either re-

lated to the current activity or shared across

multiple activities for the same user session.

For both variants, a public interface is avail-

able, android.con-tent.SharedPreferences

that contains two other nested classes, one as

an editor for the current key-value pairs and

another which acts as a listener for changing

preferences and related callbacks. Other pub-

lic methods are related to obtaining a map of

names and values (different data types) along

with getters and setters for primitive data

types. Apart from the shared preferences, any

application with correct permissions grated,

can access the file system from the internal

storage.

By default, Android limits the files access to

the application which creates them

(MODE_PRIVATE), but this behaviour can

be modified to:

MODE_WORLD_READABLE in order to

allow any other application or user to read

created or modified files (deprecated since

API level 17),

MODE_WORLD_WRITEABLE for open

write access to others (also deprecated start-

ing with API level 17) and finally

MODE_APPEND which limits future users

to add data at the end of the file. Classes for

write and read are available in the API, as

FileOutputStream and FileInputStream, as-

sociated to public methods as

openFileOutput() and openFileInput(). Read,

write and close methods are also available. In

addition, the developer can make use of

built-in functionality for getting the path to a

certain file, manage directories, delete files

and retrieve a list of files from a specific

folder.

Also, methods exist for raw resources (added

at design time usable at compile time) and

for saving cache files (not recommended for

sensitive data). An alternative for managing

persistent data is the usage of external stor-

age, fixed (internal non-removable partition)

or removable (SD, microSD cards, devices

connected through micro-USB ports). An es-

sential feature of the external storage is the

possibility of all application to access it. Al-

so, special precautions are recommended, as

the external device can be disconnected by

the user at any moment (the developer has to

check media availability through specific

methods provided by the SDK). Almost the

same file and directory related functions are

used, to which dedicated locations as Music,

Podcasts, Ringtones, Alarms, Pictures and

others are pre-defined by the system, since

44 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

API level 8 (all contained by the public class

Environment - android.os.Environment).

For the internal storage, the system maintains

a policy of deleting all related files for an ap-

plication when the application is uninstalled.

The policy doesn’t apply for the external

storage unless the files are created by the ap-

plication for private usage, by invoking

getExternalFilesDir() method. Of course, all

presented above can be used for structured

data, as pair of values or even locally stored

XML. Problems occur in means or querying

data and obtaining aggregated reports.

Among other data layer options, the most

popular SQLite, advertised by its producers

as a software library that implements a self-

contained, serverless, zero-configuration,

transactional SQL database engine. In fact,

SQLite is present on a variety of devices and

operation systems, precompiled packages can

be downloaded for Linux, Mac OS, Win-

dows, Windows Phone 8, Windows .Net plat-

form [7], [5] [3]. Its popularity can be ex-

plained by the following features [3]:

 easy to install and configure

 simplicity

 does not require a server (can run in cli-

ent-only mode)

 compactness of database (all database re-

sides in a single file for each application)

 it is an open source product.

Being so compact, SQLite can be ported to

almost any device, the source code being

available for the community. Android offers

full support libraries for SQLite. As each da-

tabase resides in its own file on the disk and

it is directly managed by the application (no

server process involved, all classes are able

to use one database if the name is known), it

cannot be shared directly between multiple

applications. The small footprint library can

handle both DML and DDL statements, of-

fers cursors access to clients, indexes, multi-

ple data types, primary and foreign keys and

a lot more features, which makes it very easy

to use and a good candidate for being used as

a persistence layer.

Applications written for iOS devices such as

iPhone or iPad have several storage options,

some of them being similar to the above pre-

sented for Android, and others specific to the

host OS. Among these, one can find files (ei-

ther as text, comma separated values, XML,

JSON), property lists, core data, user prefer-

ences, SQLite. As almost the same features

are available for SQLite on both mobile OS,

and the files are managed by a similar mech-

anism, we’ll only briefly describe the other

options for the Apple devices.

Property lists are used by applications on

both iOS and MacOS in order to storing sim-

ple hierarchies of either primitive data types

or containers as arrays or dictionaries. These

data types can be nested in multiple levels, as

needed by the developer. As mentioned in

the official documentation by Apple, proper-

ty lists are recommended for small amounts

of data. Data stored in property lists can be

serialized for future usage in either binary or

XML formats. Eckermann [14] finds these

lists easy to use, especially due to a well-

defined Objective-C API, but on the other

hand, states that they are not suitable for any

type of relational data, can’t handle large sets

of objects, use an inefficient memory loading

mechanism, and let the developer handle too

much of the responsibilities for data integrity

and manipulation.

In order to help the developers with the usage

of mode view controller pattern, the Cocoa

framework help the iOS developers to define

a data model easier through a feature called

Core Data. By using this mechanism, the de-

veloper has access to a data management so-

lution able to handle the definition and inte-

gration of data models. Core Data offers a

visual interface, intuitive and easy to use.

The data model communicates with the con-

troller of the application and hides details as

storage and SQL queries to the developer

(although this leads to a lack of control over

the data). This storage framework can serial-

ize data on XML files, binary or directly to a

SQLite database. Internally, it organizes data

in an object graph and provides features for

declaring relationships between different col-

lections of data. One of the main advantages

is the fact that it was specially built solution

for iOS and it integrates well with other

components or tools in the Apple ecosystem,

Informatica Economică vol. 17, no. 2/2013 45

DOI: 10.12948/issn14531305/17.2.2013.04

reducing the code volume needed for persis-

tence. The “user default” storage environ-

ment can be easily used for saving user set-

tings and options related to applications or

the system. It is not built to help the develop-

ers store large amount of data or data with

any kind of structured organization.

The SQLite for iOS can be directly used as a

C library or by having an Objective-C wrap-

per as FMDB, ArchDBObjects,

SQLiteManager or SQLite persistent objects.

In a similar way with Android, the developer

has to handle the single file needed for each

SQLite database, used as a seed.

Along with the option for locally storing data

enumerated above for both Android and iOS,

there are several other options as accessing

database servers across the network with

dedicated drivers, most of them created by

the community. In the last couple of years,

cloud databases had gained increase popu-

larity among the developers and they seem to

be important options for mobile devices.

These kinds of services are offered by im-

portant players as Amazon with its S3 or Re-

lational Services, Microsoft with Azure,

Salesforce with Database.com, and the ex-

amples can continue.

Related to the subject of the next section,

there are a few cloud database providers spe-

cialized in NoSQL services, having

MongoDB as an underlying service. The

most popular are MongoLab, MongoHQ,

Rackspace Cloud or dotCloud. These kinds

of services are first of all characterized by the

lack of involving the client in phases like in-

stalling or configuring the software. The cus-

tomer pays for all these services, for data ac-

cess, storage space, network traffic, monitor-

ing programs and specialized interventions

when needed. The provider has to be com-

plaint with Service Level Agreement regard-

ing infrastructure maintaining, quality if the

service, response time, etc.

Most of the database services in the cloud

expose polyglot interfaces for the client, of-

fering at the same time SQL and NoSQL data

storage engines. For mobile applications de-

velopers, using database services in the cloud

can be a big challenge on one hand, but can

come with significant advantages on the oth-

er. It is worth mentioned that the device (with

limited computing resources) can allocate

more processing power to the application,

which is more appreciated by the end user,

replication problems are avoided, the need

for expensive hardware (we have devices in

2013 running Android with 8 processor cores

– see Samsung S4 and other new devices). Of

course, issues like constant need for network

connection (through Wi-Fi or data plans),

battery consumption or prices for consumed

database services arise. One can think about

other advantages as the usage of the same

persistence technology for both desktop and

mobile apps, backup and restore plans and

procedures already defined by the service

provider, ability to scale up or down storage

and access capacity based on the business

needs, and others.

4 NoSQL Datastores for Mobile Applica-

tions. The Case of MongoDB

There has been huge interest about NoSQL

data stores for the last three years. A good

amount of literature has been dedicated to

NoSQL movement, which varies from full

excitement [15] to criticism [16][17] and

conciliation with relational technologies

[18][19]. For a brief discussion about the

context of NoSQL emergence, NoSQL basic

features see [20], [21], [22], [23]. In advo-

cating NoSQL versus Relational Databases

for Mobile Applications Asay [24] points out

two weaknesses of relational technologies –

the rigidity of schema and impossibility of

handling all of the different use cases mobile

applications call for. Due to their scalability

and speed Selvadurai [25] recommends using

NoSQL datastores when mobile applications

manage huge amount of data on a central

server. In this paper MongoDB was chosen

as a NoSQL camp representative due to its

features and popularity [21][26].

Next we will describe the usage of an exter-

nal cloud database service (MongoDB) for

Android. Connection requires a Java driver

and the mongo.jar library added to the

classpath. The driver was developed by the

community and released for Android (com-

46 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

patibility with Dalvik virtual machine fixed)

in august 2012.

When connecting to a MongoDB server from

a Java application several classes are to be

used, depending of the desired functionality.

The packages to be considered are

com.mongodb (main package having func-

tionality for the connection, database server,

MongoClient, query builder, Map Reduce

commands, database cursors, etc.), org.bson

that implements functionality for BSON ob-

ject and encoding, and org.bson.types (pack-

age containing implemented functionality for

data types which can be stored in BSON

format, from primitive data types to arrays

and nested structures). Also, packages for ob-

taining statistics on the connection pool (like

com.mongodb.tools) and packages containing

classes to implement utility functions (for

MongoDB database connection and for

JSON data types) can prove useful.

According with MongoDB architecture, mul-

tiple entry points can be used, all being part

of replica sets (database instances forming a

cluster in order to easily replicate data). As

stated in the official documentation, the java

MongoDB driver is thread safe and it is rec-

ommended to create a single object which

can be accessed by multiple threads. Internal-

ly, this object creates a pool of connections,

and for each operation it is able to find an

available connection, use it and release the

resources after it is done. The developer can

enforce a certain consistent behaviour (usage

of the same socket by the client) by calling

the two specially designed functions,

db.requestStart() and db.RequestDone().

The driver also allows the developer to use

authentication by username and password.

After the connection sequence is performed,

collections (all, or a specific one) can be re-

trieved, documents can be inserted, simple

find operations can be performed by calling

findOne() method. An important functionali-

ty is the usage of cursors by assigning the re-

sult of a collection.find() call to a DBCursor

object. Sequential operations can be per-

formed using the obtained cursor object. In

addition to the operations enumerated above,

some administrative actions can be per-

formed as creating indexes, dropping them

and obtaining a list for the collections in the

current database.

Some limitations might appear when con-

necting to a database service in the cloud. A

very important functionality covered by the

Java MongoDB driver is the ability to access

the aggregation framework (see section 6).

The wrapper around this functionality pro-

vided by the driver is

DBCollection.aggregate(). Generic

DBObject instances can be used by the pro-

grammer to create the pipeline of operations

needed in aggregation processes. Finally, and

AggregationOutput object can be obtained

after calling the aggregate method over a cer-

tain collection.

In order to better illustrate the above features,

a popular service for MongoDB database in

the cloud will be used as persistence layer for

a demonstrative Android application. The

service is provided by MongoLab and it of-

fers physical storage in different data centers

like Amazon, Joyent or Microsoft Azure. At

the time of writing of this paper, the available

storage options for shared plans are: 0.5, 1, 2

and 4 GB. The corresponding prices are be-

tween 10 to 40 USD each month (except the

0.5 GB instance which is free). The customer

can also buy dedicated plans (details and

prices varies from one storage provider to

another. For Amazon hosted MongoDB da-

tabases in the cloud, available RAM re-

sources start from 1.7 GB and go up to 68

GB, available processors core are between 1

and 8 and the user can choose one or more

dedicated nodes. Default storage for each

unit type varies from 40 to 160 GB and can

be easily extended or moved to SSD disks.

Just as a plan example, for a 34 GB of RAM,

2 dedicated nodes, 4 processor cores, 80 GB

storage capacity (on SSD disks) costs about

$3000 each month. Of course, the storage ca-

pacity doesn’t come cheap, but includes addi-

tional services as MongoDB monitoring ser-

vice activated, real-time access to created log

files, 24/7 DBA assistance from 10Gen (crea-

tor of MongoDB), replica sets and dedicated

virtual machines.

Informatica Economică vol. 17, no. 2/2013 47

DOI: 10.12948/issn14531305/17.2.2013.04

In order to create a database, some infor-

mation needs to be provided: database name,

data center provider (we choose Amazon, an

EU Ireland instance based on proximity crite-

ria), the instance type (depending on the stor-

age capacity needed), a new username and

password for connections. Also, MongoLab

allows the users to clone any already created

database using its interface or any other ac-

cessible in the cloud.

After creating the database, some additional

information is provided to the user: the con-

nection string for MongoDB shell (in our

case, # mongo

ds061807.mongolab.com:61807/testdb -u

<dbuser> -p <dbpassword>), the standard

URI for client connection (for our database:

mongodb://<dbuser>:<dbpassword>@ds06

1807.mongolab.com:61807/testdb). Connec-

tions are available using database drivers, in-

cluding the java driver for Android. Moreo-

ver, the web interface allows users to add

collections, manage the existing ones, adding

and removing users and privileges, perform

back-ups or back-up scheduled plans, import

and export collections in binary, comma sep-

arated value and JSON formats, or even the

entire database (binary only). The same web

interface allows consulting statistics about

the database as number of collections, num-

ber of objects, indexes, total storage size, av-

erage object dimensions, files size for the da-

tabase.

In the remaining of this section we will ex-

emplify some basic operations in a mobile

application running on Android or iOS. The

persistence layer is assured by the previously

described provider, MongoLab, and all three

components connect directly to the database

without the need for middleware software.

The application is designed to be used by di-

dactic personnel in a faculty in order to re-

motely register grades obtained by students

during exams. The following operations are

performed using the mobile application:

 the user connects to the cloud database,

across the network;

 the user retrieves all students from a col-

lection, based on their group number;

 adding a new grade (for a student);

 getting the average grade for each group

of students.

Connection to the cloud based MongoDB in-

stance using the Android SDK requires the

provided standard URI, username (profes-

sor1) and password (education):

MongoClient mongoAndroid = new MongoClient(

"mongodb://professor1:education>@ds061807.

mongolab.com:61807/testdb");

Assuming that each group of students has the

grades stored in a specific collection, for the

group InfoEc2, the mechanism of retrieving

the entire collection is:
DBCollection grades =

db.getCollection("InfoEc2");

For inserting a document, multiple options

are available, e.g using document builder

classes, generic database objects, parsing

strings in JSON formats. The next three solu-

tions insert a grade for a student:

//solution 1

BasicDBObject examination = new

BasicDBObject();

examination.put(“Subject Examined”, “Database

Fundamentals”);

examination.put(“Grade”, 9);

examination.put(“Student

ID”,”SL31040701445”);

grades.insert(examination);

// solution 2

String cText = “{'Subject Examined':'Database

Fundamentals’,‘Grade' : 9,” +

“'Student ID' : ‘SL31040701445’}”;

DBObject dbgenericObject =

(DBObject)JSON.parse(cText);

Grades.insert(dbgenericObject);

//solution 3

BasicDBObjectBuilder gradeBuilder =

BasicDBObjectBuilder.start()

.add(“Subject Examined”, “Database Fundamen-

tals”);

.add(“Grade”, 9);

.add(“Student ID”,”SL31040701445”);

Grades.insert(gradeBuilder.get());

Assuming a collection containing all the stu-

dents and the groups they belong to, here is

the solution for getting all from group

“1204”:

BasicDBObject studentQ = new BasicDBObject();

studentQ.put(“Group”, “1204”);

DBCursor ResultCursor = stu-

dents.find(studentQ);

As a final operation, the aggregation frame-

work will be invoked from the client side.

The goal is to obtain the average grade for

48 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

each group of the students having a major in

“Business Information Studies”:

{ “_id” : ObjectId(<string>),

“student ID” : <string>,

“major” : <string>,

“subject” : <string>,

“grade” : <integer>,

“group”: <integer>

};

// aggregation code in Java

DBObject filterCriteria = new

BasicDBObject(“$match”,

new BasicDBObject(“major”, “Business

Information Studies”));

DBObject groupCriteriaComponents = new

BasicDBObject(“$group”,

new BasicDBObject(“major”, “Business

Information Studies”));

groupCriteriaComponents.put(“average”, new

BasicDBObject(“$avg”, "$grade"))

DBObject groupCriteria = new

BasicDBObject(“$group”,

groupCriteriaComponents);

AggregationOutput aggResults =

grades.aggregate(filterCriteria,

groupCriteria);

In the next section we will focus on some of

the MongoDB-SQL differences in terms of

basic data definition and manipulation.

5 Basic Differences between MongoDB

and SQL in Terms of Data Definition and

Manipulation

Compared with the data solution in previous

section for the remaining of this paper

MongoDB database is installed following a

classical replica set which is required for the

server side of a distributed mobile applica-

tion.

The relational database schema which serves

as case study is depicted in figure 2. Invoices

is the main table which stores - along with

invoices_items and products - data about

sales. The buyers (customers) have one or

more contacts - people with important posi-

tions (CIOs, financial and procurement man-

agers, etc.). Postal addresses refer to present

Romanian administrative organization - ad-

dress, postal/zip code, location (city or vil-

lage), and county - but can easily be under-

stood by non-Romanians (also by Romani-

ans!). Invoice payments are stored in receipts

and receipts_invs tables.

The data model is rather different in

MongoDB. In SQL databases the above

(sub)schema is composed by tables (views,

stored procedures, etc.), each table having a

common structure for all of its rows. Equiva-

lent to tables, MongoDB databases have col-

lections. Each collection have is composed

by documents which can have a completely

different structure.

As the data model differs, there are some

SQL option with no MongoDB equivalence

and vice versa. For example in a typical rela-

tional (SQL) database server, the user (or ap-

plication) is connected to a database

(sub)schema. Depending on the user rights,

from current subschema, user can access ob-

jects placed in other subschemas. In

MongoDB the user can choose the current

database (schema) using a command which

reminds us of dBase or FoxPro (xBases):
use local

The storage objects in SQL databases - tables

- can be displayed, as with every type of da-

tabase object, by querying the data diction-

ary. In PostgreSQL the syntax is:

SELECT table_name FROM infor-

mation_schema.tables

WHERE table_schema = 'public' AND table_type

= 'BASE TABLE'

ORDER BY table_name

Informatica Economică vol. 17, no. 2/2013 49

DOI: 10.12948/issn14531305/17.2.2013.04

Fig. 2. Database schema for the case study

In MongoDB data is stored in collections

which can be displayed as below:

show collections

Deleting a table in SQL requires DROP TA-

BLE command (e.g. DROP TABLE countie)

whereas in MongoDB the command (actual-

ly, it is a function) is drop:

db.counties.drop()

One of the main differences between SQL

and NoSQL datastores concerns data objects

creation and population. In SQL there is a

clear distinction between DDL (Data Defini-

tion) commands, such as:

CREATE TABLE counties (countyCode CHAR(2),

countyName VARCHAR(25),

 countyRegion VARCHAR(15)) ;

and DML (Data Manipulation Language)

commands like:

INSERT INTO counties VALUES ('IS', 'Iasi',

'Moldova');

On the contrary, this distinction does not ex-

ist in MongoDB and other NoSQL DBMSs.

Collections are created on the fly, when a fist

document is inserted using functions like in-

sert, save or update.

db.counties.save ({ _id : 'IS', countyName :

'Iasi',countyRegion : 'Moldova' });

All documents in a collection have an object

id which can be generated automatically by

the system or – as in above save statement –

specified by the user.

As previously pointed out, another major dif-

ference is related to the record structure. In

SQL database tables, every row has a similar

(tabular) structure. When inserting a row

without declaring values for all attributes,

unspecified attributes will get by default null

values:

INSERT INTO counties (countyCode, countyName)

VALUES ('B', 'Bucuresti');

But in MongoDB in the same collection, eve-

ry document could have different number of

attributes (it is not quite a brilliant idea to

have completely different attributes/values in

the same document):

db.counties.insert ({ _id : 'B', countyName

: 'Bucuresti'});

As generally acknowledged, SQL allow dec-

larations of the following constraints (in in

order to maintain a decent level of data integ-

rity):

 primary key;

50 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

 alternate key (unique);

 not null;

 referential integrity;

 attribute and record level validation rules

(check constraints).

In MongoDB only first two can be imple-

mented by creating indexes. Equivalent to

PostgreSQL command (an index will be cre-

ated automatically):

ALTER TABLE counties ADD PRIMARY KEY

(countyCode);

is Mongo function:

db.counties.ensureIndex({_id : 1}, {unique:

true}) ;

An alternate key can be declared in

SQL/PostgreSQL as follows:

ALTER TABLE counties ADD UNIQUE (countyName);

In MongoDB there is no such thing as alter-

nate key, but the similar result can be

achieved creating another index using

UNIQUE option:

db.counties.ensureIndex({countyName: 1},

{unique: true});

6 Queries in MongoDB and

SQL/PostgresSQL

The core SQL strength is its almighty SE-

LECT command used for expressing queries

with various degree of complexity. In Mon-

go, there are many techniques for database

query, some of them being shown below. For

basic queries, the best equivalent of SQL

SELECT is MongoDB find function. Where-

as

SELECT * FROM counties ORDER BY countyName

extracts all rows (ordered) in a SQL table, in

MongoDB all documents (ordered) in a col-

lection can be extract as follows:

db.counties.find().sort({ countyName : 1 })

First argument - which lacks in above query -

is, by default, predicate for filtering docu-

ments. To order the documents in the result,

sort clause is needed:

db.counties.find({ countyRegion : "Moldova"

}).sort({ countyName : 1 })

SQL language is set oriented. Current row,

first row which fulfills a predicate do not ex-

ists in SQL base vocabulary of SELECT

statement, but only in procedural extensions

of SQL (cursors). So, for example, in order to

extract first county in Moldova region, rank-

ing options are needed (e.g. TOP, LIMIT,

RANK, DENSE_RANK):

SELECT * FROM counties WHERE countyRegion =

'Moldova' ORDER BY countyName LIMIT 1;

On the contrary, in MongoDB findOne func-

tion returns and displays just first record

from all the records which fulfills a predicate

(again, older database guys will remember

LOCATE command in dBase or FoxPro):

db.counties.findOne ({ countyRegion : "Mol-

dova" })

Both SQL and MongoDB have options for

nesting queries. Taking the problem of ex-

tracting last two records matching a predicate

– let’s say, display the last two counties in

Moldova region. In SQL the above solution

with and additional query nesting in FROM

clause is functioning:

SELECT * FROM (SELECT * FROM counties WHERE

countyRegion = 'Moldova'

 ORDER BY countyName DESC LIMIT 2) t

ORDER BY countyName

In MongoDB we can use a JavaScript varia-

ble (see next section), but also we can nest a

count function in find statement:

db.counties.find({ countyRegion : "Moldova"

}).sort({ countyName : 1 }).

 skip(db.counties.count({ countyRegion

: "Moldova" })-2) .limit(2)

Since every document in a collection could

have a different schema, MongoDB permits

finding documents with no value declared for

an attribute. So, in order to extract counties

with no region declared (documents in which

Informatica Economică vol. 17, no. 2/2013 51

DOI: 10.12948/issn14531305/17.2.2013.04

attribute countyRegion was not declared) the

following query uses $exists:

db.counties.find({ countyRegion : { $exists

: false } }). sort({ countyName : 1 })

In SQL there is no equivalent query, since all

the table rows share the same structure. So all

records will have countyRegion attribute, but

in some of the rows its value are NULL:

SELECT * FROM counties WHERE countyRegion IS

NULL ORDER BY countyName ;

Mongo is not able to make the difference be-

tween "not declared" attributes and "declared

but null values" ones. Both criteria will be

met by the following query:

db.counties.find({ countyRegion : { $exists

: true }, countyRegion : null })

In both SQL and MongoDB NULL value can

appear in a list. Taking the following exam-

ple: extract counties with no region

(countyRegion attribute) plus counties from

Moldova region. In SQL the query that an-

swers the problem is:

SELECT * FROM counties WHERE countyRegion IS

NULL OR countyRegion = 'Moldova' ORDER BY

countyName;

The two following MongoDB solutions use

$or and $in operators:

// 1 ("$or")

db.counties.find({ $or : [{ countyRegion :

"Moldova"}, { countyRegion : null}] }

).sort({ countyName : 1 })

// 2 ("$in")

db.counties.find({ countyRegion : { $in : [

"Moldova", null] } }). sort({ countyName : 1

})

Things get slightly more complicated when

interested in extracting the distinct values of

an attribute. Whereas in SQL there is a sim-

ple DISTINCT clause used in SELECT

command:

SELECT DISTINCT countyRegion FROM counties

ORDER BY countyRegion ;

in MongoDB extracting distinct values of an

attribute (countyRegion in collection "coun-

ties") can be achieved with (at least) three

types of queries:

db.runCommand({"distinct" : "counties", "key"

: "countyRegion"})

//or:

db.counties.distinct('countyRegion')

//or using aggregation framework:

db.counties.aggregate ([

 { $project : {countyRegion :

"$countyRegion", _id:0 } },

 { $group : {_id : "$countyRegion" }} ,

 { $sort : { _id : 1} }])

or using another aggregation framework so-

lution, based on $addToSet option:

db.counties.aggregate(

 { $project : { countyRegion : 1} },

 { $group : { _id : null ,regions :

 { $addToSet : "$countyRegion" } } });

The basic task of filtering records - e.g. how

many counties are there in Moldova region? -

can be achieved by COUNT function in

SQL:

SELECT COUNT(*) FROM counties WHERE

countyRegion = 'Moldova'

and a similar one in MongoDB.

db.counties.count({ countyRegion : "Moldo-

va"})

One of the most important feature in SQL

queries concerns grouping set of

rows/records. Finding in SQL how many

counties are in each region requires:

SELECT countyRegion, COUNT(*) FROM counties

GROUP BY countyRegion ORDER BY countyRegion

Corresponding MongoDB query can use ei-

ther group method (which reminds map-

reduce queries):

db.counties.group({

 key : { countyRegion : true },

 initial : { n_of_counties : 0 },

 reduce : function (doc, aggregator

) {

 aggregator.n_of_counties += 1;

}})

or the aggregation framework:

db.counties.aggregate (

 { $group : { _id :

"$countyRegion", n_of_counties : { $sum : 1 }

}},

 { $sort : { _id : 1 } })

52 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

To exemplify how to filter groups of records,

we'll try to answer the problem of finding

how many regions have more than three

counties. In SQL GROUP BY option must be

combined with HAVING:

SELECT countyRegion, COUNT(*)

FROM counties

GROUP BY countyRegion

HAVING COUNT(*) > 3

In MongoDB aggregate function combines

$group and $match:

db.counties.aggregate (

 { $group : { _id :

"$countyRegion", n_of_counties : { $sum : 1 }

}},

 { $match : { n_of_counties : { $gt

: 3} }})

7 More Advanced Options for Data Defini-

tion, Manipulation and Query

We start this section with a problem from the

previous one: display the last two counties in

Moldova region. The next MongoDB solu-

tion shows another difference from SQL –

the extensive use of variables in some que-

ries:

var countMoldova = db.counties.count({

countyRegion : "Moldova" })

db.counties.find({ countyRegion : "Moldova"

}).

sort({ countyName : 1

}).skip(countMoldova-2).limit(2)

Remember that actually MongoDB shell is a

JavaScript shell. The above solution uses

countMoldova JavaScript variable that stores

the number of counties in Modova region.

This is the argument for the second com-

mand, which displays the last two counties in

that region.

The main source of the need for variables is

the lack of joins in MongoDB. When a col-

lection is queried based on the documents ex-

tracted from another collection, generally it is

necessary to split the solution into many que-

ries and to store intermediate results in varia-

bles. As pointed out in section 4, there are no

constraints to be declared in MongoDB.

There are no foreign keys and the database is

not normalized [26]. There is a special

datatype – DBRef -

(http://docs.mongodb.org/manual/applicatio

ns/database-references/) but even the mongo

official documentation does not recommend

using it. Collection postalCodes has a foreign

key-like - countyCode – but its values will be

handled "manually":

db.postalCodes.save ({ _id : '700505', loc :

'Iasi', countyCode : 'IS' });

In order to display postal codes in Iasi coun-

ty, the SQL query is:

SELECT postalCodes.*

FROM postalCodes INNER JOIN counties

ON postalCodes.countyCode = coun-

ties.countyCode

WHERE countyName = 'Iasi'

ORDER BY postCode

Answering the same problem in MongoDB

requires some JavaScript programming. Both

solutions presented below use cursors. The

first one is based on hasNext() for navigation

among documents:

var myCursor = db.counties.find ({ countyName

: 'Iasi'}) ;

var myRow = myCursor.hasNext() ?

myCursor.next() :null ;

if (myRow) {var myCountyCode = myRow._id ; }

db.postalCodes.find({ countyCode :

myCountyCode }) ;

The second is similar but based on forEach():
var myCursor = db.counties.find ({ countyName

: 'Iasi'}) ;

var myCountyCode ;

myCursor.forEach(function(x) {

 myCountyCode = x._id ;

 }) ;

db.postalCodes.find({ countyCode :

myCountyCode }) ;

Many join-based SQL solutions have equiva-

lents in sub-queries based ones. Taking a

similar problem to the last one: extract all

postal codes in Moldova region. A subquery-

based SELECT is:

SELECT postalCodes.*

FROM postalCodes

WHERE countyCode IN (SELECT countyCode FROM

counties

WHERE countyRegion = 'Moldova')

ORDER BY postCode

In MongoDB there are no subqueries, but the

rows selected by a first query (sub-query

equivalent) can be transferred to an array

searched with $in operator:

var arrayCountyCodes = [] ;

http://docs.mongodb.org/manual/applications/database-references/
http://docs.mongodb.org/manual/applications/database-references/

Informatica Economică vol. 17, no. 2/2013 53

DOI: 10.12948/issn14531305/17.2.2013.04

var myCursor = db.counties.find ({

countyRegion : 'Moldova'}) ;

myCursor.forEach(function(x) {

 arrayCountyCodes.push(x._id) ;

 }) ;

db.postalCodes.find({ countyCode : { $in :

arrayCountyCodes } }) ;

Instead of array, the following MongoDB so-

lution uses a regular expression:

var myRegExp = "";

var myCursor = db.counties.find ({

countyRegion : 'Moldova'}) ;

myCursor.forEach(function(x) {

 var myCountyCode = x._id ;

 if (myRegExp == "") {

 myRegExp = "^" + myCountyCode

; }

 else {

 myRegExp = myRegExp + "|^" +

myCountyCode ; }

 print (myRegExp) ;

}) ;

db.postalCodes.find({'countyCode' :

{"$regex" : myRegExp } }) ;

}) ;

As previously pointed out the "relaxed"

structure of collection records is one of the

most trumped advantage of NoSQL

datastores. In this section we will present a

classic way of dealing with denormalization

of the database. Three tables in figure 2 -

customers, people and contacts – that were

briefly discussed in section 5 store people

who hold important positions in our compa-

ny’s customers (customers that are, on their

turn, companies, not individuals). This is a

classic example of normalization. In

MongoDB (and most of the NoSQL

datastores) there are no explicit relationships

among collections, so no join is possible.

Composite documents can deal very well

with this type of problems. Equivalent to

those three tables a single collection will be

used in MongoDB, but each document in this

collection contains both the person and the

position she/he holds in that customer:

db.customers.save ({ custName : 'Client 2

SA', custFiscalCode: 'R1002',

postCode : '700505', phone :

'0232212121',

 contacts : [

{ person : { persCode : 'CNP2', familyName :

'Vasile', surName : 'Ion', sex : 'B',

 postCode : '700505', homePhone :

'0234234567', officePhone : '0234876543',

 mobilePhone : '0794222223', email :

'Ion@a.ro'},

position : 'Director general'

},

{ person : { persCode : 'CNP3', familyName :

'Popovici', surName : 'Ioana',

 address : 'V.Micle, Bl.I, Sc.B,Ap.2',

sex : 'F', postCode : '701150',

 homePhone : '0233534568', mobilePhone

: '0744222224'},

position : 'Sef

aprovizionare' }] }) ;

For customer Client 2 SA two contacts were

introduced, Vasile Ion who is Director gen-

eral (general manager) and Popovici Ioana

who is Sef aprovizionare (procurement man-

agement). In terms on MongoDB the docu-

ment that describes the above customer con-

tains a number of key-values pairs, from

which the values of the attribute contacts is

an array containing two elements. Each ele-

ment is, at its turn, a (sub) document com-

posed of (sub) document person and attribute

(and its values) position.

We do not dive into details above the

strengths and weaknesses of this schema, but

develop some differences in terms of data

definition, manipulation and query that oc-

cur. What in SQL is the operations of updat-

ing and querying rows in tables can be trans-

lated in MongoDB not only in update/query

documents in a collection, but also, up-

date/query a subdocument or an array (in-

cluded into another array…) in a document.

Taking the simple example of updating an at-

tribute value on a record, i.e. update phone

number for customer 'Client 1 SRL'. In SQL

that is possible by an UPDATE command:

UPDATE customers SET phone = '0232217001'

WHERE custName = 'Client 1 SRL'

In MongoDB the query is pretty similar:

db.customers.update({ custName : 'Client 1

SRL'},{$set : { phone : '0232217001'}})

Now the problem is finding customers for

which position Sef aprovizionare (Procure-

ment Manager) is in contacts. This requires a

join in SQL:

SELECT *

FROM customers

 INNER JOIN contacts ON custom-

ers.custID = contacts.custID

 INNER JOIN people ON contacts.persCode

= people.persCode

WHERE contacts.position = 'Sef aprovizionare'

54 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

But in MongoDB due to the schema of rec-

ords in contact collection this problem re-

quires querying defining a predicate that in-

volves an attribute within an array:

db.customers.find ({ "contacts.position" :

"Sef aprovizionare" }).pretty()

If in SQL adding as customer contact a per-

son who already exists in the database trans-

lates into a simple insert in contacts table:

INSERT INTO contacts VALUES ('CNP7', (SELECT

custId FROM customers

 WHERE custName ='Client 6 SA'),

'Consultant aprovizionare') ;

In MongoDB the problem requires inserting

an element into array customers which is

possible either by $push or $addToSet:

// 1: $push

db.customers.update ({custName : "Client 6

SA"}, {$push : { contacts :

{ person : { persCode : 'CNP7',

familyName : 'Popa', surName : 'Ioanid',

 address : 'I.Ion, Bl.H2, Sc.C,

Ap.45', sex : 'B', postCode : '701900',

 homesPhone : '0238789012',

officePhone : '0238321098'},

 position : 'Consultant aprovizionare'

}}}) ;

// 2. $addToSet is better when need to be

sure the array will not contain duplicate el-

ements

db.customers.update ({custName : "Client 6

SA"}, {$addToSet : { contacts :

 { person : { persCode : 'CNP7',

familyName : 'Popa', surName : 'Ioanid',

 address : 'I.Ion, Bl.H2, Sc.C,

Ap.45', sex : 'B', postCode : '701900',

 homesPhone :

'0238789012', officePhone : '0238321098'},

 position : 'Consultant aprovizionare'

}}}) ;

Sometimes operations that are simple in SQL

raise serious problems in MongoDB. For ex-

ample, setting an attribute value from another

attribute value in the same (sub)record. We

discover that the mobilePhone number of

Iurea Simion (personal code CNP5) is actual-

ly his officePhone number. Two updates (that

could be fusioned into a single one) solve the

problem in SQL:

UPDATE people SET officePhone = mobilePhone

WHERE persCode = 'CNP5' ;

UPDATE people SET mobilePhone = NULL WHERE

persCode = 'CNP5' ;

In MongoDB this type of updates is not yet

possible, so setting an attribute value from

another attribute in the same document re-

quires some basic programming/scripting.

The idea is to store mobilePhone value into a

variable and then update the office phone:

// extract Client 3 SRL record

var cust = db.customers.findOne ({custName :

'Client 3 SRL', "contacts.person.persCode" :

"CNP5"}) ;

// gather mobilePhone

var mobPh =

cust.contacts[1].person.mobilePhone ;

// update officePhone

db.customers.update ({custName : 'Client 3

SRL',

"contacts.person.persCode" : "CNP5"},

 { $set : {"con-

tacts.$.person.officePhone" : mobPh } }) ;

// delete mobilePhone

db.customers.update ({custName : 'Client 3

SRL',

"contacts.person.persCode" : "CNP5"},

 { $unset : {"con-

tacts.$.person.mobilePhone" : 1 } }) ;

Database denormalization has other updating

consequences too. If person Popa Ioanid

(whose personal code is CNP7) changes his

homePhone number into 0232789012, be-

cause of normalization in SQL databases a

single row will be modified:

UPDATE people SET homePhone = '0232789012'

WHERE persCode = 'CNP7'

Since the document structure in contacts col-

lection is denormalized, Popa Ioanid appears

in three documents, as contact for three dif-

ferent customers. This is an opportunity to

point out another difference SQL-MongoDB.

Whereas in SQL the default scope of update

command is all the set of rows that satisfy the

predicate in WHERE clause, in MongoDB

the default scope is the only first document

satisfying the predicate. So in this case up-

date function must presents a third parameter

– multi – that sets the scope to all documents

that meet the criteria:

db.customers.update ({"con-

tacts.person.persCode" : "CNP7"},

 { $set : {"con-

tacts.$.person.homePhone" : "0232789012" } },

 { multi : true }) ;

Another difference resides in the dynamic of

the language. SQL is an established lan-

Informatica Economică vol. 17, no. 2/2013 55

DOI: 10.12948/issn14531305/17.2.2013.04

guage. Even versions of the standard have

been published every now and then (1989,

1992, 1999, 2003, 2008, 2011), the core of

the language remains unchanged since its in-

ceptions. On the contrary, in MongoDB,

DDL, DML and query options improve at a

rapid pace with every new version, even the

product seems to have reached a certain level

of maturity.

If, for example, attribute address must be re-

named into postAdress, in SQL that has been

possible through ALTER TABLE

(PostgreSQL syntax):
ALTER TABLE customers RENAME COLUMN ad-

dress to postAddress;

In MongoDB, prior to version 1.7.2, renam-

ing operations had to be done "manually" for

each document in collection:

db.customers.find().forEach(

 function (x) {

 // declare new property which gather the

value of an existing property

 x.postAddress = x.address ;

 // remove old property

 delete x.address;

 // save the updated document

 db.customers.save(x);

 })

Since Mongo 1.7.2 $rename (predicate,

fields_for_renaming, upsert, multi-

ple_documents) method is available, so the

operation is much simplified:

db.customers.update({},{ $rename : {

'address' : 'postAddress' }}, false, true) ;

As already exemplified, due to different data

structure, the some problem translates into

different operations in SQL and MongoDB.

Continuing with a correction. In both sche-

mas, officePhone was placed in person table

or sub-document. This is wrong, since

officePhone is related simultaneously to both

person and customer. So we need to move

officePhone attribute (along with its values)

from person to contact (mobilePhone is per-

sonal, but officePhone belongs to employer).

In SQL (PostgreSQL syntax) this id done by

following succession:

// ALTER TABLE for adding contact.officePhone

ALTER TABLE contacts ADD officePhone

VARCHAR(10) ;

// UPDATE contact.officePhone from peo-

ple.officePhone

UPDATE contacts SET officePhone = (SELECT

officePhone FROM people

WHERE persCode = contacts.persCode) ;

// ALTER TABLE for deleting peo-

ple.officePhone

ALTER TABLE people DROP COLUMN officePhone ;

Currently, in MongoDB the problem required

renaming an array field which is possible on-

ly by the following code:

db.customers.find().forEach(function (x) {

 for (var idx = 0; idx <

x.contacts.length; idx++) {

 y = x.contacts[idx].person ;

 if ('officePhone' in y) {

x.contacts[idx].officePhone = y.officePhone;

 delete

x.contacts[idx].person.officePhone; }

 }

// save the updated document

db.customers.save(x);

})

Upsert (update combined in a single state-

ment with insert) is among operations that

are easier to perform in Mongo than in SQL/

PostgreSQL. In SQL standard and some dia-

lects there is a special command – MERGE.

Unfortunately, it is not yet implemented in

PostgreSQL so the following MongoDB

upsert has not an equivalent:

db.products.update ({_id : 1},

 {_id: 1, prodName : 'Produs 1', mu :

'buc', prodCateg : 'Cosmetice',

percVAT : .24 },

 {upsert : true}) ;

If in collection products there is already a

document with _id = 1, then the above state-

ment is an update. Otherwise, it is an insert.

As usual, things get easier with deletions,

but, as with inserts and updates, sometimes a

SQL DELETE operation translates into

MongoDB into deleting documents, or sub-

documents or array elements. But we will

start with deletion of a data storage object –

table or collection – which is quite similar:

// PostgreSQL:

DROP TABLE invoices

// MongoDB:

db.invoices.drop()

Also in many situations deleting rows in a

table translates simply in deleting documents

in a collection:

56 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

// PostgreSQL: delete products in Cosmetice

(cosmetics) category

DELETE FROM products WHERE prodCateg =

'Cosmetice' ;

// same operation in MongoDB

db.products.remove({ prodCateg : 'Cosmetice'}

)

Supposing that customer Client 6 SA ends

consulting contract ("Consultant

aprovizionare") of Popa Ioanid (CNP7). This

is a case when a row deletion in SQL:

DELETE FROM contacts WHERE custId = 1006 AND

persCode = 'CNP7' AND

position = 'Consultant aprovizionare'

;

means in MongoDB a remove operation in an

array – update … $pull option:

db.customers.update({ custName : "Client 6

SA" },

{ $pull : { contacts : { position :

"Consultant aprovizionare" } }})

We store here with the parallel between SQL

and MongoDB options in terms of DDL,

DML and database query. Even if we cov-

ered with examples most of these commands

and functions, there are also many MongoDB

features which deserve deeper investigations

such as map-reduce and the aggregation

framework.

8 Conclusions

Mobile applications development is one of

the most dynamic areas in IT industry. As

mobile devices (smartphones, tablets, sen-

sors) surpasses desktop PCs and laptops in

terms of number of users, there is a growing

interest in providing appropriate technologies

for data storage in mobile applications.

The main challenge for database layer in

many mobile applications is to mix the small

scale of client resources (although in recent

years tablets and smartphones increased their

processing power and storage capacity) with

huge amounts of data collected on the server

side which need to be stored and processed,

including proper replication and synchroniza-

tion mechanisms between clients and servers.

Currently the data layer in mobile apps, es-

pecially on the client side is provided by pro-

prietary non-database technologies or some

special (lite) versions of relational DBMSs,

NoSQL datastores are serious competitors

due mainly to their schema flexibility and

scalability. This paper tried to prove that

MongoDB, as one the most praised NoSQL

product, can be successfully used for deploy-

ing mobile applications for both client and

server layers and also pointed out some

common data definition, manipulation and

query features and differences between

MongoDB and SQL (PostgreSQL) DBMSs.

References

[1] P. Pocatilu, Programarea dispozitivelor

mobile, Bucharest: ASE Publishing

House, 2012

[2] N. Tomai, G. C. Silaghi (coords), A.

Costişor, A.M. Ghiran, I. Petri, S.

Presecan, C. Ştefanache, Tehnologii şi

aplicaţii mobile. Cluj-Napoca: Risoprint

Publishing House, 2012

[3] O. Dospinescu, M. Percă, Aplicaţii mo-

bile pe platforma Android. Iaşi:

Tehnopress Publishing House, 2013

[4] O. Dospinescu, D. Fotache, A. Munteanu,

“Architecture For Enterprise Mobile Ser-

vices,” in Proc. of the 9th IBIMA Interna-

tional Business Information Management

Conference, Marrakech, Morocco, 2008,

pp. 985-994

[5] P. Pocatilu (2012). Building Database-

Powered Mobile Applications.

Informatica Economică Journal [Online].

16 (48), pp. 132-142. Available:

http://revistaie.ase.ro/content /61/12%20-

%20Pocatilu.pdf

[6] A. Zamfiroiu (2012). Integrability and In-

teroperability of Mobile Applications.

Informatica Economică [Online] 16 (4),

pp. 150-158. Available:

http://www.revistaie.ase.ro/content/

64/17%20-%20Zamfiroiu.pdf

[7] Q. H. Mahmoud, S. Zanin, T. Ngo, “Inte-

grating Mobile Storage into Database

Systems Courses”, in Proc. of the 13th

annual conference on Information tech-

nology education - SIGITE '12, 2012, pp.

165-170

[8] B. Unhelkar, S. Murugesan, “The Enter-

prise Mobile Applications Development

http://revistaie.ase.ro/
http://www.revistaie.ase.ro/

Informatica Economică vol. 17, no. 2/2013 57

DOI: 10.12948/issn14531305/17.2.2013.04

Framework,” IT Professional, 12 (3),

May/June 2010, pp.33-39

[9] P. Padmanabhan, L. Gruenwald, A.

Vallur, M. Atiquzzaman, “A survey of

data replication techniques for mobile ad

hoc network databases,“ The VLDB Jour-

nal, 17, pp. 1143–1164, 2008

[10] V.T.K. Tran, R.K. Wong, W.K. Cheung,

J.Liu, “Mobile Information Exchange

and Integration: From Query to Applica-

tion Layer”, in Proc. of the 20th Austral-

asian Database Conference (ADC 2009),

2009, pp.115-124

[11] S.W. Lee, G. J. Na, J.M. Kim, J.H. Oh,

and S.W. Kim, “Research issues in next

generation DBMS for mobile platforms”,

in Proc of the 9th international confer-

ence on Human computer interaction

with mobile devices and services

(MobileHCI '07), 2007, pp. 457-461

[12] H. Kim, N. Agrawal, C. Ungureanu,

“Revisiting Storage for Smartphones,”

ACM Transactions on Storage, 8(4), Nov.

2012, pp. 14:1-14:25

[13] A. K. Nori (2007). Mobile and Embed-

ded Databases. Bulletin of the IEEE

Computer Society Technical Committee

on Data Engineering. Available:

ftp://ftp.research.microsoft.com/pub/debu

ll/A07sept/nori.pdf (accessed March

2013)

[14] A. Eckermann (2011). Beginning iOS

Development: Data Persistence. Availa-

ble:

http://mobile.tutsplus.com/tutorials/iphon

e/iphone-sdk_store-data/ (accessed March

2013)

[15] A. Floratou, N. Teletia, D.J. DeWitt,

J.M. Patel, "Can the Elephants Handle the

NoSQL Onslaught?," Proceedings of the

VLDB Endowment, 5 (12), 2012,

pp.1712-1723

[16]***, “Stonebraker on NoSQL and Enter-

prises,” Communications of the ACM, 54

(8), August 2011 , pp.10-11

 [17] C. Mohan, “History Repeats Itself: Sen-

sible and NonsenSQL Aspects of the

NoSQL Hoopla”, on Proceedings of the

16th International Conference on Extend-

ing Database Technology (EDBT '13),

Genoa, Italy, 2013, pp. 11-16

[18]J. Pokorny, “NoSQL Databases: a step to

database scalability in Web environ-

ment”, in Proc. of the 13th International

Conference on Information Integration

and Web-based Applications and Services

(iiWAS '11), 2011, pp.278-283

[19] C. Nance, T. Losser, R. Iype, G. Har-

mon, “NoSQL vs RDBMS - Why There

is Room for Both,” in Proceedings of the

Southern Association for Information

Systems Conference, Savannah, GA,

USA, March 2013, pp.111-116

[20] P. Helland, "If You Have Too Much Da-

ta, then ‘Good Enough’ Is Good

Enough," Communications of the ACM,

vol. 54, no. 6, pp.40-47, June 2011

[21] D. Cogean, M. Fotache, V. Şerban-

Greavu, “NoSQL for Higher Education.

A Case Sudy”, in Proc. of the 12th inter-

national conference on Informatics in

Economy, Bucharest, 2013, pp. 352-360

[22] R. Cattell, "Scalable SQL and NoSQL

Data Stores," ACM SIGMOD Record,

vol. 39, no. 4, December 2010, pp. 12-27

[23] N. Jatana, S. Puri, M. Ahuja, I. Kathuria,

D. Gosain, “A Survey and Comparison of

Relational and Non-Relational Database,”

International Journal of Engineering Re-

search & Technology (IJERT), 1(6), Au-

gust 2012, pp.1-5

[24] M. Asay (2013). Why NoSQL Trumps

Relational Databases for Mobile Applica-

tions. Available:

http://www.techopedia.com/2/29256/deve

lopment/mobile-development/why-nosql-

trumps-relational-databases-for-mobile-

applications, March 5, 2013 (accessed

April 2013)

[25] J. Selvadurai, “A Mobile Commerce Ar-

chitecture Based on Location Based Ser-

vices and Social Media Monitoring,” In-

ternational Journal of Scientific & Engi-

neering Research, 3(9), September 2012,

pp.1-4

[26] R. Copeland, MongoDB Applied Design

Patterns. Sebastopol, California: O'Reil-

ly, 2013.

http://www.techopedia.com/2/29256/development/mobile-development/why-nosql-trumps-relational-databases-for-mobile-applications
http://www.techopedia.com/2/29256/development/mobile-development/why-nosql-trumps-relational-databases-for-mobile-applications
http://www.techopedia.com/2/29256/development/mobile-development/why-nosql-trumps-relational-databases-for-mobile-applications
http://www.techopedia.com/2/29256/development/mobile-development/why-nosql-trumps-relational-databases-for-mobile-applications

58 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.04

Marin FOTACHE has graduated (long time ago) the Faculty of Economics

at Alexandru Ioan Cuza University of Iasi, Romania. He holds a PhD diploma

in Business Informationn Systems (Business Informatics) from 2000 and he

had gone through all didactic positions since 1990 when he joined the staff of

Alexandru Ioan Cuza University, from teaching assistant in 1990, to full pro-

fessor in 2002. Currently he is professor within the Department of Account-

ing, Business Informatics and Statistics in the Faculty of Economics and

Business Administration at Alexandru Ioan Cuza University. He is the (co)author of books

and journal articles in the fields of SQL, database design, NoSQL, and knowledge manage-

ment.

Dragos COGEAN has graduated the Faculty of Economics and Business

Administration from “Alexandru Ioan Cuza” University of Iasi in 2008. He

attended Master Studies in the fields of Business Information Systems at the

same Faculty between 2008 and 2010. As Ph.D. student and employee of a

Dutch software development company (Project Manager) he is interested in

new technologies like NoSQL databases, big data software and analytics.

