
62                DOI: 10.12948/issn14531305/17.1.2013.06  Informatica Economică vol. 17, no. 1/2013 

 

Procedural Optimization Models for Multiobjective Flexible JSSP  
 

Elena Simona NICOARA 
Petroleum-Gas University of Ploieşti, Romania  

snicoara@upg-ploiesti.ro 
 

The most challenging issues related to manufacturing efficiency occur if the jobs to be sched-
uled are structurally different, if these jobs allow flexible routings on the equipments and mul-
tiple objectives are required. This framework, called Multi-objective Flexible Job Shop 
Scheduling Problems (MOFJSSP), applicable to many real processes, has been less reported 
in the literature than the JSSP framework, which has been extensively formalized, modeled 
and analyzed from many perspectives. The MOFJSSP lie, as many other NP-hard problems, 
in a tedious place where the vast optimization theory meets the real world context. The paper 
brings to discussion the most optimization models suited to MOFJSSP and analyzes in detail 
the genetic algorithms and agent-based models as the most appropriate procedural models.   
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Introduction 
Optimization is a requirement for a very 

wide spectrum of real world applications. 
Regarding the theory of optimization, this is 
very well developed in certain areas (such as 
linear programming and, generally speaking, 
exact methods), but still an open research 
topic in other areas (as heuristic approaches). 
Whatever the theoretical method chosen to 
solve a certain class of real problem, an op-
timization model for that context is initially 
needed. For many problems, it is implicitly 
included in the optimization method and 
practitioners do not handle it as a separate 
stage in problem solving.  
An optimization model has three compo-
nents: variables, objective(s) and constraints 
and, based on these and problem specific in-
put data it generates as output optimal values 
for the variables and the associated objective 
value(s). In other words, an optimization 
model recommends actions to obtain the best 
solution(s); it is an optimization prescription.     
Optimization models have many advantages 
and limits as well. We could mention here a 
more or less rigidity in model the reality, an 
inherent simplification of reality (selection 
over all the actual interacting factors), diffi-
culties in best specification the objective 
function, partial parameter accuracy, omit-
ting delays in the complex systems, biases of 
the modeler, time pressure constraints, model 
simplifying, assumption adopted when ap-

proaching the complex systems [1], [2]. All 
these emerge when the optimization theory 
meet the real world context. A very good 
support in this direction is [3], where an en-
gineering point of view of optimization theo-
ry is presented. A possible solution could be 
the usage of a two level repetitive simulation 
to obtain suboptimal but feasible solutions 
[4]. 
In manufacturing, the most critical optimiza-
tion aspect is time efficiency. Around this 
concept, for the manifold production contexts 
various scheduling problems frameworks 
were designed: flow shop scheduling, job 
shop scheduling, open shop scheduling [5], 
[6], [7]. 
A Job Shop Scheduling Problem (JSSP) 
states that a finite set of heterogeneous jobs 
composed by many operations have to be op-
timally scheduled on a set of finite machines 
(resources) such that the precedence con-
straint, the non-preemption constraint and the 
resource capacity constraint are satisfied. 
This means that operations of every job must 
be processed in a predetermined order, every 
operation must not be interrupted and a ma-
chine processes only an operation at a time. 
The objective is to minimize the make span 
for the entire set of jobs. The output of the 
JSSP is therefore a time-optimal allocation of 
the limited machines to the operations of 
jobs, named optimal schedule. The most part 
of theoretical and practical background in 
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JSSP concerns the non-flexible uniobjective 
condition [8], [9], [10].   
If moreover the routes of the jobs on the re-
sources are flexible, or the structure of the 
jobs varies, or the resource set varies during 
the scheduling, Flexible JSSP (FJSSP) is the 
right framework to use [11]. 
The scheduling process becomes more com-
plex when, additionally, multiple objectives 
have to be simultaneously satisfied, for ex-
ample: maximize workload, minimize late-
ness, minimize jobs flow time, minimize 
work-in-process, minimize cost to set the 
machines, maximize total workload on the 
machines and so on. This is what is called 
Multiobjective FJSSP (MOFJSSP). A math-
ematical formulation for the MOFJSSP, as an 
extension for the deterministic predictive JSSP 
(presented in [8]) to include multiobjectiveness 
and alternative routings for the jobs is made in 
[12].  
Scheduling in many industries is based on the 
MOFJSSP production system. We could 
mention pharmaceutical industry, chemicals, 
food industry, furniture, electronic devices 
and so on. For all these manufacturing pro-
cesses, various optimization models are 
available, and all of them can be framed in 
the so-called discrete-event system model 
(DES).  
To build a mathematical optimization model 
which contains all the tangible and intangible 
factors which determines the evolution in 
time of a DES is an ideal aim, but such a 
model is overly complex: it would comprise 
hundreds or even thousands of variables and 
would not allow analytical solutions [13]. 
Consequently, most of the research was fo-
cused on tools of other type to represent, to 
model and to simulate DES. These optimiza-
tion models are various. Some of them are 
so-called conventional models, because they 
are built on the process model, which consti-
tutes the core concept in the optimization 
model. In the (MOF) JSSP context, the ade-
quate conventional models are:  Petri nets, 
waiting systems, general decision models, 
logical formulations (such as STRIPS lan-
guage), Markov processes and Monte Carlo 
simulation. In [14] and [15] an analysis of 

these models for (MOF)JSSP was made: the 
limits and advantages for all the models were 
pointed out, and the particular characteristics 
of the manufacture processes that require cer-
tain models as the most adequate were no-
ticed. The main conclusion concerning the 
conventional optimization models is that they 
are more suitable for small and middle-size 
scheduling processes.  
The other optimization models are named 
unconventional models; they place the pro-
cess model on a secondary layer and the pri-
mary role in modeling is assessed here to a 
procedure that controls the system. This pro-
cedure may be represented as a sequence of 
instructions, most likely to transpose in algo-
rithms. Therefore, the unconventional models 
are also named procedural models, and their 
great development in the last decades was 
sustained by the mentioned major difficulty 
in rigorous mathematical characterization of 
big complex technological processes behav-
ior; in this case, it is not possible an approach 
which easily covers all the possible states of 
the system [13]. Most of the procedural mod-
els use techniques and mechanisms specific 
to the biologic systems, especially represen-
tation schemata and generation of behaviors, 
and for that reason they are included in the 
artificial intelligence field. By the help pro-
vided by this kind of models, we try to re-
place the human operator which has a “be-
havior based on skills” with applications 
used as intelligent assistants to facilitate good 
decisions in less time [16]. Among the pro-
cedural optimization models significant are: 
evolutionary algorithms in general and genet-
ic algorithms in particular, agent-based mod-
els (negotiation techniques, Ant Colony Op-
timization, Particle Swarm Optimization, 
Wasp Behavior Model, artificial bee colony 
algorithm), neural networks, fuzzy tech-
niques, expert systems and knowledge-based 
systems. The last four models were detailed 
in [15]. 
In the section 2 and 3 of the paper a broad 
analysis of genetic algorithms and agent-
based systems as procedural optimization 
models for MOFJSSP is conducted, and sec-
tion 4 concludes the paper. 
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2 Genetic Algorithms for MOFJSSP 
Genetic algorithms (GA) belong to the sub-
symbolic paradigm of artificial intelligence 
theory, where intelligence is the result of col-
lective interaction of a great number of sim-
ple entities which work independently, in 
parallel, continuously and interconnected. 
Knowledge is implicitly represented, in a dif-
fuse manner. Intelligence emerges by endog-
enous adaptation, apparently in a random 
way, provided that enough trials were 
achieved, and it cannot be “caught” in a 
symbolic form. GAs do not learn by cumulat-
ing knowledge, but by modifying the global 
structure of the model; in fact, GAs are more 
likely trained than programmed [16]. 
A GA is a parallel algorithm which trans-
forms a population of mathematical objects 
(possible solutions of a problem called indi-
viduals) in a new population using three op-
erators similar to evolutionary process in na-
ture: proportionate reproduction based on fit-
ness („best survives” principle), sexual ge-
netic crossover and random mutation (geno-

type alteration) rarely applied. 
Evolution starts from a random or pseudo-
random population and occur in hundreds or 
thousands generations. In every generation, 
the steps are: population fitness evaluation, 
selection of some individuals, crossover and 
mutation for the selected individuals. The 
new population obtained in a generation be-
comes current to the next iteration of the al-
gorithm. 
The GA optimization power consists in a bias 
for population performance to grow after 
many generations, similarly to the natural 
evolution. This is determined by the competi-
tion between individuals for the resources 
and by the genetic material propagation from 
the best individuals to the next generations. 
The evolution achieved by a GA can be 
viewed as a travel in search space, on many 
ways, in many generations, towards regions 
with better performance.  
The pseudo-code of generic GA is as fol-
lows:

 
1. t <- 0 (first generation) 

2. pseudo-random initialization of the initial population Pt 

3. evaluate(Pt) 

4. while evolution is not ended 

4.1. t <- t + 1 

4.2. selection in Pt 

4.3. crossover of parents selected 

4.4. insert the descendents in the new population P’t 

4.5. mutation for P’t 

4.6. evaluate P’t 

4.7. Pt <- P’t 

5. return the best solutions in Pt 
 
The main varying operator in GA is crosso-
ver; by this operator, the genetic material of 
two individuals called parents is combined to 
produce offspring which inherit their charac-
teristics. Another varying operator is muta-
tion, which brings new genetic material in 
population, supplying the crossover action, 
which regularly cannot do this [9]. The selec-
tion favors survival of the fittest. Figure 1 
shows the genetic operators interaction in a 
generation of GA. 
A manufacturing scheduling process can be 
modeled with GA simply following the GA 
framework: simulate evolution for a popula-
tion of abstract representations (called chro-

mosomes) of candidate-solutions (individu-
als) towards better solutions. The candidate-
solutions here are schedules. A chromosome 
corresponds to a genotype that belongs to the 
genome associated to the problem to solve. It 
is decoded by a particular mechanism to ex-
press the candidate-solution, whose perfor-
mance, called fitness, may be tested (pheno-
type of that problem).  
A genotype space for a JSSP, related to the 
corresponding space of individuals and to the 
phenotype space is depicted in Figure 2. 
Here, the elements of the genome are of 
(a,b)-type, where a and b are non-negative 
integer values dependent on the JSSP in-
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stance.  
The space of individuals corresponds to the 
decision space (the search space) and the 
phenotype space corresponds to the objective 
space in the optimization theory.  
A GA does not identify all the feasible indi-
viduals in the search space, but evolves 
chromosomes with good phenotype. In JSSP 
context, a GA does not search all the valid 
schedules in the schedule space to evaluate 

them, but evolves mathematical representa-
tions of schedules (as numeric sequences 
(a1,b1) (a2,b2)… (an,bn)) with low makespan. 
A statistician would need samples from bil-
lions of regions in the search space to effi-
ciently estimate the quality of the space of 
individuals, while the GA reach the same re-
sult with much lower number of strings and 
no calculus at all [17]. 

 

 
Fig. 1. Genetic operators in a generation of GA [12]  

 

 
Fig. 2. Genotype space example for JSSP, in correspondence with the space of individuals 

and the phenotype space 
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The first attempt to apply GA in scheduling 
belongs to Davis [18]. Later, many studies 
were conducted by many researchers (to 
name a few: [7], [8], [10], [11], [12], [16], 
[19], [21]). Study topics regard genetic repre-
sentation, fitness schemata, genetic operators, 
special mechanisms, hybridization of GA etc. 
Most research and applications concerned uni 
and multiobjective JSSP. The FJSSP subject 
was less handled, being a more complex pro-
cess [4], [7], [10], [11], [12], [21], [22]. 
Investigation regarding genetic representa-
tion for JSSPs is pretty vast. In [19] a binary 
representation is proposed: to each pair of 
operations (o1, o2) which are processed on 
the same machine a binary variable is associ-
ated (1 if o1 precedes o2 and 0 if o2 precedes 
o1 in the considered candidate-solution). This 
representation allows using simple genetic 
operators, but repairing unfeasible new indi-
viduals is necessary and the representation 
dimension is relatively big. 
In [23] the similarity of JSSP with traveling 
salesman problem is exploited and therefore 
a schedule is represented as a sequence of 
numbers {1, ..., n}, where n is the number of 
operations to be scheduled. A sequence is 
decoded from left to right and the numbers is 
used as indexes in a circular list of unpro-
cessed operations.   
Another representation, by scheduling graph, 
is proposed in [24].  
The most common genetic encodings still 
remain permutation of set of operations to be 
scheduled [20] and the more direct represen-
tations based on start times and end times of 
operations, used as priorities in decoding. 
The later ones can not represent unfeasible 
schedules, but are regularly redundant – a 
schedule can be represented in many ways; 
certain schedules have a small number of 
representations, others a huge number.  
The representation by permutation without 
repetition for FJSSP is extended in [22] by 
encoding an operation as (job, operation, k). 
The procedure to decode the chromosome in 
a schedule sequences the operations (job, op-
eration) on the machine k in accordance with 
machine and operation availability times. 

A feasible chromosome will be interpreted 
by:  
 processing order of operations and  
 start processing times for every operation.  
Generally, the genetic encoding stores only 
the order of operations in the candidate-
solution. The start processing times for each 
operation (which must be added to that order 
to obtain a schedule) are computed by decod-
ing the sequence of operations in semi-active, 
active or non-delay schedule [11]. 
An interesting representation for the schedule 
is as sequence of rules (for example priority 
rules which selects operations in the set of 
operations to be scheduled) [7]. 
Once chosen the genetic encoding for the 
GA-based optimization model, adequate 
crossover and mutation operators must be de-
signed or selected from the many proposed in 
the literature: 
Order Crossover, Uniform Order-Based 
Crossover, Precedence Preservative Crosso-
ver, Subsequence Exchange Crossover, Par-
tially Mapped Crossover, Time Horizon Ex-
change, Order Based Mutation, Swap Based 
Mutation, frame-shift, translocation, inver-
sion and so on.  
Selection does not interfere with the geno-
type, and therefore is problem independent. 
One can use roulette-wheel selection, tour-
nament selection, elitist selection or other 
types of selection.   
To evaluate the candidate-solutions the ob-
jective function(s) are used. In the 
uniobjective JSSP, fitness is makespan. For 
the multiobjective JSSP three methods to 
evaluate candidate-solutions are available: 
 weighted aggregation of the objectives in 

one single objective; 
 alternating the objectives with constraints; 
 Pareto dominance relations. 
Choosing GA to model a MOFJSSP problem 
calls forth all the benefits associated to GAs: 
allowing to obtain multiple different solu-
tions (because GA work simultaneously with 
multiple candidate-solutions), allowing paral-
lel processing, low cost for development, 
easiness to design, to implement, to extend 
and to combine with other optimizers. Some 
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optimization methods tested in hybridization 
with GA are: local search, shifting bottleneck 
heuristic, beam search, simulated annealing, 
neuronal techniques, fuzzy logic, tabu search, 
priority dispatch rules systems, clustering al-
gorithms and agent-based methods  [7], [10], 
[12]. 
   
3 Agent-Based Models for (MOF) JSSP 
Generally speaking, the agent-based technol-
ogy, also called multi-agent technology, is 
underlain by a self-organizing collective sys-
tem of interacting agents, which communi-
cate on a cooperative or competitive basis. 
The main characteristic of an agent-based 
model is that an even low communication be-
tween agents leads to a complex and coordi-
nate group behavior directed to accomplish a 
specific goal. These models mimic natural 
societies and are also studied as artificial in-
telligence methods.   
The multi-agent idea proved to be attractive 
to model also manufacturing scheduling pro-

cesses because the main entities of a manu-
facturing system (machines, workers, batch-
es, manufacturing line) can be viewed as au-
tonomous agents able to communicate with 
other agents in order to accomplish the pro-
duction plan [7], [25], [26]. Some of the re-
search in the area focused on applying to 
scheduling the multi-agent techniques tested 
before on other problems and the results were 
mostly satisfying. This is the case for Ant 
Colony Optimization, Particle Swarm Opti-
mization, artificial bee colony algorithm and 
negotiation-based techniques. Wasp Behav-
ior Model, on the other hand, is an example 
of agent-based technique suited and tested 
only for JSSPs. 
Regardless the technique, the model general-
ly operates with two types of agents: job-
agents and machine-agents, which communi-
cate by method-specific messages. A classi-
fying structure for the multi-agent systems in 
manufacturing scheduling is proposed in 
Figure 3.  

 

 
Fig. 3. Agent-based models applied in manufacturing scheduling 

 
In negotiation-based models (or market 
systems), the agents interact by mutually ac-
ceptable „agreements” in order to accomplish 
the scheduling objective(s). For a negotiation 
to take place a sequence of bids and counter-
bids concerning ready to apply changes in the 
system is needed.  
Such a system for FJSSP is described in [7]. 
Initially, every job-agent receives a time 
budget depending on certain factors: the im-
portance of that job in the production plan, its 
deadline and its processing time. When an 
operation of the job is ready to be processed, 

the job launches a request message to the ad-
equate machines, specifying a time interval 
to end the operation processing. Every avail-
able machine-agent transmits a bid message 
with time interval when processing is possi-
ble and the corresponding price. The goal of 
machine-agents is to maximize own profit, 
while the goal of job-agents is to process the 
operation in the specified time interval at a 
minimum cost (generally depending on the 
cost of next operations). The job-agent com-
pares all the received bids, if they exist, and 
choose the best one. If no bid is received, it 
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has to relax the request terms; more specifi-
cally, it has to modify the time interval for 
processing. Setting the optimal decision 
rules, both for job-agents and machine-
agents, is not an easy task, especially when 
flexibility and multiobjective condition are 
present. Same is valid for handling the re-
source conflict when a machine-agent re-
ceives requests from more than one job-agent 
for the same time interval. 
Another market systems type approach, a 
general one, focuses on a negotiation where 
the goal of every agent is to enhance the own 
value. This value strongly depends on the 
level of objective accomplishment. Regular-
ly, the measure is in [0,1];  value 1 means 
that the agent accomplished all the objectives 
without violating any constraint and value 0 
means that the agent accomplished no objec-
tive [7]. 
In the nature inspired models, unified under 
the swarm intelligence term, the group of 
agents is called colony. Here, the core con-
cept is the emerging colony intelligence 
which efficiently solves optimization prob-
lems: an individual agent is simple, even 
primitive, and has limited perception and ac-

tion capabilities in the colony, but the inter-
actions between agents, even local, are those 
who lead to an efficient, adaptive, flexible, 
robust to noise global behavior; and all these 
happen without a central planning. 
In Wasp Behavior Model (WBM), proposed 
by Theraulaz et al. [27], the task allocation to 
agents originates from wasp behavior, where 
every wasp has a response threshold for each 
region of the nest that influences the off-
spring feeding process. The social hierarchy 
in the colony leads to a dynamic distribution 
of tasks to the members, and the stimulus-
response mechanisms in the model produce 
interactions between the colony members and 
between members and the local environment.  
The WBM methodology was proposed first 
time for manufacturing scheduling and most 
of the research handled JSSP [25], [27], [28]. 
The agents are associated either to machines 
or to jobs. Therefore, two WBM models are 
used:  
 routing wasps model and  
 scheduling wasps model.  

Figures 4a and 4b, adapted from [25] and re-
spectively [28] clearly depict these models.

 

 
 

Fig. 4. WBM models for JSSP 
(a) routing wasps; (b) scheduling wasps [12] 

 
In the first model, every machine has associ-
ated an agent in order to assign to its queue 
jobs to process. Every job with not yet 

scheduled operations emits a stimulus based 
on processing times specific to first operation 
to be scheduled; an agent chooses such a job 
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to process probabilistically, based on its own 
set of response thresholds and on stimulus 
level of that job. Every agent knows in any 
moment its queue status and uses this infor-
mation to adjust the response thresholds for 
every type of job [25]. If scheduling flexibil-
ity is considered, where an operation can be 
processed by a machine in a set of alterna-
tives, the response thresholds for all the 
agents in that set are accordingly settled, and 
therefore the probability to choose that job is 
higher for all these agents.   
In the scheduling wasps model, every job in 
the waiting queue is an agent in the system, 
named scheduling wasp, and compete with 
other agents in order to undertake the corre-
sponding machine. The contest result is de-
termined by the force values of the two com-
peting agents, and these values depend on the 
machine setting times and processing times 
of the operations already scheduled or to be 
scheduled. The results of all the contests de-
termine the jobs priorities, which further de-
termine the schedule. The sequence of agents 
pairs to compete, when the needed machine 
becomes available, is decided by a type of 
the tour, chosen at the beginning of the mod-
eling, as presented in [28]. If FJSSP is the 
case, the contest rules become more com-
plex, as an agent will compete with more 
other agents corresponding to all the alterna-
tives machines.    
Whatever model may be, the solution for 
JSSP (the optimal schedule) is obtained itera-
tively, based on probabilistic decisions of the 
agents, until all the operations are scheduled. 
For the multiobjective case, no major altera-
tion of the model is needed.   
Ant Colony Optimization (ACO), proposed 
by Marco Dorigo [26], is a metaheuristic 
successfully applied to combinatorial optimi-
zation, simulating the group behavior of ants, 
which have the ability to find the shortest 
path to the food source by pheromone com-
munication. To solve such instances a specif-
ic-to-problem graph of components (nodes) 
is built, where every node has a pheromone 
value associated. In every generation of the 
ACO procedure the agents, called artificial 
ants, visit the graph in order to build solu-

tions, which are consequently sequences of 
components. Generally, for every visited 
node the pheromone value updates; the pher-
omone quantity accumulated on every cov-
ered route being proportional with frequency 
of covering, it guides the colony to identify 
the optimal solution (the optimal route in 
graph).     
ACO is similar to genetic algorithms by 
maintaining in each iteration (generation) a 
population of candidate-solutions, but the 
distinction is made by the different genera-
tion mechanism of these candidate-solutions. 
Specific to the manufacturing scheduling 
process, the graph components are the opera-
tions to be scheduled and the solutions built 
by the agents are paths in that graph - valid 
sequences of operations (schedules). An 
agent builds such sequence step by step, 
starting from a random valid operation and 
exit the graph when all the operations were 
visited. The solution building process is a 
probabilistic one and takes into consideration 
the pheromone trails on the nodes, which are 
deposited from the first iteration. The phero-
mone reflects the experience of the agents in 
searching the optimal schedule. Every agent 
proceeds in the graph selecting in the feasible 
region:  
- with probability  the node with maxi-

mum pheromone; 
- with probability 1- a random node.  
The  parameter translates the natural ten-
dency of the ants to probabilistically choose a 
direction in search for food; they mostly pre-
fer the routes marked with much pheromone, 
namely the routes chosen by other ants in the 
past. This cooperative interaction between 
ants is the guiding mechanism toward the 
shortest route.     
At every step, once selected a node, the 
pheromone for that visited node is updated 
by a particular fixed or variable value. The 
update is proportional with the partial solu-
tion quality and inverse proportional with 
pheromone evaporation rate (if the procedure 
includes this mechanism to avoid a fast con-
vergence to suboptimal regions of search 
space) [24]. In (F)JSSP  the partial solution 
quality is the schedule makespan. In the 
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MO(F)JSSP the partial solution quality takes 
into consideration all the objectives. 
In the following, an example of using ACO 
for a (MOF)JSSP with at least 60 jobs and at 
least 540 operations to be scheduled is graph-
ically described. Two partial (valid) sched-
ules built by two agents in the corresponding 

graph are:  
 o27,1 - o5,1 - o5,2 - o60,1 - o59,1 - o5,3 - o38,1 - 

o60,2 and 
 o60,1 - o60,2 - o59,1 - o5,1 - o38,1 - o5,2 - o5,3 - 

o27,1 
as Figure 5 depicts by the continuous and re-
spectively discontinuous lines. 

 

 
Fig. 5. Two partial solutions built by two ACO agents for a JSSP instance   

 
A variant of ACO can impose the agents 
whose current makespan exhibits an a priori 
maximum value to be rejected from visiting 
graph and, in that case, the visited nodes will 
not receive a pheromone update. By this 

mechanism, the colony is indirectly informed 
about the poor identified solutions.  
The ACO procedure for (MOF)JSSP is the 
following:  

 
1. initialization 

1.1. t  1 

1.2. set the parameters (Na – number of agents, )  

1.3. initialization of pheromone trails  

1.4. initialization of the best current schedule S0 

2. while stopping_criterion = false do 

2.1. generate Na solutions  

2.2. evaluate solutions: f(S1),f(S2),...,f(SNa) 

     Sb  best solution  

2.3. if f (Sb) < f (S0) then S0  Sb 

2.4. update pheromone trails  

2.5. t  t+1 

2.6. if stopping_criterion = true then return the schedule solution S0  

 

The advantages of ACO model are manifold:  
 the stochastic component allows the 

agents to build various different solutions 

and therefore ACO explores a wide search 
space; 

 the agents can be additionally guided to-
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ward the promising solutions in the search 
space by using heuristic information about 
the problem; 

 the agents‘ experience is used in building 
solutions in further iterations; 

 the collective interaction between agents 
leads to efficiency and robustness of the 
solutions.  

As a weak point of ACO model we mention 
the critical aspect of setting adequate values 
for the parameters for every instance, espe-
cially if it is a MOFJSSP one.    
On the other hand, Particle Swarm Optimi-

zation (PSO), proposed by Kennedy and 
Eberhart [29], is an optimization model 
which simulates the group behavior to effi-
ciently attain a destination in birds flocks, 
fish schools and other living creatures 
groups. The agents, named particles, “fly” in 
the search space following the current opti-
mal particles on basis of an adaptable speed 
which directs their moves, and on basis of a 
memory which stores the best visited loca-
tion in the past by all the agents.  
The search efficiency is determined, as in 
other agent-based models, by the colony of 
agents, whose speed dynamically updates 
depending on the system characteristics. The 
model is similar to GA in the pseudo-random 
initialization of the population of candidate-
solutions and in the searching process based 
on updating populations in generations. PSO, 
instead, do not use genetic operators to gen-
erate new candidate-solutions. 
Particularly for (MOF) JSSP, PSO gradually 
updates a population of schedules which 
„moves” in the search space towards an op-
timal one by modifying the sequences of op-
erations in the schedules.  
The main advantages in applying PSO model 
are the implementation simplicity, the re-
duced number of parameters to adjust and a 
wide search space explored. The difficulty, 
on the other hand, consists in avoiding the 
local optima. 
 
4 Conclusions 
Optimization modeling tools in the literature 
adequate for the MOFJSSP are numerous and 
diverse. The conventional ones put the pro-

cess in the center of the model. Such models 
are Petri nets, waiting systems, general deci-
sion models, logical formulations as STRIPS 
language, Markov processes, Monte Carlo 
simulation. Previous studies show that the 
unconventional methods are generally poor 
in exploring the search space, which regular-
ly is nonlinear, discrete, contains multiple 
optima and the global optima are not known 
in advance. Moreover, for this kind of pro-
cesses the user often seeks more solutions, 
and a conventional method generates a single 
such solution at every execution.    
In order to tackle such issues most research 
was focused on finding other methods, so-
called unconventional optimization models. 
They are procedural models which send in 
background the process model, the central 
role in modeling being given to the algorith-
mic procedure that adjusts the system. These 
procedural models cover a very active re-
search subject in the last decade for modeling 
and control of optimization processes. This 
special kind of approach was imposed by the 
major difficulty in rigorous mathematical 
characterization of big complex technologi-
cal processes behavior, as also MOFJSSP 
are; in this case, it is not possible an ap-
proach which easily covers all the possible 
states of the system [13]. Such models are 
evolutionary algorithms and genetic algo-
rithms in particular, the agent-based models 
(negotiation-based techniques, Ant Colony 
Optimization, Particle Swarm Optimization 
and Wasp Behavior Model), the neural net-
works, the expert systems, the knowledge-
based systems and fuzzy techniques.  
Based on previous work on optimization 
models ([14], [15]), the genetic algorithms 
and agent-based models are the most ade-
quate to handle MOFJSSP, which are quite 
big and pretty complex processes even for a 
medium-scale production system.  
GA allow finding more diverse solutions in 
one run, are simple, easy to extend, very suit-
ed to difficult optimization processes, hard to 
analytically handle with.  
The multi-agent approach offers another ade-
quate framework for MOFJSSP. It allows us-
ing certain complex desirable behaviors 
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emerging when the set of interacting agents 
is globally considered. Hence, the colony 
proves to be an intelligent entity when solves 
a problem, while the individual agents do not 
have this ability. Most of nature inspired pro-
cedural models are good examples of well 
distributed natural-like multi-agent systems, 
formed by hundreds or thousands of autono-
mous agents, robust to loss of individuals and 
robust to environment changes. The colony 
acts by coordination of agents’ tasks with no 
direct communication. Additionally, the 
global performance of the colony proves to 
be very efficient [25]. The only critical as-
pect in using agent-based models remains de-
fining efficient rules for interactions, which 
has a great influence over the model quality.  
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