
144 DOI: 10.12948/issn14531305/17.1.2013.12 Informatica Economică vol. 17, no. 1/2013

Technologies, Methodologies and Challenges in Network Intrusion
Detection and Prevention Systems

Nicoleta STANCIU

Bucharest University of Economic Studies, Romania
nicoleta_stanciu@yahoo.com

This paper presents an overview of the technologies and the methodologies used in Network
Intrusion Detection and Prevention Systems (NIDPS). Intrusion Detection and Prevention
System (IDPS) technologies are differentiated by types of events that IDPSs can recognize, by
types of devices that IDPSs monitor and by activity. NIDPSs monitor and analyze the streams
of network packets in order to detect security incidents. The main methodology used by
NIDPSs is protocol analysis. Protocol analysis requires good knowledge of the theory of the
main protocols, their definition, how each protocol works.
Keywords: Intrusion Detection and Prevention System, Protocol Analysis, Sensor, Signature,
State

Introduction
Increasing size and complexity of the

Internet and Intranet networks have led to
increasing number of vulnerabilities that
could be exploited. Thus, the internal and
external attacks on the information systems
are increasing at an alarming rate. Also, these
are becoming more severe and sophisticated.
The attackers find ingenious ways to bypass
the security controls and to compromise the
security and the well functioning of the
information systems. They are motivated by
financial, political, and military objectives. In
this context, defending wide area networks
from malicious traffic, unauthorized access
to systems involves many problems.
In security information systems Network
Intrusion Detection and Prevention Systems
(NIDPS) are important tools to detect
possible incidents and also, to attempt to stop
them in real time. Due to changing attacks,
intrusion detection methodologies and
technologies continuously evolve, adding
new detection capabilities, to avoid detection.
They must adapt to new forms of malware, to
the public networks, increased traffic.

2 Concepts of Intrusion Detection
An intrusion is a successful action to gain
access to an information system, to
compromise it or to make it unavailable. This
is possible due to the presence of
vulnerability in the target system that can be

exploited by a motivated intruder.
Intrusion Detection and Prevention is the
process of monitoring the information
systems by sensors or agents and analyzing
the collected information to detect and to
attempt to stop the attacks in real time,
identifying vulnerabilities, the violation of
security policies or standard security
practices.
An Intrusion Detection and Prevention
System (IDPS) is a tool that monitors
information systems, collects, analyzes
information, and initiates responses when an
intrusion is detected.
Intrusion Detection Systems (IDSs) mainly
work as defensive mechanisms. They only
alert the system administrators that an
incident has occurred. Intrusion Prevention
Systems (IPSs) can take some actions to
attempt to stop the attack, such as breaking
the connection or modifying the firewall
rules to deny access to the intruder. The
response of the classic IDS can be slow if the
system administrator is busy while the
response of the IPS is automatic. An
architecture that uses together IPS and IDS
technologies is the best solution for defense
in depth.
Conceptually, a generic IDPS consists of
modular components. It mainly has the
following components: monitoring system,
storage, analyzer, and responder.
 Monitoring system – monitors and logs

1

Informatica Economică vol. 17, no. 1/2013 145

the events in a computer system or
network;

 Storage – stores information, called audit
record, about suspicious activities or
intrusions; also, the security policies
used in analysis are stored;

 Analyzer – uses different analysis
methodologies to detect the incidents;

 Responder – the response mechanism of
incidents.

The IDPSs could be classified as:
 By detection methodology [12], [18]:

- misuse-based detection
- anomaly-based detection
- stateful protocol analysis

 By activity [12]:
- network-based
- wireless-based
- network behavior analysis
- host-based

 By behavior on detection:
- passive
- active

 By collection and analysis frequency:
- continuous
- periodic

The detection methodologies describe the
characteristics of the analyzer.
Misuse-based detection [18] represents
known attacks in the form of a pattern or a
signature. The main issues in misuse
detection methodologies are how to make a
signature that encompasses all possible
variations of an attack, and that do not also
match normal behavior.
Misuse-based detection can be implemented
by the following techniques [18]:
 rule-based intrusion detection – the

attacks are represented as rules of if-then
form;

 model-based reasoning system [18] – the
attack scenarios are stored in a database;
the anticipator searches attack scenarios
in audit trail and generates the next set of
hypothesized behaviors, that it passes to
the planner; the planner determines the
likelihood of occurrence them in the
audit trail; if the likelihood is high the
scenarios accumulate;

 state transition analysis –the attacks are
represented as a sequence of state
transitions, from initial state to
compromised state, of the monitored
system;

 key stroke monitoring – an attack is
identified by user key strokes
registration;

 pattern matching model – the signatures
of known intrusions are represented as
patterns that are compared with audit
trail. This approach considers intrusion
signatures – patterns, audit trails –
abstract event streams, detector – pattern
matching.

Anomaly-based detection considers that the
intrusive activities are anomalous. This is the
process [12] of comparing the profiles of
normal behavior against real activity of the
system to identify significant deviations. The
profiles are developed by monitoring the real
activity of users, hosts, networks or
applications over a period of time, called a
training period, and preservation of what is
considered without intrusion. The profiles
can be static or dynamic.
Stateful protocol analysis uses protocol
model, the IDS sensors perform full protocol
decoding for some application-layer
protocols. The process [12] compares
profiles of normal protocol activity for each
protocol state against observed events in the
system to identify deviations. The “stateful”
[12] means that the IDPS can understand and
can track the state of network, transport and
application a protocols.
There are four main groups of IDPS
technologies [12]:
Network-Based [12] - monitors network
traffic for network segments or devices (e.g.
packets captured by network interface in
promiscuous mode) and analyze the network,
transport and application protocol activity to
identify possible attacks originating from
outside or inside of the system.
Wireless [12] which monitors wireless
network traffic and analyzes its wireless
networking protocols to identify attacks.

146 Informatica Economică vol. 17, no. 1/2013

Network Behavior Analysis (NBA) [12]
which examines network traffic to identify
unusual traffic flows.
Host-Based is installed locally on host
machine and monitors the characteristics of
the host and events occurring with that host.
It analyzes network packets entering and
leaving the host, log files on the host,
processes running on the host, attempts to
execute malicious code. It checks the
integrity of system files, files access and
modification, CPU usage. By the type of
audit data they analyze, there are operating
system–level intrusion detection systems and
application-level intrusion detection systems.

The first three are network intrusion
detection technologies. Network-based is
older while wireless and network behavior
analysis are newer and have been developed
due the increasing complexity of networks.

3 Network Intrusion Detection
Primary source of a Network Intrusion
Detection and Prevention System (NIDPS) is
network traffic. In the network traffic the
data is passed through the layers from source
to destination. The four TCP/IP layer are:
hardware layer, internet protocol (IP) layer,
transport layer, application layer.

Fig. 1. The TCP/IP Model; Source: [19]

A typical component NIDPS [12] is
composed of sensors, one or more
management servers, multiple consoles and
optionally one or more database servers.
Sensors – monitor and analyze the activity.
The sensor can be an appliance-based – a
specialized hardware and sensor software or
software only. An appliance-based sensor
includes specialized NICs and NIC drivers
and specialized processors that assist in
analysis.

Sensors can be deployed in the following
modes [12]:
- Inline – network traffic can pass directly
through a NIDPS – Figure 2. This is by
definition active as it can inspect every
network packet and react in real time on
dangerous activities, e.g. dynamically block
network traffic that it believes to be
malicious. Some inline sensors can be hybrid
firewall/IDPS devices but can be specific
IDPS.

Fig. 2. Inline NIDS

Informatica Economică vol. 17, no. 1/2013 147

- Passive – monitors a copy of the actual
network traffic – Fig. 3. It monitors traffic
using a network tap or spanning port [12].
- Network Tap (Test Access Port) – is a
direct connection between a sensor and the
physical network media itself, such as a fiber
optic or copper cable. Fiber Taps [16] split
the network signal into two streams, enabling
to the network and monitoring devices to

receive the signal. The signal must be
regenerated to have adequate strength.
- Spanning port [12] – which is a port of a
switch that can see all network traffic going
through it. If a switch is configured or
reconfigured incorrectly, is under heavy
loads, its spanning port might not be able to
see all traffic.

Fig. 3. Passive NIDS

Generally, intrusion prevention techniques
require that the sensors be deployed inline
mode because the passive sensors monitor a
copy of traffic and cannot easily break the
connection. They still can place packets onto
network in order to disrupt network
connection but such method is more
cumbersome and less effective.
Administrators must decide where the IDPS
sensors should be located consistent with
security needs.
Most NIDPSs mainly rely on protocol
analysis. The types of attacks detected are
[12]:
 network layer attacks – spoofed IP

address, illegal IP header length. The IP,
ICMP, IGMP protocols are analyzed;

 transport layer attacks – port scanning,
unusual packet fragmentation, SYN
floods. The TCP and UDP protocols are
analyzed;

 application layer attacks – buffer
overflows, format string attacks, malware
transmission. Mainly, these protocols:
DNS, FTP, HTTP, IMAP, IRC, POP,
SMTP are analyzed;

 policy violation – use of inappropriate
Web sites or use of forbidden application
protocols.

Network-based IDPSs [12] cannot detect
attacks within encrypted network traffic, as
virtual private network (VPN) connections,
HTTP over SSL (HTTPS), and SSH sessions.
The analysis must be performed on payloads
within encrypted network traffic, thus IDPSs
analyze the payloads before it is encrypted or
after it is decrypted. However, some IDPSs
can also monitor encrypted communications
to identify known vulnerabilities or
misconfiguration.
Network-based IDPSs [12] may be unable to
perform full analysis under high loads,
especially if stateful protocol analysis
methods are in use. To prevent its disability it
uses high-bandwidth network cards, limits
the number of simultaneous connections, sets
timeouts to expire connection state.
Also, various types of attacks, such as
distributed denial of service (DDoS) attacks,
and anomalous activity can attempt to
exhaust a IDPS sensor’s resources and to
make them unavailable.
The first methodology was the development
of simple signatures [13], patterns to be

148 Informatica Economică vol. 17, no. 1/2013

searched in traffic. In the initial concept,
string matching, each signature is written
for key phrases or commands associated with
a known attack. It creates a list of signatures.
An incoming packet [13] is compared, byte
by byte, with each signature for particular
characteristic of malicious traffic, and when
there is a match, an alert is generated. Then
the next packet is read into memory and the

process begins again.
Another concept is protocol analysis. In
“protocol analysis” [9] the IDS sensor uses
definition of protocols and understands how
various protocols work. At each layer of
TCP/IP model [19], the packet consists of a
header of its own and data, sometimes known
as the payload.

 Data

 Data

 Data

Fig. 4. Packet; Source: [19]

There are IDS signatures that focus on IP,
TCP, UDP and application layer protocol
header value [8]. Any header value can be
used in signatures, but the most commonly
used header-related signature elements are
[8]:
 source and destination IP addresses

(particularly reserved, non-routable, and
broadcast addresses)

 port numbers in TCP or UDP protocols
(port scanning attacks)

 header length
 unusual packet fragmentation
 particular TCP flag combinations in TCP

headers
 the protocol field in IP headers (enables to

distinguish among TCP scans, UDP scans
and ICMP scans, SYN flooding attacks
and UDP flooding attacks)

 checksum
 Time to Live (TTL)
 ICMP types/codes that should not

normally be seen

There are some of the header values clearly
abnormal, so they make great candidates for
signatures. Classic examples are:
 TCP packet with the SYN and FIN flags

simultaneously set[7];
 TCP packet with the SYN, FIN and PUSH

flags simultaneously set [19]; It is
anomalous because a SYN flag starts a
connection, a FIN flag closes a connection
and PUSH flag sends data while a
connection is opened;

 no TCP flags [19]– if the TCP flag byte
field has a value of 00. A byte TCP flag
byte field is represented as two
hexadecimal characters or nibbles. The
high-order nibble contains two of reserved
bits for ECN (RFC 3168) and the bit
settings for URG, ACK flags. The low-
order nibble contains the bit settings for
the PSH, RST, SYN and FIN flags. 00
means that no TCP flags have been set. A
normal TCP flag byte has at least one flag
bit set;

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Header Length | Reserved | CWR| ECE | URG| ACK | PSH | RST| SYN | FIN |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Fig. 5. Header Length and TCP flags – TCP segment; Source: [19]

TCP header

IP header

Frame header

Informatica Economică vol. 17, no. 1/2013 149

 TCP flag byte field with a value greater
than 3 indicates that one or both of the
reserved bits are set (ACK=1=> 20=1,
URG=1=> 21=2 => 1+2=3). Any value
greater than 3 in high-order nibble is
anomalous unless ECN is being used [19].
ECN is a technique for reducing
congestion in a network. ECN traffic
should have a non-zero value in the
differentiated services byte (formerly
known as the type of service byte);

 a bad TCP header length [19] is when the
specified TCP header length is greater
than the actual TCP segment (header and
data) length. The value of the TCP
segment length can compute by subtracts
the IP header length from the IP datagram
total length;

 ACK flag isn’t set and the
acknowledgment number has non-zero
value [7];

 URG flag isn’t set and urgent pointer field
has non zero values [7];

 the normal IP header with no options is 20
bytes (IP v.4), or five 32-bit words. An IP
header that might contain a dangerous IP
option such as source routing would have
a length of greater than 5 found in this
field [19];

 unknown IP protocol number in IP header
[22];

 connection attempt from a reserved IP
address; it checks the source address field
in an IP header [7];

 traffic sent to broadcast address from
outside network [19]. The broadcast
address has a final octet 255 or 0. The
destination address field is found in bytes
16 through 19 (32 bits) of the IP header,
so the byte 19 of the IP header must be
different from 0 or 255. For example, a
malicious host sends many ICMP echo
requests with a spoofed source IP (IP
address of the victim host/network) to a
broadcast address of an intermediate
network. The intermediate network must
allow inbound broadcast traffic. All the
live hosts in the intermediate network
send ICMP echo reply to the victim host,
because they believe it’s the sender. If the

intermediate network has many hosts
and/or the target host has a slow Internet
connection, can occur a denial of service
attack on target host;

 the own network’s MTU (maximum
transmission unit) is smaller than the size
of the IP datagram and DF (Don’t
Fragment) flag is set [19] (to discover the
MTU some hosts send across the network
a datagram with the DF flag set, and the
MTU of the network that required
fragmentation is contained in the ICMP
error message);

 malicious fragmentation [19].
Fragmentation provides a field of action
for attackers, them using to mask and
facilitate their exploits. Malicious
fragmentation occurs in many different
forms. It uses malicious fragmentation to
exhaust system resource in some kind of
denial-of-service attacks, degradation of
service or disabling of the target host, to
evade detection or circumvent the
monitoring and filtering devices incapable
of fragments reassembly. It requires good
knowledge of the fragmentation theory to
detect malicious fragmentation and
recognize normal fragmentation. IDPSs
detect and analyze fragmented traffic and
discover malicious fragmentation [19]:

- fragmentation the 20-bytes TCP
header (the normal TCP header with no
option has 20 bytes) in multiple
fragments in an attempt to avoid
detection;
- creation of the fragments with
overlapping offset fields – exploits
weaknesses in the reassembly process
of fragments; When these fragments
are reassembled at the destination host
some systems will crash, hang or
reboot;
- the length of the last IP fragment was
changed [22];
- a large number of IP fragments can
lead to denial of service [22];
- while not illegal, IP fragments smaller
than 500 bytes are unusual [22];

150 Informatica Economică vol. 17, no. 1/2013

- can cause a denial-of-service by
repeatedly sending a non-zero offset
fragment to a host.

 the source and destination ports are set to
21 (FTP servers). In normal FTP traffic, it
sets a high port number (greater than
1023) as the source and port 21 as the
destination [7].

Because ICMP and UDP [8] protocols are
connectionless it checks each packet. The
TCP protocol is connection-oriented. In this
case [8], address and port are constant in all
packets in the connection and they can be
checked once, but TCP flags should be
different among the packets in the session, so
it will check every packet.
A header-based signature could include any
one or more characteristics. The simple
signatures are more prone to false positives
while the more complex signatures are prone
to false negatives. An example: two or more
characteristics can occur separately in
legitimate traffic but combined in same
packet are very low.
It can create a signature set based on known
exploit programs or known and potential
vulnerabilities. The signature set based on
known exploits has the disadvantage that will
be a significant delay between the time the
exploit occurs and the time the IDPS can
recognize its activity. This signature set is
written after the exploit has become public.
A signature set based on protocol analysis
has the advantage of looking for any signs of
abnormal or suspicious activity by checking
various fields for abnormal values. Abnormal
values for fields protocols can be used only
in the presence of existing vulnerabilities. By
using the protocol analysis techniques there
will be much better detection of known and
unknown attacks, it will be more difficult for
attackers to evade through change to
exploits’ code or NIDPS obfuscation.
Above there is a static analysis. For better
performance dynamic protocol analysis [8],
[20] is required. TCP, UDP and ICMP
headers and payloads are contained inside the
payload of IP packets. In order to get TCP
header data, for example, it must parse the IP
payload. Other protocols such as FTP, DNS,

HTTP, SMTP, IMAP, POP3 are contained
inside payload of UDP or TCP packets. In
this case, it must parse two levels, IP and
UDP or TCP, in order to get to them. For this
there are analyzer trees [20]. For each
connection the system identifies the protocol
used and activates the appropriate analyzer.
Each intermediate node receives data,
analyzes it and passes the transformed data to
the appropriate analyzer. By a dynamic
processing it can add, change or remove the
analysis component.
A superior and flexible NIDPS should [20]:
 use multiple ways to recognize protocols;
 enable multiple protocol analyzers to

work in parallel;
 choose the appropriate protocol analyzer

in incorrect classification cases;
 can dynamically decapsulate tunnels;
 enable high-speed analysis by

performance.

Fig. 6. Dynamic protocol analysis;

Source: [20]

Only more advanced NIDPSs perform full
protocol decoding, protocol analysis requires
much more advanced IDPS sensors
capabilities than the simple signature
technique. Protocol analysis techniques
monitor traffic, recognize a particular
protocol performing full decoding, validate it
and alert when traffic does not meet
expectations. Protocol analysis techniques
examine the header values and payload
values.
For example [9], protocol analysis to identify
an attempt to exploit buffer overflow
vulnerability in FTP MKD command,
verifies the length (that it isn’t overly long)
and the content (that doesn’t contain shell

IP TCP SMTP

IMAP

POP3

IP TCP HTTP

Informatica Economică vol. 17, no. 1/2013 151

code) of the argument of the MKD
command.
A simple NIDS evasion method is Path
Obfuscation [10] – alters the path so, it has
different appearance but the same meaning.
The advanced NIDPSs protocol analysis
based detect and stop these types of attack
because they perform much of the same
processing as a Web server, FTP server or
operating system.
For example [10]:
 character escaping; So, id and i\d have the

same meaning;
 using excessive whitespace, including

TAB and new line. If an attacker creates a
SQL injection attempt using DROP
 TABLE, the NIDPS should ignore the
additional spaces;

 using the backslash instead of slash in
URL should be treated as slash;

 single-dot sequence – when ./ combination
is used in a path, it does not change the
meaning. So, the NIDP treats the
windows/./system32 as
windows/system32;

 path transversal – such as /../ . So, if the
attacker uses
windows/sample/../system32, NIDPS will
wipe out sample, considering
windows/system32;

 hex encoding – so, %20 is the hex
encoding equivalent of a space, %5c is the
hex encoding equivalent of backslash,
%2e is the hex encoding equivalent of dot.
%5c%2e%2e is path transversal;

 unicode – so (HTML entity), @ is @
and dot is .
name1@domain1.com is
name1@domain1.com.

Thus, to circumvent the attack attempts
described above the advanced NIDSs
protocol analysis based perform these [10]:

 examine IP packet header to find IP
protocol number. IP protocol number 6
corresponds to TCP protocol;

 examine TCP packet header to find TCP
destination port number. If it is port 80,
this indicates that the user is sending an
HTTP request to the server;

 perform HTTP protocol analysis parsing
the HTTP request all component,
including the URL’s path;

 process the URL path by handling path
obfuscation, hex encoding, double hex
encoding, or unicode;

 generate an alert if an attack attempt is
found.

The evasion methods can be combined to
create an advanced evasion technique. Thus,
two or more evasion techniques of different
network layers can be combined. Two ways
of advanced evasion techniques are
metamorphic and polymorphic malware [15].
In both cases the code is different and more
sophisticated with each iteration to avoid
detection. The polymorphic malware code
has two parts; one part remains constant with
each iteration. For example, if viruses, a
virus have a virus decryption routine (VDR)
and an encrypted virus program body (EVB).
In this case, it is easier to provide a complex
signature to identify the constant part. The
metamorphic malware is more difficult to
detect. For its detection advanced techniques
[15] are used, such as generic decryption
scanning, negative heuristic analysis,
emulation and access to virtualization
technologies.
In order to detect the attacks, a traffic
normalizer [14] should be placed in path of
traffic and to normalize the packet stream.
The normalizer should remove the potential
ambiguities. Thus, the NIDPSs monitor
normalized traffic.

Fig. 7. Typical locations of normalizer and NIDS. Source [14]

http://whatis.techtarget.com/definition/emulator
http://searchservervirtualization.techtarget.com/definition/virtualization

152 Informatica Economică vol. 17, no. 1/2013

By protocol analysis-based as superior
intrusion detection solution the packets are
examined in detail, using the protocol
definitions and making the same processing
as a Web server, FTP server or operating
system. By this method a much wider range
of attacks can be detected, including known
and unknown attacks.
Web or FTP servers usually run on well-
known port numbers. In static application-
layer protocol analysis standard port numbers
for protocols are used. But, there are Web or
FTP servers that run on other ports with
benign or malicious intent, and also, non
Web servers run on 80/tcp in order to evade
security monitoring. The attackers [20] use
application protocols on non-standard ports
or on ports assigned to other protocols:
Trojans that use non-standard ports; botnets
use the IRC protocol on ports other than
666x/tcp; hidden FTP servers for file-
distribution on ports other than 21/tcp.

Therefore, a dynamic protocol analysis
approach [20] examines a per-connection
data structure to identify what analysis to
perform for the flow. For example [20], if the
destination port for a TCP SYN packet is 80,
the NIDS should perform IP, TCP, and
HTTP analysis for all packets of the flow. If
the payload of a packet on port 80/tcp -
initially analyzed as HTTP - looks like an
IRC session, it replaces the HTTP analysis
with IRC analysis.
To identify whether traffic on standard ports
uses the appropriate protocols [20] the NIDS
should examine traffic in-depth, by
decapsulating tunnels. There are few systems
that can perform this [20]. Such a system is
[20] McAfee’s IntruShield. For example, this
can unwrap the SSL-layer of HTTPS
connections.
It presents below an example of HTTP
signature (Bro) [20]:

signature http_server { # Server-side signature

ip-proto == tcp # Examine TCP packets.

payload /ˆHTTP\/[0-9]/ # Look for server response.

tcp-state responder # Match responder-side of conn.

requires-reverse-signature http_client # Require client-side sign. as well

enable "http" # Enable analyzer upon match.

}

signature http_client { # Client-side signature

ip-proto == tcp # Examine TCP packets.

payload /ˆ[[:space:]]*GET[[:space:]]*/ # Look for requests [simplified]

tcp-state originator # Match originator-side of conn.

}

Another example is a signature (Snort) for a
Telnet login failure [13]:

alert tcp $HOME_NET 23 ->

$EXTERNAL_NET any (msg:"TELNET Bad

Login";

content: "Login failed"; nocase;

flow: from_server, established;

classtype:bad-unknown; sid:492; rev:5;)

Thus, the analysis engine searches “Login
failed” string in the payload and if this is
found an alert is generated.
In “protocol analysis” [9] NIDPS sensors
perform full protocol decoding for
application layer protocols, such as DNS,
FTP, HTTP, SMTP. Thus, they have the
ability to detect both known and unknown

types of attacks.
In the stateful protocol analysis [11]
approach the NIDPS sensor monitors and
analyzes all of the events for the duration of a
session and adds stateful characteristics to
the protocol analysis. It records information
about the connection state. The NIDPS
performs correlations among the events
occurred and the state of the network, among
different events over a connection. Thus, the
sensors can detect attacks that cannot be
recognized by another way.
Common types of state are [17]:
 connection state: for every active

connection, the NIDPS sensor records
information like duration, status of the
handshake, and payload volume;

Informatica Economică vol. 17, no. 1/2013 153

 per-host state - such as connection
attempts from a source address to detect
scanners;

 signature state - for signatures that so far
have only partially matched.

There are two new approaches for
application-layer protocols analysis [20]:
 statistical analysis of the traffic within a

connection – uses an analysis of
interpacket delays and packet size
distribution to distinguish interactive
applications like chat and file transfer,
distinguish Web-chat from regular Web.
For this, it uses statistical analysis,
machine learning components, decision
trees or neural networks;

 locating protocol-specific byte patterns in
the connection’s payload or signatures
that can be used to determine components
of an HTTP request or an IRC login
sequence.

One of the simplest ways to use state in
application-layer protocols analysis is to
associate every response with the request
that generated it [11] over a connection.
The NIDPS sensors that use stateful protocol
analysis for detection can do this.
An example is the server’s response of a FTP
command [11]. At an attempt to access a FTP
server it returns a numeric code that indicates
the status of the response. A 2xx FTP status
code indicates that the command has
successfully completed, while a 5xx FTP
status code indicates that the command was
not successful, and the error is permanent.
Thus, it can recognize brute force attacks, by
identifying many failed requests in a session.
2xx status code in the response shows that an
attacker attempt was successful.
Another example of state is the phases of a
session [11]. The phases of an FTP session
are [11]: connection, authentication,
transaction and disconnection.
Unauthenticated users should only perform
providing usernames and passwords. If the
user has authenticated successfully, the
session is in authenticated state and the user
can perform specific commands, such as,
change directory, list the contents of the
directory, delete files, delete a directory,

make a new directory, copy files. If these
commands are performed in the
unauthenticated state it can be an attack.
Because the deep packets inspection (the
header and the payload) is hard or even
impossible, the flow-based intrusion
detection is a current option studied [2].
With such approach, the communication
patterns within the network are analyzed,
instead of the contents of individual packets.
The flow-based intrusion detection uses
flows for input data, instead of packets. A
flow [4] is defined as a set of IP packets
passing an observation point in the network
during a certain time interval. A TCP flow
corresponds to a single network connection,
while a UDP flow is a stream of packets
terminated by an inactivity period. This
information is in the form of Netflow [3] or
IPFIX [4].
The flow is mainly characterized by [2], [3],
[4]:
 source and destination IP address;
 source and destination port number for

TCP and UDP;
 protocol field of IP header.
Also, the following parameters are important:
 Type of Service (Diffserv, ECN) value;
 TCP flags of TCP headers;
 packets size;
 flow size.
The flow-based detection should be
combined with packets inspection in
detection process [2], [5], [6]. At the first
stage flow-based can be used to detect certain
attacks. At the second stage, packet
inspection can be used for suspicious
activities previously discovered. This
combined technique is used especially for the
analysis of high-speed networks. It applies to
DoS, scan, worm, spam, botnet detection.
Accounting flows is a two-step process [2]:
flow exporting and flow collection. These
tasks are performed by two components:
flow exporter and flow collector. The flow
exporter, also known as observation point
creates flow records from observed traffic.
The flow collector retrieves the flows created
by the flow exporter and stores them in a
form suitable for further monitoring or

154 Informatica Economică vol. 17, no. 1/2013

analysis. The analysis of exported flow data
for intrusion detection can be decomposed
into three principal steps [6]:
 flow data is received from the monitoring

devices and decoded;
 the flow data is normalized and

preprocessed in order to provide
appropriate input to the detection
algorithm;

 applies a detection algorithm in order to
discover network intrusions.

The detection algorithms can be [6]:
 threshold-based - that uses predefined or

adaptive thresholds for specific measures;
 principal component classifiers (PCC) –

the set of flows are decomposed into their
components and the algorithms detects
anomalies in multivariate time-series;

 outlier detection algorithms – uses a set of
normal data to the learned normal
behavior; an outlier is a data point which
is very different from a normal data;

 rule learning algorithms - that learn
classification rules from training data
containing, labeled normal and attack
data.

A flow-based method of detection is
subspace method, detailed in [1]. With this
method the traffic flows (IP flow) are
aggregated at the Origin-Destination (OD)
level. It uses samples of flow data from every
router. Sampling is random, capturing 1% of
packets entering every router. Sample
packets are characterized by 5-tuple, IP
address and port number for both source and
destination, and protocol type. In each
sampled IP flow it is also recorded the
number of bytes and packets. The OD flow
can be represented as a sum of normal and
anomalous components, x=^x + ~x. It
examines three distinct representations of
sampled flow traffic, as time series of bytes,
packets and IP flow, all indexed by the 5-
tuple headers. Each anomaly results in a
value of the ||~x||2 that exceeds the threshold
statistic. The set of anomalies is cast as
triples of (traffic type, time, OD flow), where
“traffic type” is one of Bytes (B), Packets
(P), or IP-Flows (F). It aggregates all triples
with the same time value, placing some

triples into the new categories BP, BF, FP,
and BFP. Thus, a BP anomaly is one that is
detected in both byte and packet time series
at the same time. It groups triples to form
anomalies in space (all OD flows
corresponding to the same traffic type and
time) and time (all triples with consecutive
time values, having the same traffic type).
Finally, a set of anomalies results. Each
anomaly is due to a set of anomalous OD
flows. Thus, it detects the network-wide
traffic anomalies, by aggregating sampled
flow measurements at the origin-destination
level.
The paper [21] proposes a combination of
timeslot-based and flow-based analyses in
network anomaly detection.
A first approach is a combined method using
the timeslot-based and flow-based in parallel.
Network traffic is inputted to both detectors
and analyzed by each detector. Because, a
large buffer storage in a flow-based analysis
represents a problem, to reduce the amount
of data to be analyzed by flow-based
analysis, a packet of sampling and setting
short timeouts was made. The method has the
disadvantage that it may result a lack of the
information needed to detect anomalous
flows. To avoid this, timeslot-based analyses
have been proposed in the first stage and
flow-based analyses in the second stage. The
timeslot-based detection has two modules,
header-based detection module and payload-
based detection module. Also, in timeslot-
based detection, firstly, each slot is classified
based on a threshold (Thac), into anomalous
slot candidate and normal slot. For normal
slots the detector does not transmit anything.
By another threshold (Thas), the anomalous
slot candidates are classified into anomalous
slots and suspicious slots. For anomalous
slots, the timeslot-based detector triggers
alerts. For suspicious slots, in a second stage
(flow-based analysis) is performed a detailed
analysis.

4 Conclusion
There are many ways to achieve network
security and NIDPS are a complement to
them. Good knowledge of the networks, how

Informatica Economică vol. 17, no. 1/2013 155

the protocols work, network threats and
vulnerabilities lead to a strong defense in
depth. So when it makes a mistake or gets
sloppy, it leaves a hole that attackers find and
exploit. NIDPS must recognize attacks so
that their exploitation can be prevented.
Good knowledge of methods and
technologies incorporated into every product
leads to a good choice of products
implemented since each product has its own
detection capabilities and every computer
system has specific threats and
vulnerabilities. Depending on the degree of
appropriateness between the informatic
system and the NIDPSs, a more or less
effective and complete activity of a
monitoring and control results.
All the methodologies combine in modern
products, exploit inherent strengths of each
approach and prevent the weakness from
leading to a superior product.
Network intrusion detection systems have a
number of fundamental limitations. Many
systems have a very high false positive rate,
they are vulnerable of evasion attacks,
denial-of-service attacks. Therefore they
must be improved. They must adapt to new
types of attacks, to achieve the security and
protection of networks and computer
infrastructures. It is clear that using dynamic
protocol analysis increases the number of
security breaches that can be detected.

References
[1] A. Lakhina, M.Crovella, C. Diot,

“Characterization of Network-Wide
Anomalies in Traffic Flows”, IMC’04
Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement,
ISBN:1-58113-821-0, pp. 201-206, 2004

[2] A. Sperotto et al., “An Overview of IP
Flow-based Intrusion Detection,
Communications Surveys & Tutorials,
IEEE, Vol.12, pp. 343-356, 2010

[3] B. Claise, “Cisco Systems NetFlow
Services Export Version 9”, RFC 3954,
2004

[4] B. Claise, “Requirements for IP Flow
Information Export (IPFIX)”, RFC 3917,
2004

[5] C. Rossow et al., “Sandnet: Network
Traffic Analysis of Malicious Software”,
BADGERS ‘11Proceedings of the First
Workshop on Building Analysis Dataset
and Gathering Experience Return for
Security, ISBN:978-1-4503-0768-0, pp.
78-88, 2011

[6] G. Münz, G. Carle, “Real-time Analysis
of Flow Data for Network Attack
Detection”, Integrated Network
Management, 2007

[7] K. Kent, Network Intrusion Detection
Signatures, Part One, 2001, available on-
line at www.symantec.com/
connect/articles/network-intrusion-
detection-signatures-part-one

[8] K. Kent, Network Intrusion Detection
Signatures, Part Two, 2002, available
on-line at www.symantec.com/
connect/articles/network-intrusion-
detection-signatures-part-two

[9] K. Kent, Network Intrusion Detection
Signatures, Part Three, 2002, available
on-line at http://www.symantec.com/
connect/articles/network-intrusion-
detection-signatures-part-three

[10] K. Kent, Network Intrusion Detection
Signatures, Part Four, 2002, available
on-line at http://www.symantec.com/
connect/articles/network-intrusion-
detection-signatures-part-four

[11] K. Kent, Network Intrusion Detection
Signatures, Part Five, 2002, available
on-line at www.symantec.com/
connect/articles/network-intrusion-
detection-signatures-part-five

[12] K. Scarfone, Peter Mell, Guide to
Intrusion Detection and Prevention
Systems, National Institute of Standards
and Technology, 2007

[13] M. Tanase, The Great IDS Debate:
Signature Analysis Versus Protocol
Analysis, 2003

[14] M. Handley and V. Paxson, “Network
Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol
Semantics “, Proceedings of the 10th
USENIX Security Symposium, 2001

[15] M. Rouse, “Metamorphic and
Polymorphic Malware”, 2010, available

156 Informatica Economică vol. 17, no. 1/2013

on-line at
http://searchsecurity.techtarget.com/defi
nition/metamorphic-and-polymorphic-
malware

[16] NetOptics, Deploying Network Taps
with Intrusion Detection Systems,
available on-line at
www.netoptics.com/products/pdf/Taps-
and-IDSs.pdf

[17] R. Sommer, Viable Network Intrusion
Detection in High-Performance
Environments, 2005

[18] S. Kumar, E. Spafford, A Pattern
Matching Model for Misuse Intrusion
Detection, Proceedings of the 17th

National Computer Security Conference,
1994

[19] S. Northcutt, J. Novak Network
Intrusion Detection, Third Edition, 2002

[20] V. Paxson et al., Dynamic Application-
Layer Protocol Analysis for Network
Intrusion Detection, 15th USENIX
Security Symposium 2006

[21] Y. Waizumi, H. Tsunoda, M. Tsuji, Y.
Nemoto, “ A Multi-Stage Network
Anomaly Detection Method for
Improving Efficiency and Accuracy”,
Journal of Information Security, 2012

[22] www.iss.net

Nicoleta STANCIU is an economist, PhD Candidate at the Bucharest
University of Economic Studies. Her main research area is Computer
Security, Information Security Management Systems, Risk Management for
Information Technology Systems, IT Audit, methods and tools for
implementation of Information Security Systems.

