
Informatica Economică vol. 17, no. 2/2013 17

DOI: 10.12948/issn14531305/17.2.2013.02

Web Services in Mobile Applications

Octavian DOSPINESCU

1
, Marian PERCA

2

1
Al.I.Cuza University of Iasi, Romania

2
The Software Farm, UK

doctav@uaic.ro, marian.perca@gmail.com

Information and communication technologies are designed to support and anticipate the con-

tinuing changes of the information society, while outlining new economic, social and cultural

dimensions. We see the growth of new business models whose aim is to remove traditional

barriers and improve the value of goods and services. Information is a strategic resource and

its manipulation raises new problems for all entities involved in the process. Information and

communication technologies should be a stable support in managing the flow of data and

support the integrity, confidentiality and availability. Concepts such as eBusiness,

eCommerce, Software as a Service, Cloud Computing and Social Media are based on web

technologies consisting of complex languages, protocols and standards, built around client-

server architecture. One of the most used technologies in mobile applications are the Web

Services defined as an application model supported by any operating system able to provide

certain functionalities using Internet technologies to promote interoperability between vari-

ous applications and platforms. Web services use HTTP, XML, SSL, SMTP and SOAP, be-

cause their stability has proven over the years. Their functionalities are highly variable, with

Web services applications exchange type, weather, arithmetic or authentication services. In

this article we will talk about SOAP and REST architectures for web services in mobile appli-

cations and we will also provide some practical examples based on Android platform.

Keywords: Mobile Web Services, Mobile Applications, SOA, SOAP, REST

Introduction

The distributed computing systems be-

come more and more important in the new

world dominated by the Information Tech-

nologies. This has resulted in recent stand-

ardization effort of distributed computing ar-

chitecture, which is known as Service Ori-

ented Architecture (SOA). The main compo-

nent of this architecture is the Web Service.

Some of the challenges in implementing the

SOA architecture are maintainability, relia-

bility, and security [1].

In the specialized literature we can find sev-

eral articles [2], [3], [4] that address the issue

of distributed architectures and web services

in areas such as education, health and busi-

ness. In fact, Web services are a solution for

the integration of distributed information sys-

tems, autonomous, heterogeneous and self-

adaptable to the context. Although there are

similarities between Web Services and Web

sites, we mention three notable differences

between these technologies:

 websites have generally a friendly inter-

face to communicate with the user and

the opposite we have web services that do

not require a graphical user interface;

 if Web sites are designed to facilitate in-

teraction with their users, web services

will only exchange data with other appli-

cations;

 websites must be accessible using brows-

ers while web services can adapt to sev-

eral environments or devices.

An application built on web services archi-

tecture can have several roles; it can be both

the consumer and the service provider or just

register whose role is to keep the web service

description. The Service Provider is the per-

son or organization that provides access to a

web service in order to meet certain require-

ments. The consumer (Service Requester) is

the entity that needs this service and meets a

register known as the Discovery Service

Agency or Broker who will make the connec-

tion between the two components [5].

In this paper we intend to present a review of

the main architectures based on web services

1

18 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.02

and we also provide an application imple-

mentation which can be used in the industry

of telecommunication.

2 The Components of the Web Services

Eco-System

According to some authors [6], web services

were initially mainly intended to engage in

dynamic business-to-business (B2B) interac-

tions with services deployed on behalf of

other enterprises or business entities. Broad

interest in standardization/customization ef-

forts was aimed at reducing the necessary us-

er interaction. However, with the advance-

ment of Web service technology the com-

plexity of possible tasks and the availability

of services any time anywhere, e.g. through

powerful mobile client devices, will strongly

increase.

The architecture of calling services is based

on its description as shown in Figure 1.

Fig. 1. The architecture of calling services

[7]

The main building blocks of a web service

are discussed below, along with a description

of each and the function that satisfies thus

making up web service stack:

 Discovery - the process that determines

the location of the Web service that will

connect. The discovery will be done us-

ing centralized directories or using other

ad-hoc methods;

 Description - web service discovery once

made, the customer must receive a de-

scription of how it will achieve interac-

tion with the service. Description consists

of structured metadata about the interface

used and written documentation of details

and examples of using the web service;

 The format of the messages - this ele-

ment is necessary for encoding the mes-

sage between the client and web service.

This format allows abstraction of com-

munication protocols for a better focus on

the logic of the problem;

 Encoding must allow processing by any

language; XML is the best choice due to

the structural and text;

 Transport - how data composing a mes-

sage is transmitted between partners in

conversation.

Fig. 2. The main building blocks of a web

service

Some authors [8], [9] consider that SOAP

based Web services are the preferred way to

implement the SOA initiative in today's

complex and heterogeneous computing envi-

ronment. SOAP-based Web services present

greater flexibility at lower integration costs

over RESTful Web services that instead offer

great performance through lighter messaging

system.

Instead, we consider that the applications that

use REST web services are more robust and

the costs are not a problem for the implemen-

tation.

3 Types of Architectures

Although there are numerous standard proto-

cols such as HTTP, XML, WS-Notifications,

WS-Security, Simple Object Access Protocol

and Web Service Definition Language to

simplify Web services, their definition was

chosen based on the type of service. The

Discovery: UDDI, DISCO

The format of the message: SOAP

Description: WSDL, XML, documentation

Encoding: XML

Transport: HTTP, SMTP, FTP

Informatica Economică vol. 17, no. 2/2013 19

DOI: 10.12948/issn14531305/17.2.2013.02

RPC Architecture (Remote Procedure Call) is

a service-oriented and developed around the

idea of trading information via a wrapper

type SOAP, XML-RPC or HTTP. An alter-

native appeared as REST architecture re-

source-oriented which exclusively uses web

technologies such as HTTP, URI or XML.

3.1 RPC Architecture – Service Oriented

Architecture Protocol

Remote Procedure Call is an inter-process

communication technology that allows a pro-

gram on one computer to generate a subrou-

tine or procedure which is executed in anoth-

er address space (usually on another comput-

er or on a shared network) without the pro-

grammer explicitly encode the details of the-

se interactions at a distance. Basically, the

programmer writes the same code whether

the subroutine is local or remote to the exe-

cuting program. When the software in ques-

tion is written using object-oriented princi-

ples, we can talk about speed or distance call-

ing remote methods.

One way to examine the architecture of web

services is achieved by studying the protocol

stack of the service. Stack is growing but cur-

rently contains four levels:

 the transport service: the message is re-

sponsible for transportation between con-

sumer and supplier. Currently this level

contains protocols such as HTTP (hyper-

text transfer protocol), Simple Mail

Transfer Protocol (SMTP), file transfer

protocol (FTP), and newer protocols like

Blocks Extensible Exchange Protocol

(BEEP);

 the level of XML messages: this is re-

sponsible for encoding messages in an

XML format so that the messages can be

understood from the other end. Currently

this level is described by XML-RPC and

SOAP protocols;

 the level of service description: is re-

sponsible for describing the public inter-

face of the service. Service description is

achieved by Web Service Description

Language (WSDL);

 the level of service discovery: this is re-

sponsible for centralizing services into a

common registry and provides publishing

functionality of the service. The discov-

ery service is currently done by: Univer-

sal Description, Discovery, and Integra-

tion (UDDI).

SOAP is an XML-based protocol that ex-

changes information between computers in a

decentralized and distributed environment.

The acronym SOAP originally derived from

Simple Object Access Protocol, and then

from Service Oriented Architecture Protocol.

The initial name was abandoned from ver-

sion 1.2 when it was considered misleading.

The protocol consists of three elements:

 an envelope that defines the content of a

message and how to process it;

 a set of rules for encoding instances de-

fined by the application (defined data

types);

 a convention for representing procedure

calls and responses called away.

Like XML-RPC, SOAP is platform inde-

pendent, thus representing a way of commu-

nication between different operating systems

with different operating languages. SOAP

messages are encoded in XML documents,

are made up of a wound (SOAP envelope,

mandatory), a header (SOAP header, option-

al) and a body (SOAP body, mandatory).

SOAP messages are also XML documents,

giving details of the protocol specifications

for encoding data in strongly typed SOAP

messages. The figure below summarizes the

structure of a SOAP message:

Fig. 3. The structure of a SOAP message[10]

20 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.02

3.2 REST Architecture

Representational State Transfer (REST) is a

new architecture for web services that is hav-

ing a significant impact on the industry. Most

of the new public web services from large

vendors (Google, Yahoo, Amazon, Mi-

crosoft) rely on REST as the technology for

sharing and merging information from multi-

ple sources [11]. Representational State

Transfer involves a set of rules or a resource-

oriented architecture that supports the sim-

plicity of web technologies, using standards

such as Hypertext Transfer Protocol Uniform

Resource Identifier and Extensible Markup

Language. Among the most notable features

of the REST architecture, we can mention

[12]:

 the data transmitted from the client to the

server is in URI;

 the operation performed by the server on

the data is described in the HTTP method

directly;

 resource - anything that can be labeled as

object (concrete or abstract) will automat-

ically be a resource;

 URI for each resource that contains her

name and address. In most cases this URI

is identical to the Uniform Resource

Locator (a basic form of identifier);

 representations - their core resources will

not represent data, but only the idea on

the structure of the data service.

Fig. 3. The layers of SOAP and REST [11]

According to some authors [13], the HTTP

methods such as GET and POST are the

verbs that the developer can use to describe

the necessary create, read, update, and delete

(CRUD) actions to be performed. Some may

see an analogy to operations in SQL, which

also relies on a few common verbs (Insert-

PUT, Select-GET, Update-POST, Delete-

DELETE). However, the REST style and

HTTP protocol are mutually exclusive, and

REST does not require HTTP.

4 A Model of Mobile Application Using

Web REST Services

In this section we implement an Android

mobile client which uses REST services in

order to obtain information about the phone

calls for a company that has many mobile

devices. The mobile application must meet

economical ([14], [15]) and technical re-

quirements:

 covers many mobile device types, run-

ning at least Android 2.3.3;

 authentication of the same screen of

companies, divisions and simple users;

 access to available reports for each user,

depending on the selected reporting peri-

od;

 viewing data as graphs;

 viewing messages.

Fig. 4. The sections of the application

To perform these functions, we divide the

application into 5 sections:

 Reports - reports can be viewed here;

 Charts - to view graphs;

 Messages - for viewing messages;

Informatica Economică vol. 17, no. 2/2013 21

DOI: 10.12948/issn14531305/17.2.2013.02

 Summary - to view data on current ac-

count;

 Settings - to set the year and used in the

reporting month.

The data presented by the mobile application

is through the REST web services offered by

the web application. We used the technique

described in [16] and we add some new fea-

tures in order to meet the requirements de-

scribed in [17]; this involves calling a web

service through an Android service that does

not block the user interface. There are many

advantages of using a service, among which

the most important are the following:

 the service does not depend on a specific

activity, so we can start the services from

different parts of an android application,

including other services or

BroadcastReceivers;

 the service does not block the user inter-

face, making it ideal for operations that

take place on a longer time period.

Thus in this application all calls to web ser-

vices will follow the following pattern:

Activity→ Fragment→ Services→ Frag-

ment→ Activity. The service that was creat-

ed extends IntentService class in a new

thread by calling the sent web service param-

eters:

if (request != null) {

 HttpClient client = new DefaultHttpClient();

 Log.d(TAG, "Executing request: "+ verbToString(verb) +": "+ action.toString());

 HttpResponse response = client.execute(request);

 HttpEntity responseEntity = response.getEntity();

 StatusLine responseStatus = response.getStatusLine();

 int statusCode = responseStatus != null ? responseStatus.getStatusCode() : 0;

 if (responseEntity != null) {

 Bundle resultData = new Bundle();

 resultData.putString(REST_RESULT, EntityUtils.toString(responseEntity));

 receiver.send(statusCode, resultData);

 }

 else {

 receiver.send(statusCode, null);

 }

}

To interact with the service, we created a

fragment that will launch the service and in-

terpret the results:

public abstract class RESTResponderFragment extends Fragment {

 private ResultReceiver mReceiver;

 public RESTResponderFragment() {

 mReceiver = new ResultReceiver(new Handler()) {

 @Override

 protected void onReceiveResult(int resultCode, Bundle resultData) {

 if (resultData != null && resultData.containsKey(RESTService.REST_RESULT)) {

 onRESTResult(resultCode, resultData.getString(RESTService.REST_RESULT));

 } else {

 onRESTResult(resultCode, null);

 }

 }};}

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setRetainInstance(true);

 }

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return super.onCreateView(inflater, container, savedInstanceState);

 }

 public ResultReceiver getResultReceiver() {

22 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.02

 return mReceiver;

 }

 abstract public void onRESTResult(int code, String result);

}

As we can see, we added a ResultReceiver

variable to capture response offered by the

service. For each module of the application,

which should display data provided by the

web service, we created a fragment extending

the fragment described above. It must im-

plement the method onRESTResult in order

to interpret the received answer. For exam-

ple, to display the list of reports available for

the authenticated user, we developed a new

fragment that executes the following method

as soon as the activity has been created:

public void getReportsList() {

 ReportsActivity activity = (ReportsActivity) getActivity();

if (activity != null) {

 dialog = new ProgressDialog(activity);

 dialog.setIndeterminate(true);

 dialog.setCancelable(false);

 dialog.setMessage("Please wait");

 dialog.show();

 Intent intent = new Intent(activity, RESTService.class);

 intent.setData(Uri.parse(MyHelper.SERVER_URL+"v1/reports/get_reports_list"));

 SharedPreferences settings = activity.getSharedPreferences(MyHelper.PREFS_NAME, 0);

 String prefUsername = settings.getString("username", "");

 String prefPassword = settings.getString("password", "");

 String prefUserType = settings.getString("user_type", "");

 Bundle params = new Bundle();

 params.putString("username", prefUsername);

 params.putString("password", prefPassword);

 params.putString("usertype", prefUserType);

 intent.putExtra(RESTService.EXTRA_HTTP_VERB, RESTService.POST);

 intent.putExtra(RESTService.EXTRA_PARAMS, params);

 intent.putExtra(RESTService.EXTRA_RESULT_RECEIVER, getResultReceiver());

 activity.startService(intent);

 }

}

To interpret the result we got onRESTResult method implemented as follows:

@Override

public void onRESTResult(int code, String result) {

 ReportsActivity activity = (ReportsActivity) getActivity();

 dialog.dismiss();

 if (activity != null && result != null) {

 ObjectMapper mapper = new ObjectMapper();

 ReportsApiResponse response = new ReportsApiResponse();

 try {

 response = mapper.readValue(result, ReportsApiResponse.class);

 } catch (Exception e) {

 Toast.makeText(activity, R.string.response_wrong_format,

 Toast.LENGTH_LONG).show();

 e.printStackTrace();

 activity.finish();

 return;

 }

 // Check to see if we got an HTTP 200

 if (code == 200) {

 reportsList = response.getReports();

 activity.setReportAdapter(reportsList);

 } else {

 Toast.makeText(activity, response.getMessage(),

 Toast.LENGTH_LONG).show();

 activity.finish();

 }

 }

}

Informatica Economică vol. 17, no. 2/2013 23

DOI: 10.12948/issn14531305/17.2.2013.02

Because until we get answers from the ser-

vice on may take some time depending on

the internet connection, we posted a message

dialog that notifies the user that is running an

operation that can last longer. For this we

used a ProgressDialog with setIndeterminate

property (true), which is displayed when the

service is started. It is cleared when the ser-

vice returns us an answer.

Web services provided by web application

YourView are presented in JSON format. To

interpret them within the mobile application,

we chose to use the Jackson library that facil-

itates the transformation of a string in JSON

format in a specified class. For example, a

user authentication method returns a response

like:

{

 "message": "You logged in successful-

ly",

 "type": "success",

 "result": {

 "user_type": "type",

 "companyid": "123456",

 "username": "test"

 }

}

To interpret it we created a class like this:

public class LoginApiResponse {

 private String message;

 private String type;

 private Result result;

 public static class Result {

 private String user_type;

 private int companyid;

 private String username;

 ...

 }

 ...

}

To convert the response received in the cre-

ated class, we used the following lines of

code:

ObjectMapper mapper = new ObjectMapper();

ReportsApiResponse response = new

ReportsApiResponse();

response = mapper.readValue(result,

ReportsApiResponse.class);

It is very important to take into account the

response time of the application we create.

Displaying a long list that can contain hun-

dreds or even thousands of lines complicates

the application's behavior, and whether the

list is created by querying a web service then

has to take into account the response time of

the web service.

In the application YourView each report is

displayed in a list form and can contain hun-

dreds of lines. To take into account the above

mentioned we proceeded as follows: first we

need to create the list so that it can handle a

large number of lines without hindering nav-

igation list. The list is created custom: each

line will display more details when the user

clicks on it and for this we created a new

class that extends BaseAdapter. Usually eve-

ry list contains more items than are displayed

on the screen and when the user navigates

through the list, with rows also disappear the

view sites associated with them. Objects that

represent these lines can be reused for new

rows displayed by convertView parameter of

the method getView(), or for each line dis-

played should build Android layout xml file

as:

public View getView(int position, View convertView, ViewGroup parent) {

 ViewHolder rowHolder;

 if (convertView == null) {

convertView = mInflater.inflate(R.layout.report_alpha_list_item, null);

rowHolder = new ViewHolder();

 rowHolder.rMainTitle = (TextView) convertView.findViewById(R.id.rMainTitle);

 rowHolder.rDetailsTop = (TextView) convertView.findViewById(R.id.rDetailsTop);

 rowHolder.rDetailsBottom = (TextView) convertView.findViewById(R.id.rDetailsBottom);

rowHolder.rHiddenDetails = (LinearLayout) convertView.

 findViewById(R.id.rHiddenDetails);

 rowHolder.rMainRow = (RelativeLayout) convertView.

 findViewById(R.id.report_alpha_list_item);

 rowHolder.rToggleImage = (ImageView) convertView.findViewById(R.id.toggleRowImage);

 convertView.setTag(rowHolder);

 } else {

 rowHolder = (ViewHolder) convertView.getTag();

 }

...

24 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.02

Through this approach the new elements are

created much faster and browsing through

the list is more natural. To solve the problem

of the query web service and of displaying

lines from the list in blocks of n-elements we

had to customize the list:

public static class ReportList extends ListFragment implements OnScrollListener {

 private int currentPage = 0;

 private int previousTotal = 0;

 private boolean loading = true;

 @Override

 public void onActivityCreated(Bundle savedInstanceState) {

 super.onActivityCreated(savedInstanceState);

 getListView().addFooterView(pendingRow, null, false);

 setListAdapter(mAdapter);

 getListView().setOnScrollListener(this);

 }

 @Override

 public void onListItemClick(ListView l, View v, int position, long id) {

 ((ReportListAdapter) getListAdapter()).toggle(position);

 }

 @Override

 public void onScroll(AbsListView view, int firstVisibleItem,

 int visibleItemCount, int totalItemCount) {

 if (loading) {

 if (totalItemCount > previousTotal) {

 loading = false;

 previousTotal = totalItemCount;

 currentPage++;

 }

 }

 if (!loading &&firstVisibleItem+visibleItemCount>=totalItemCount &&

 totalItemCount<totalRecords) {

 if (getListView().getFooterViewsCount() == 0)

 getListView().addFooterView(pendingRow, null, false);

 reportResponder.getMessages(currentPage);

 loading = true;

 }

 }

 @Override

 public void onScrollStateChanged(AbsListView view, int scrollState) {}

}

The web service may be configured to return

a number of different results, depending on

the ratio. This number is stored in the web

application, so if you notice that a report

generation time is large, we can adjust this

number without having to release a new ver-

sion of the application. The entire app was

designed so flexible that most changes can be

made directly from the web without requiring

changes in the mobile application. So for

each report, in the parameters those are sent

to the web service is also included the page

number to be displayed. This will give us the

appropriate data set; for example, for a total

demand of 50 results for page 1, the service

will return the first 50 lines; to page 2 it will

return results from 50 to 100, and so on. We

store all these results in an ArrayList list, on

which we create the list itself.

Informatica Economică vol. 17, no. 2/2013 25

DOI: 10.12948/issn14531305/17.2.2013.02

Fig. 4. The reports generated by the application

As you can see in the above code, we have

implemented OnScrollListener, which will

indicate which elements of our list are visi-

ble. When we reached the last item in the list,

the application sends a request to the web

service to bring us the next set of data. Once

we receive the reply we add new items to the

list and update variables.

The modern applications must meet a num-

ber of requirements [18] and we consider that

our proposal is a valid one.

8 Conclusions

Modern mobile applications need a robust in-

frastructure and various services in order to

obtain data from heterogeneous contexts. As

we could see in this paper, REST web ser-

vices are a valid option because they can be

invoked in an elegant manner and they are

really useful for the client application. Also,

it is very important to synchronize the

threads so that the application runs normally,

without blocking sequences.

We consider that the future of SOAP and

REST architectures will depend on the sup-

port offered by the industry in the implemen-

tation of new series of features according to

the technological evolution.

References

[1] G.M. Tere, B.T. Jadhav, R.R. Mudholkar

(2012). Dynamic Invocation of Web Ser-

vices. Advances in Computational Re-

search. ISSN: 0975-3273 & E-ISSN:

0975-9085, Volume 4, Issue 1, pp.-78-82.

[2] F. Felhi, J. Akaichi (2012). Adaptation of

Web Services to the Context Based on

Workflow: Approach for Self-Adaptation

of Service-Oriented Architectures to the

Context. International Journal of Web &

Semantic Technology (IJWesT) Vol.3,

No.4 [OnLine]. Available:

http://airccse.org/journal/ijwest/papers/34

12ijwest01.pdf

[3] A. N. Khan, S. Asghar, S. Fong (2011).

Framework of integrated Semantic Web

Services and Ontology Development for

Telecommunication Industry. Journal of

Emerging Technologies in Web Intelli-

gence, Vol 3, No 2 (2011), pp. 110-119,

May 2011

[4] C. Strimbei (2012). Smart Data Web Ser-

vices. Informatica Economica Journal,

Vol. 16, No 4, pp. 74-85

[5] B. Carminati, E. Ferrari, P.C.K. Hung

(2005). Exploring Privacy Issues in Web

Services Discovery Agencies. IEEE Se-

curity & Privacy Magazine, 3(5): 14-21,

2005.

[6] S. Khapre, D. Chandramohan (2011).

Personalized Web Service Selection. In-

ternational Journal of Web & Semantic

Technology Vol. 2, No. 2 [OnLine].

Available:

http://airccse.org/journal/ijwest/papers/22

11ijwest06.pdf

http://airccse.org/journal/ijwest/papers/3412ijwest01.pdf
http://airccse.org/journal/ijwest/papers/3412ijwest01.pdf
http://airccse.org/journal/ijwest/papers/2211ijwest06.pdf
http://airccse.org/journal/ijwest/papers/2211ijwest06.pdf

26 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.02

[7] M. Champion, C. Ferris, E. Newcomer,

D. Orchard (2012). Web Services Archi-

tecture. W3C Working Draft [Online].

Available:

http://www.w3.org/TR/2002/WD-ws-

arch-20021114

[8] C. Pautasso, O. Zimmermann and F.

Leymann, “RESTful Web Services vs.

Big Web Services: Making the Right Ar-

chitectural Decision”, 17th International

World Wide Web Conference

(WWW2008), 2008

[9] A. Cobârzan (2010). Consuming Web

Services on Mobile Platforms.

Informatica Economicã Journal [Online].

14(3), pp. 98-105. Available:

http://revistaie.ase.ro/content/55/1008%2

0-%20Cobarzan.pdf

[10] IBM Software Information Center

(2011). The Structure of a SOAP Mes-

sage [Online]. Available:

http://publib.boulder.ibm.com/infocenter/

cicsts/v3r1/index.jsp?topic=%2Fcom.ibm

.cics.ts31.doc%2Fdfhws%2Fconcepts%2

Fsoap%2Fdfhws_message.htm

[11] P. Glowacki (2012). Why Use “REST”

Architecture for Web Services? [Online].

Available:

http://edn.embarcadero.com/article/40467

[12] S. Tilkov (2007). A Brief Introduction to

REST [Online]. Available:

http://www.infoq.com/articles/rest-

introduction

[13] S. Tyagi (2006). RESTful Web Services

[Online]. Oracle Technology Network.

Available:

http://www.oracle.com/technetwork/articl

es/javase/index-137171.html

[14] L. Betianu (2012). “Indexes for a

Sustainable Society”, in The Proceedings

of the 6
th

 International Conference on

Globalization and Higher Education in

Economics and Business Administration,

pp. 920-926

[15] D. Fotache, L. Hurbean (2006). Busi-

ness Process Outsourcing. Informatica

Economica Journal, Vol. 10, No. 2, pp.

49-54

[16] N. Goodman (2012). Modern Tech-

niques for Implementing Rest Clients on

Android 4.0 and Below – Part 2 [Online].

Available:

http://neilgoodman.net/2012/01/01/moder

n-techniques-for-implementing-rest-

clients-on-android-4-0-and-below-part-2/

[17] I. Ivan, A. Zamfiroiu (2011). Quality

Analysis of Mobile Applications.

Informatica Economica Journal, Vol. 15,

No. 3, pp.136-152

[18] V.D. Pavaloaia (2009). Web based ap-

plications for SMEs economic and finan-

cial diagnose. Communications of the

IBIMA No. 9, pp. 24-30

Octavian DOSPINESCU graduated the Faculty of Economics and Business

Administration in 2000 and the Faculty of Informatics in 2001. He achieved

the PhD in 2009 and he has published as author or co-author over 30 articles.

He is author and co-author of 10 books and teaches as a lecturer in the De-

partment of Information Systems of the Faculty of Economics and Business

Administration, University Alexandru Ioan Cuza, Iasi. He is interested in

mobile applications and enterprise integrated systems.

Marian PERCA graduated the Faculty of Economics and Business Admin-

istration and now he is a web developer for TheSoftwareFarm, UK. He is in-

terested in mobile application development and is co-founder of the portal

www.aplicatii-mobile.ro. He is co-author of a book and intends to develop

new applications for financial services.

http://www.w3.org/TR/2002/WD-ws-arch-20021114
http://www.w3.org/TR/2002/WD-ws-arch-20021114
http://revistaie.ase.ro/content/55/1008%20-%20Cobarzan.pdf
http://revistaie.ase.ro/content/55/1008%20-%20Cobarzan.pdf
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://neilgoodman.net/2012/01/01/modern-techniques-for-implementing-rest-clients-on-android-4-0-and-below-part-2/
http://neilgoodman.net/2012/01/01/modern-techniques-for-implementing-rest-clients-on-android-4-0-and-below-part-2/
http://neilgoodman.net/2012/01/01/modern-techniques-for-implementing-rest-clients-on-android-4-0-and-below-part-2/
http://www.aplicatii-mobile.ro/

