
62 DOI: 10.12948/issn14531305/17.1.2013.06 Informatica Economică vol. 17, no. 1/2013

Procedural Optimization Models for Multiobjective Flexible JSSP

Elena Simona NICOARA
Petroleum-Gas University of Ploieşti, Romania

snicoara@upg-ploiesti.ro

The most challenging issues related to manufacturing efficiency occur if the jobs to be sched-
uled are structurally different, if these jobs allow flexible routings on the equipments and mul-
tiple objectives are required. This framework, called Multi-objective Flexible Job Shop
Scheduling Problems (MOFJSSP), applicable to many real processes, has been less reported
in the literature than the JSSP framework, which has been extensively formalized, modeled
and analyzed from many perspectives. The MOFJSSP lie, as many other NP-hard problems,
in a tedious place where the vast optimization theory meets the real world context. The paper
brings to discussion the most optimization models suited to MOFJSSP and analyzes in detail
the genetic algorithms and agent-based models as the most appropriate procedural models.
Keywords: JSSP, Multiobjective, Optimization, Genetic Algorithm, Agent-Based Model

Introduction
Optimization is a requirement for a very

wide spectrum of real world applications.
Regarding the theory of optimization, this is
very well developed in certain areas (such as
linear programming and, generally speaking,
exact methods), but still an open research
topic in other areas (as heuristic approaches).
Whatever the theoretical method chosen to
solve a certain class of real problem, an op-
timization model for that context is initially
needed. For many problems, it is implicitly
included in the optimization method and
practitioners do not handle it as a separate
stage in problem solving.
An optimization model has three compo-
nents: variables, objective(s) and constraints
and, based on these and problem specific in-
put data it generates as output optimal values
for the variables and the associated objective
value(s). In other words, an optimization
model recommends actions to obtain the best
solution(s); it is an optimization prescription.
Optimization models have many advantages
and limits as well. We could mention here a
more or less rigidity in model the reality, an
inherent simplification of reality (selection
over all the actual interacting factors), diffi-
culties in best specification the objective
function, partial parameter accuracy, omit-
ting delays in the complex systems, biases of
the modeler, time pressure constraints, model
simplifying, assumption adopted when ap-

proaching the complex systems [1], [2]. All
these emerge when the optimization theory
meet the real world context. A very good
support in this direction is [3], where an en-
gineering point of view of optimization theo-
ry is presented. A possible solution could be
the usage of a two level repetitive simulation
to obtain suboptimal but feasible solutions
[4].
In manufacturing, the most critical optimiza-
tion aspect is time efficiency. Around this
concept, for the manifold production contexts
various scheduling problems frameworks
were designed: flow shop scheduling, job
shop scheduling, open shop scheduling [5],
[6], [7].
A Job Shop Scheduling Problem (JSSP)
states that a finite set of heterogeneous jobs
composed by many operations have to be op-
timally scheduled on a set of finite machines
(resources) such that the precedence con-
straint, the non-preemption constraint and the
resource capacity constraint are satisfied.
This means that operations of every job must
be processed in a predetermined order, every
operation must not be interrupted and a ma-
chine processes only an operation at a time.
The objective is to minimize the make span
for the entire set of jobs. The output of the
JSSP is therefore a time-optimal allocation of
the limited machines to the operations of
jobs, named optimal schedule. The most part
of theoretical and practical background in

1

Informatica Economică vol. 17, no. 1/2013 63

JSSP concerns the non-flexible uniobjective
condition [8], [9], [10].
If moreover the routes of the jobs on the re-
sources are flexible, or the structure of the
jobs varies, or the resource set varies during
the scheduling, Flexible JSSP (FJSSP) is the
right framework to use [11].
The scheduling process becomes more com-
plex when, additionally, multiple objectives
have to be simultaneously satisfied, for ex-
ample: maximize workload, minimize late-
ness, minimize jobs flow time, minimize
work-in-process, minimize cost to set the
machines, maximize total workload on the
machines and so on. This is what is called
Multiobjective FJSSP (MOFJSSP). A math-
ematical formulation for the MOFJSSP, as an
extension for the deterministic predictive JSSP
(presented in [8]) to include multiobjectiveness
and alternative routings for the jobs is made in
[12].
Scheduling in many industries is based on the
MOFJSSP production system. We could
mention pharmaceutical industry, chemicals,
food industry, furniture, electronic devices
and so on. For all these manufacturing pro-
cesses, various optimization models are
available, and all of them can be framed in
the so-called discrete-event system model
(DES).
To build a mathematical optimization model
which contains all the tangible and intangible
factors which determines the evolution in
time of a DES is an ideal aim, but such a
model is overly complex: it would comprise
hundreds or even thousands of variables and
would not allow analytical solutions [13].
Consequently, most of the research was fo-
cused on tools of other type to represent, to
model and to simulate DES. These optimiza-
tion models are various. Some of them are
so-called conventional models, because they
are built on the process model, which consti-
tutes the core concept in the optimization
model. In the (MOF) JSSP context, the ade-
quate conventional models are: Petri nets,
waiting systems, general decision models,
logical formulations (such as STRIPS lan-
guage), Markov processes and Monte Carlo
simulation. In [14] and [15] an analysis of

these models for (MOF)JSSP was made: the
limits and advantages for all the models were
pointed out, and the particular characteristics
of the manufacture processes that require cer-
tain models as the most adequate were no-
ticed. The main conclusion concerning the
conventional optimization models is that they
are more suitable for small and middle-size
scheduling processes.
The other optimization models are named
unconventional models; they place the pro-
cess model on a secondary layer and the pri-
mary role in modeling is assessed here to a
procedure that controls the system. This pro-
cedure may be represented as a sequence of
instructions, most likely to transpose in algo-
rithms. Therefore, the unconventional models
are also named procedural models, and their
great development in the last decades was
sustained by the mentioned major difficulty
in rigorous mathematical characterization of
big complex technological processes behav-
ior; in this case, it is not possible an approach
which easily covers all the possible states of
the system [13]. Most of the procedural mod-
els use techniques and mechanisms specific
to the biologic systems, especially represen-
tation schemata and generation of behaviors,
and for that reason they are included in the
artificial intelligence field. By the help pro-
vided by this kind of models, we try to re-
place the human operator which has a “be-
havior based on skills” with applications
used as intelligent assistants to facilitate good
decisions in less time [16]. Among the pro-
cedural optimization models significant are:
evolutionary algorithms in general and genet-
ic algorithms in particular, agent-based mod-
els (negotiation techniques, Ant Colony Op-
timization, Particle Swarm Optimization,
Wasp Behavior Model, artificial bee colony
algorithm), neural networks, fuzzy tech-
niques, expert systems and knowledge-based
systems. The last four models were detailed
in [15].
In the section 2 and 3 of the paper a broad
analysis of genetic algorithms and agent-
based systems as procedural optimization
models for MOFJSSP is conducted, and sec-
tion 4 concludes the paper.

64 Informatica Economică vol. 17, no. 1/2013

2 Genetic Algorithms for MOFJSSP
Genetic algorithms (GA) belong to the sub-
symbolic paradigm of artificial intelligence
theory, where intelligence is the result of col-
lective interaction of a great number of sim-
ple entities which work independently, in
parallel, continuously and interconnected.
Knowledge is implicitly represented, in a dif-
fuse manner. Intelligence emerges by endog-
enous adaptation, apparently in a random
way, provided that enough trials were
achieved, and it cannot be “caught” in a
symbolic form. GAs do not learn by cumulat-
ing knowledge, but by modifying the global
structure of the model; in fact, GAs are more
likely trained than programmed [16].
A GA is a parallel algorithm which trans-
forms a population of mathematical objects
(possible solutions of a problem called indi-
viduals) in a new population using three op-
erators similar to evolutionary process in na-
ture: proportionate reproduction based on fit-
ness („best survives” principle), sexual ge-
netic crossover and random mutation (geno-

type alteration) rarely applied.
Evolution starts from a random or pseudo-
random population and occur in hundreds or
thousands generations. In every generation,
the steps are: population fitness evaluation,
selection of some individuals, crossover and
mutation for the selected individuals. The
new population obtained in a generation be-
comes current to the next iteration of the al-
gorithm.
The GA optimization power consists in a bias
for population performance to grow after
many generations, similarly to the natural
evolution. This is determined by the competi-
tion between individuals for the resources
and by the genetic material propagation from
the best individuals to the next generations.
The evolution achieved by a GA can be
viewed as a travel in search space, on many
ways, in many generations, towards regions
with better performance.
The pseudo-code of generic GA is as fol-
lows:

1. t <- 0 (first generation)

2. pseudo-random initialization of the initial population Pt

3. evaluate(Pt)

4. while evolution is not ended

4.1. t <- t + 1

4.2. selection in Pt

4.3. crossover of parents selected

4.4. insert the descendents in the new population P’t

4.5. mutation for P’t

4.6. evaluate P’t

4.7. Pt <- P’t

5. return the best solutions in Pt

The main varying operator in GA is crosso-
ver; by this operator, the genetic material of
two individuals called parents is combined to
produce offspring which inherit their charac-
teristics. Another varying operator is muta-
tion, which brings new genetic material in
population, supplying the crossover action,
which regularly cannot do this [9]. The selec-
tion favors survival of the fittest. Figure 1
shows the genetic operators interaction in a
generation of GA.
A manufacturing scheduling process can be
modeled with GA simply following the GA
framework: simulate evolution for a popula-
tion of abstract representations (called chro-

mosomes) of candidate-solutions (individu-
als) towards better solutions. The candidate-
solutions here are schedules. A chromosome
corresponds to a genotype that belongs to the
genome associated to the problem to solve. It
is decoded by a particular mechanism to ex-
press the candidate-solution, whose perfor-
mance, called fitness, may be tested (pheno-
type of that problem).
A genotype space for a JSSP, related to the
corresponding space of individuals and to the
phenotype space is depicted in Figure 2.
Here, the elements of the genome are of
(a,b)-type, where a and b are non-negative
integer values dependent on the JSSP in-

Informatica Economică vol. 17, no. 1/2013 65

stance.
The space of individuals corresponds to the
decision space (the search space) and the
phenotype space corresponds to the objective
space in the optimization theory.
A GA does not identify all the feasible indi-
viduals in the search space, but evolves
chromosomes with good phenotype. In JSSP
context, a GA does not search all the valid
schedules in the schedule space to evaluate

them, but evolves mathematical representa-
tions of schedules (as numeric sequences
(a1,b1) (a2,b2)… (an,bn)) with low makespan.
A statistician would need samples from bil-
lions of regions in the search space to effi-
ciently estimate the quality of the space of
individuals, while the GA reach the same re-
sult with much lower number of strings and
no calculus at all [17].

Fig. 1. Genetic operators in a generation of GA [12]

Fig. 2. Genotype space example for JSSP, in correspondence with the space of individuals

and the phenotype space

66 Informatica Economică vol. 17, no. 1/2013

The first attempt to apply GA in scheduling
belongs to Davis [18]. Later, many studies
were conducted by many researchers (to
name a few: [7], [8], [10], [11], [12], [16],
[19], [21]). Study topics regard genetic repre-
sentation, fitness schemata, genetic operators,
special mechanisms, hybridization of GA etc.
Most research and applications concerned uni
and multiobjective JSSP. The FJSSP subject
was less handled, being a more complex pro-
cess [4], [7], [10], [11], [12], [21], [22].
Investigation regarding genetic representa-
tion for JSSPs is pretty vast. In [19] a binary
representation is proposed: to each pair of
operations (o1, o2) which are processed on
the same machine a binary variable is associ-
ated (1 if o1 precedes o2 and 0 if o2 precedes
o1 in the considered candidate-solution). This
representation allows using simple genetic
operators, but repairing unfeasible new indi-
viduals is necessary and the representation
dimension is relatively big.
In [23] the similarity of JSSP with traveling
salesman problem is exploited and therefore
a schedule is represented as a sequence of
numbers {1, ..., n}, where n is the number of
operations to be scheduled. A sequence is
decoded from left to right and the numbers is
used as indexes in a circular list of unpro-
cessed operations.
Another representation, by scheduling graph,
is proposed in [24].
The most common genetic encodings still
remain permutation of set of operations to be
scheduled [20] and the more direct represen-
tations based on start times and end times of
operations, used as priorities in decoding.
The later ones can not represent unfeasible
schedules, but are regularly redundant – a
schedule can be represented in many ways;
certain schedules have a small number of
representations, others a huge number.
The representation by permutation without
repetition for FJSSP is extended in [22] by
encoding an operation as (job, operation, k).
The procedure to decode the chromosome in
a schedule sequences the operations (job, op-
eration) on the machine k in accordance with
machine and operation availability times.

A feasible chromosome will be interpreted
by:
 processing order of operations and
 start processing times for every operation.
Generally, the genetic encoding stores only
the order of operations in the candidate-
solution. The start processing times for each
operation (which must be added to that order
to obtain a schedule) are computed by decod-
ing the sequence of operations in semi-active,
active or non-delay schedule [11].
An interesting representation for the schedule
is as sequence of rules (for example priority
rules which selects operations in the set of
operations to be scheduled) [7].
Once chosen the genetic encoding for the
GA-based optimization model, adequate
crossover and mutation operators must be de-
signed or selected from the many proposed in
the literature:
Order Crossover, Uniform Order-Based
Crossover, Precedence Preservative Crosso-
ver, Subsequence Exchange Crossover, Par-
tially Mapped Crossover, Time Horizon Ex-
change, Order Based Mutation, Swap Based
Mutation, frame-shift, translocation, inver-
sion and so on.
Selection does not interfere with the geno-
type, and therefore is problem independent.
One can use roulette-wheel selection, tour-
nament selection, elitist selection or other
types of selection.
To evaluate the candidate-solutions the ob-
jective function(s) are used. In the
uniobjective JSSP, fitness is makespan. For
the multiobjective JSSP three methods to
evaluate candidate-solutions are available:
 weighted aggregation of the objectives in

one single objective;
 alternating the objectives with constraints;
 Pareto dominance relations.
Choosing GA to model a MOFJSSP problem
calls forth all the benefits associated to GAs:
allowing to obtain multiple different solu-
tions (because GA work simultaneously with
multiple candidate-solutions), allowing paral-
lel processing, low cost for development,
easiness to design, to implement, to extend
and to combine with other optimizers. Some

Informatica Economică vol. 17, no. 1/2013 67

optimization methods tested in hybridization
with GA are: local search, shifting bottleneck
heuristic, beam search, simulated annealing,
neuronal techniques, fuzzy logic, tabu search,
priority dispatch rules systems, clustering al-
gorithms and agent-based methods [7], [10],
[12].

3 Agent-Based Models for (MOF) JSSP
Generally speaking, the agent-based technol-
ogy, also called multi-agent technology, is
underlain by a self-organizing collective sys-
tem of interacting agents, which communi-
cate on a cooperative or competitive basis.
The main characteristic of an agent-based
model is that an even low communication be-
tween agents leads to a complex and coordi-
nate group behavior directed to accomplish a
specific goal. These models mimic natural
societies and are also studied as artificial in-
telligence methods.
The multi-agent idea proved to be attractive
to model also manufacturing scheduling pro-

cesses because the main entities of a manu-
facturing system (machines, workers, batch-
es, manufacturing line) can be viewed as au-
tonomous agents able to communicate with
other agents in order to accomplish the pro-
duction plan [7], [25], [26]. Some of the re-
search in the area focused on applying to
scheduling the multi-agent techniques tested
before on other problems and the results were
mostly satisfying. This is the case for Ant
Colony Optimization, Particle Swarm Opti-
mization, artificial bee colony algorithm and
negotiation-based techniques. Wasp Behav-
ior Model, on the other hand, is an example
of agent-based technique suited and tested
only for JSSPs.
Regardless the technique, the model general-
ly operates with two types of agents: job-
agents and machine-agents, which communi-
cate by method-specific messages. A classi-
fying structure for the multi-agent systems in
manufacturing scheduling is proposed in
Figure 3.

Fig. 3. Agent-based models applied in manufacturing scheduling

In negotiation-based models (or market
systems), the agents interact by mutually ac-
ceptable „agreements” in order to accomplish
the scheduling objective(s). For a negotiation
to take place a sequence of bids and counter-
bids concerning ready to apply changes in the
system is needed.
Such a system for FJSSP is described in [7].
Initially, every job-agent receives a time
budget depending on certain factors: the im-
portance of that job in the production plan, its
deadline and its processing time. When an
operation of the job is ready to be processed,

the job launches a request message to the ad-
equate machines, specifying a time interval
to end the operation processing. Every avail-
able machine-agent transmits a bid message
with time interval when processing is possi-
ble and the corresponding price. The goal of
machine-agents is to maximize own profit,
while the goal of job-agents is to process the
operation in the specified time interval at a
minimum cost (generally depending on the
cost of next operations). The job-agent com-
pares all the received bids, if they exist, and
choose the best one. If no bid is received, it

68 Informatica Economică vol. 17, no. 1/2013

has to relax the request terms; more specifi-
cally, it has to modify the time interval for
processing. Setting the optimal decision
rules, both for job-agents and machine-
agents, is not an easy task, especially when
flexibility and multiobjective condition are
present. Same is valid for handling the re-
source conflict when a machine-agent re-
ceives requests from more than one job-agent
for the same time interval.
Another market systems type approach, a
general one, focuses on a negotiation where
the goal of every agent is to enhance the own
value. This value strongly depends on the
level of objective accomplishment. Regular-
ly, the measure is in [0,1]; value 1 means
that the agent accomplished all the objectives
without violating any constraint and value 0
means that the agent accomplished no objec-
tive [7].
In the nature inspired models, unified under
the swarm intelligence term, the group of
agents is called colony. Here, the core con-
cept is the emerging colony intelligence
which efficiently solves optimization prob-
lems: an individual agent is simple, even
primitive, and has limited perception and ac-

tion capabilities in the colony, but the inter-
actions between agents, even local, are those
who lead to an efficient, adaptive, flexible,
robust to noise global behavior; and all these
happen without a central planning.
In Wasp Behavior Model (WBM), proposed
by Theraulaz et al. [27], the task allocation to
agents originates from wasp behavior, where
every wasp has a response threshold for each
region of the nest that influences the off-
spring feeding process. The social hierarchy
in the colony leads to a dynamic distribution
of tasks to the members, and the stimulus-
response mechanisms in the model produce
interactions between the colony members and
between members and the local environment.
The WBM methodology was proposed first
time for manufacturing scheduling and most
of the research handled JSSP [25], [27], [28].
The agents are associated either to machines
or to jobs. Therefore, two WBM models are
used:
 routing wasps model and
 scheduling wasps model.

Figures 4a and 4b, adapted from [25] and re-
spectively [28] clearly depict these models.

Fig. 4. WBM models for JSSP
(a) routing wasps; (b) scheduling wasps [12]

In the first model, every machine has associ-
ated an agent in order to assign to its queue
jobs to process. Every job with not yet

scheduled operations emits a stimulus based
on processing times specific to first operation
to be scheduled; an agent chooses such a job

Informatica Economică vol. 17, no. 1/2013 69

to process probabilistically, based on its own
set of response thresholds and on stimulus
level of that job. Every agent knows in any
moment its queue status and uses this infor-
mation to adjust the response thresholds for
every type of job [25]. If scheduling flexibil-
ity is considered, where an operation can be
processed by a machine in a set of alterna-
tives, the response thresholds for all the
agents in that set are accordingly settled, and
therefore the probability to choose that job is
higher for all these agents.
In the scheduling wasps model, every job in
the waiting queue is an agent in the system,
named scheduling wasp, and compete with
other agents in order to undertake the corre-
sponding machine. The contest result is de-
termined by the force values of the two com-
peting agents, and these values depend on the
machine setting times and processing times
of the operations already scheduled or to be
scheduled. The results of all the contests de-
termine the jobs priorities, which further de-
termine the schedule. The sequence of agents
pairs to compete, when the needed machine
becomes available, is decided by a type of
the tour, chosen at the beginning of the mod-
eling, as presented in [28]. If FJSSP is the
case, the contest rules become more com-
plex, as an agent will compete with more
other agents corresponding to all the alterna-
tives machines.
Whatever model may be, the solution for
JSSP (the optimal schedule) is obtained itera-
tively, based on probabilistic decisions of the
agents, until all the operations are scheduled.
For the multiobjective case, no major altera-
tion of the model is needed.
Ant Colony Optimization (ACO), proposed
by Marco Dorigo [26], is a metaheuristic
successfully applied to combinatorial optimi-
zation, simulating the group behavior of ants,
which have the ability to find the shortest
path to the food source by pheromone com-
munication. To solve such instances a specif-
ic-to-problem graph of components (nodes)
is built, where every node has a pheromone
value associated. In every generation of the
ACO procedure the agents, called artificial
ants, visit the graph in order to build solu-

tions, which are consequently sequences of
components. Generally, for every visited
node the pheromone value updates; the pher-
omone quantity accumulated on every cov-
ered route being proportional with frequency
of covering, it guides the colony to identify
the optimal solution (the optimal route in
graph).
ACO is similar to genetic algorithms by
maintaining in each iteration (generation) a
population of candidate-solutions, but the
distinction is made by the different genera-
tion mechanism of these candidate-solutions.
Specific to the manufacturing scheduling
process, the graph components are the opera-
tions to be scheduled and the solutions built
by the agents are paths in that graph - valid
sequences of operations (schedules). An
agent builds such sequence step by step,
starting from a random valid operation and
exit the graph when all the operations were
visited. The solution building process is a
probabilistic one and takes into consideration
the pheromone trails on the nodes, which are
deposited from the first iteration. The phero-
mone reflects the experience of the agents in
searching the optimal schedule. Every agent
proceeds in the graph selecting in the feasible
region:
- with probability the node with maxi-

mum pheromone;
- with probability 1- a random node.
The parameter translates the natural ten-
dency of the ants to probabilistically choose a
direction in search for food; they mostly pre-
fer the routes marked with much pheromone,
namely the routes chosen by other ants in the
past. This cooperative interaction between
ants is the guiding mechanism toward the
shortest route.
At every step, once selected a node, the
pheromone for that visited node is updated
by a particular fixed or variable value. The
update is proportional with the partial solu-
tion quality and inverse proportional with
pheromone evaporation rate (if the procedure
includes this mechanism to avoid a fast con-
vergence to suboptimal regions of search
space) [24]. In (F)JSSP the partial solution
quality is the schedule makespan. In the

70 Informatica Economică vol. 17, no. 1/2013

MO(F)JSSP the partial solution quality takes
into consideration all the objectives.
In the following, an example of using ACO
for a (MOF)JSSP with at least 60 jobs and at
least 540 operations to be scheduled is graph-
ically described. Two partial (valid) sched-
ules built by two agents in the corresponding

graph are:
 o27,1 - o5,1 - o5,2 - o60,1 - o59,1 - o5,3 - o38,1 -

o60,2 and
 o60,1 - o60,2 - o59,1 - o5,1 - o38,1 - o5,2 - o5,3 -

o27,1
as Figure 5 depicts by the continuous and re-
spectively discontinuous lines.

Fig. 5. Two partial solutions built by two ACO agents for a JSSP instance

A variant of ACO can impose the agents
whose current makespan exhibits an a priori
maximum value to be rejected from visiting
graph and, in that case, the visited nodes will
not receive a pheromone update. By this

mechanism, the colony is indirectly informed
about the poor identified solutions.
The ACO procedure for (MOF)JSSP is the
following:

1. initialization

1.1. t 1

1.2. set the parameters (Na – number of agents,)

1.3. initialization of pheromone trails

1.4. initialization of the best current schedule S0

2. while stopping_criterion = false do

2.1. generate Na solutions

2.2. evaluate solutions: f(S1),f(S2),...,f(SNa)

 Sb best solution

2.3. if f (Sb) < f (S0) then S0 Sb

2.4. update pheromone trails

2.5. t t+1

2.6. if stopping_criterion = true then return the schedule solution S0

The advantages of ACO model are manifold:
 the stochastic component allows the

agents to build various different solutions

and therefore ACO explores a wide search
space;

 the agents can be additionally guided to-

Informatica Economică vol. 17, no. 1/2013 71

ward the promising solutions in the search
space by using heuristic information about
the problem;

 the agents‘ experience is used in building
solutions in further iterations;

 the collective interaction between agents
leads to efficiency and robustness of the
solutions.

As a weak point of ACO model we mention
the critical aspect of setting adequate values
for the parameters for every instance, espe-
cially if it is a MOFJSSP one.
On the other hand, Particle Swarm Optimi-

zation (PSO), proposed by Kennedy and
Eberhart [29], is an optimization model
which simulates the group behavior to effi-
ciently attain a destination in birds flocks,
fish schools and other living creatures
groups. The agents, named particles, “fly” in
the search space following the current opti-
mal particles on basis of an adaptable speed
which directs their moves, and on basis of a
memory which stores the best visited loca-
tion in the past by all the agents.
The search efficiency is determined, as in
other agent-based models, by the colony of
agents, whose speed dynamically updates
depending on the system characteristics. The
model is similar to GA in the pseudo-random
initialization of the population of candidate-
solutions and in the searching process based
on updating populations in generations. PSO,
instead, do not use genetic operators to gen-
erate new candidate-solutions.
Particularly for (MOF) JSSP, PSO gradually
updates a population of schedules which
„moves” in the search space towards an op-
timal one by modifying the sequences of op-
erations in the schedules.
The main advantages in applying PSO model
are the implementation simplicity, the re-
duced number of parameters to adjust and a
wide search space explored. The difficulty,
on the other hand, consists in avoiding the
local optima.

4 Conclusions
Optimization modeling tools in the literature
adequate for the MOFJSSP are numerous and
diverse. The conventional ones put the pro-

cess in the center of the model. Such models
are Petri nets, waiting systems, general deci-
sion models, logical formulations as STRIPS
language, Markov processes, Monte Carlo
simulation. Previous studies show that the
unconventional methods are generally poor
in exploring the search space, which regular-
ly is nonlinear, discrete, contains multiple
optima and the global optima are not known
in advance. Moreover, for this kind of pro-
cesses the user often seeks more solutions,
and a conventional method generates a single
such solution at every execution.
In order to tackle such issues most research
was focused on finding other methods, so-
called unconventional optimization models.
They are procedural models which send in
background the process model, the central
role in modeling being given to the algorith-
mic procedure that adjusts the system. These
procedural models cover a very active re-
search subject in the last decade for modeling
and control of optimization processes. This
special kind of approach was imposed by the
major difficulty in rigorous mathematical
characterization of big complex technologi-
cal processes behavior, as also MOFJSSP
are; in this case, it is not possible an ap-
proach which easily covers all the possible
states of the system [13]. Such models are
evolutionary algorithms and genetic algo-
rithms in particular, the agent-based models
(negotiation-based techniques, Ant Colony
Optimization, Particle Swarm Optimization
and Wasp Behavior Model), the neural net-
works, the expert systems, the knowledge-
based systems and fuzzy techniques.
Based on previous work on optimization
models ([14], [15]), the genetic algorithms
and agent-based models are the most ade-
quate to handle MOFJSSP, which are quite
big and pretty complex processes even for a
medium-scale production system.
GA allow finding more diverse solutions in
one run, are simple, easy to extend, very suit-
ed to difficult optimization processes, hard to
analytically handle with.
The multi-agent approach offers another ade-
quate framework for MOFJSSP. It allows us-
ing certain complex desirable behaviors

72 Informatica Economică vol. 17, no. 1/2013

emerging when the set of interacting agents
is globally considered. Hence, the colony
proves to be an intelligent entity when solves
a problem, while the individual agents do not
have this ability. Most of nature inspired pro-
cedural models are good examples of well
distributed natural-like multi-agent systems,
formed by hundreds or thousands of autono-
mous agents, robust to loss of individuals and
robust to environment changes. The colony
acts by coordination of agents’ tasks with no
direct communication. Additionally, the
global performance of the colony proves to
be very efficient [25]. The only critical as-
pect in using agent-based models remains de-
fining efficient rules for interactions, which
has a great influence over the model quality.

References
[1] F.G. Filip, “Decision support and control

for large-scale complex systems”, Annual
Reviews in Control, vol. 32, no. 1, pp.
61–70, 2008.

[2] F.G. Filip and K. Leiviskä, “Large-Scale
Complex Systems”, in Springer
Handbook of Automation, Berlin:
Springer Berlin Heidelberg, pp. 619-638,
2009.

[3] P. Borne, D. Popescu, F.G. Filip and D.
Stefanoiu, Optimization in Engineering
Sciences, London: Iste & J.Wiley, 2013.

[4] F.G. Filip, G. Neagu and D.A.
Donciulescu, „Job shop scheduling
optimization in real-time production
control”, Computers in Industry, vol. 4,
no. 4, pp. 395–403, 1983.

[5] M. Kaufmann, Methods and models of
operations research, vol. II (in
Romanian), Bucharest: Ed. Ştiinţifică şi
Enciclopedică, 1975.

[6] R.L. Graham, E.L. Lawler, J.K. Lenstra
and A.H.G. Rinnooy Kan, „Optimization
and approximation in deterministic
sequencing and scheduling: A survey”,
Annals of Discrete Mathematics, vol. 5,
pp. 287-326, 1979.

[7] M.L. Pinedo, Scheduling. Theory,
Algorithms, and Systems, 3rd ed., New
York: Springer Science-Business Media,
LLC, 2008.

[8] P. Brucker and R. Schlie, „Job-shop
scheduling with multi-purpose
machines”, Computing vol. 45, no. 4, pp.
369-375, 1990.

[9] D. Applegate and W. Cook, „A
computational study of the job-shop
scheduling problem”, ORSA Journal on
Computing, vol. 3, pp. 149-156, 1991.

[10] A.S. Jain and S. Meeran, „A State-of-
the-Art Review of Job-Shop Scheduling
Techniques”, European Journal of
Operations Research, vol. 113, pp. 390-
434, 1999.

[11] M.T. Jensen, Robust and flexible
scheduling with evolutionary
computation, PhD thesis, Denmark,
Aarhus University, 2001.

[12] E.S. Nicoară, Contribuţii privind
utilizarea algoritmilor genetici la
conducerea ordonanţării flexibile
multiobiectiv a producţiei
multisortimentale (in romanian), PhD
thesis, Ploieşti: Petroleum-Gas University
in Ploieşti, 2011.

[13] I. Dumitrache, Ingineria reglării
automate (in romanian), Bucharest: Ed.
Politehnica Press, 2005.

[14] E.S. Nicoară, „Multi-objective Flexible
Job Shop Scheduling Optimization
Models (I)”, Economic Insights - Trends
and Challenges, vol. LXIV, no. 2, pp. 79-
86, 2012.

[15] E.S. Nicoară, „Multi-objective Flexible
Job Shop Scheduling Optimization
Models (II)”, Economic Insights - Trends
and Challenges, vol. LXIV, no. 3, pp. 96-
104, 2012.

[16] F.G. Filip and B. Bărbat, Informatică
industrială - Noi paradigme şi aplicaţii,
Bucharest: Ed. Tehnică, 1999.

[17] J.H. Holland, „Genetic algorithms”,
Scientific American, vol. 267, no. 1, pp.
44-50, 1992.

[18] L. Davis, „Job shop scheduling with
genetic algorithms”, in Proc. the
International Conference on Genetic
Algorithms and their Applications, San
Mateo, Morgan Kaufmann, 1985, pp.
136-149.

[19] R. Nakano and T. Yamada,

http://link.springer.com/search?facet-author=%22Kauko+Leivisk%C3%A4+Dr%22

Informatica Economică vol. 17, no. 1/2013 73

„Conventional genetic algorithms for job-
shop problems”, in Proc. the 4th
International Conference on Genetic
Algorithms, San Diego, California, 1991,
pp 477-479.

[20] C. Bierwirth, „A generalized
permutation approach to job shop
scheduling with genetic algorithms”, OR
Spektrum, vol. 17, pp. 87-92, 1995.

[21] Nicoară, E.S., Filip, F.G., Paraschiv, N.,
“Simulation-based Optimization Using
Genetic Algorithms for Multi-objective
Flexible JSSP”, Studies in Informatics
and Control, vol. 20, issue 4/2011, ISSN
1220-1766, pp. 333-344.

[22] I. Kacem, „Scheduling flexible job-
shops: a worst case analysis and an
evolutionary algorithm”, International
Journal of Computational Intelligence
and Applications, vol. 3, no. 4, pp. 437-
452, 2003.

[23] H. Fang, P. Ross and D. Corne, „A
promising genetic algorithm approach to
job shop scheduling, rescheduling, and
open-shop scheduling problems”, in Proc.
the 5th International Conference on
Genetic Algorithms, Urbana-Champaign,
Illinois, 1993, pp. 375-382.

[24] A. Colorni, M, Dorigo, V. Maniezzo and
M. Trubian, „Ant system for job-shop
scheduling”, Belgian Journal of
Operations Research, Statistics and
Computer Science, vol. 34, pp. 39-53,

1994.
[25] V.A. Cicirello and S.F. Smith, „Insect

societies and manufacturing”, in the
IJCAI-01 Workshop on Artificial
Intelligence and Manufacturing: New AI
Paradigms for Manufacturing, The
Robotics Institute, Carnegie Mellon
University, 2001, pp. 33-38.

[26] M. Dorigo, Optimization, Learning and
Natural Algorithms, PhD thesis,
Politecnico di Milano, Italy, 1992.

[27] G. Theraulaz, S. Goss, J. Gervet and J.L.
Deneubourg, „Task differentiation in
polistes wasp colonies: A model for self-
organizing groups of robot, From
Animals to Animats”, in Proc. the First
International Conference on Simulation
of Adaptive Behavior, MIT Press, 1991,
pp. 346-355.

[28] V.A. Cicirello and S.F. Smith,
„Randomizing dispatch scheduling
policies”, in the 2001 AAAI Fall
Symposium: Using Uncertainty Within
Computation, AAAI Press, North
Falmouth, Massachusetts, Technical
Report FS-01-04, 2001, pp. 30-37.

[29] J. Kennedy and R. Eberhart, „Particle
swarm optimization”, in Proc. the IEEE
International Conference on Neural
Networks, Perth, Australia, IEEE Service
Center, Piscataway, NJ, 1995, pp. 1942-
1948.

Elena Simona NICOARĂ graduated Mathematics-Computer Science in
2000 and Science of Commodities in 1999 at the Petroleum-Gas University
(PGU) in Ploieşti, Romania. In 2000 she joined the staff of PGU and cur-
rently is teaching assistant in the Computer Science Department. She holds a
PhD diploma in Control Engineering since 2011 in the GA-based optimiza-
tion control field. She authored/coauthored more than 30 scientific papers
and over 6 books in artificial intelligence, optimization techniques and evo-

lutionary computation in particular.

