
Informatica Economică vol. 16, no. 4/2012  131 

 

Option Price Estimations and Speculative Trading In Knowledge Society 
 

Ovidiu TURCOANE 

Faculty of Cybernetics, Statistics and Informatics,  
Academy of Economic Studies, Bucharest, Romania 

turcoaneovidiu06@stud.ase.ro 
 

Derivatives market has known an enormous and continuous development from the late 1970s, thanks 
to the most celebrated Black-Scholes-Merton formula. The impact on global economy is also tremen-
dous, but due to the high leverage of speculative option trading there is a perpetual danger of econom-
ic collapse. This paper gives a short description of knowledge society and proposes methods for option 
price estimation based on implied volatility, skewness and kurtosis. ‘Free-lunch’ is hardly achievable 
if one predicts the option price using the knowledgeable information from the market and there is al-
most impossible to speculate, rather than to hedge, when trading option. 
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Introduction 
The original 1973 Black-Scholes [1] and 

Merton [2] models and formulae for option pric-
ing are probably the most important in financial 
theory and can be credited for a major turn-over 
in capital markets transactions since its appear-
ance. Both [1] and [2] have witnessed improve-
ments in relaxing some of the initial restrictive 
assumptions, like models of Bakshi, Cao and 
Chen [3], Corrado and Su [4] [5]. Still, the origi-
nal one is the cornerstone and, comparing to the 
new models, more preferred for its simplicity by 
the majority of traders. 
The objective of this paper is to prove that good 
estimations of option price can be achieved using 
the information provided by the options market. 
In order to make this proof we will use some im-
plied variables in two formulae: implied volatility 
in [1], volatility, skewness and kurtosis in modi-
fied [5] formula of Negrea, Maillet and Jurczen-
ko [6]. Implied variable or variables, in an option 
pricing formula, yield a theoretical value for the 
option price equal to the current market price of 
the option. 
We would like to introduce the notion of auton-
omy of an option, meaning each option depend 
only on its underlying asset, but not on other op-
tions, even if they share the same underlying as-
set. Thus, implied variables are calculated sepa-
rately for each individual option. There are two 
approaches in establishing the implied variables 
in this paper, and both are taking into considera-
tion the fact that implied volatility, skewness and 
kurtosis are measures of risk for each option in-
dependently.  
 the first approach (A1) is that the market re-

tains the information and quickly and adap-

tively transforms it. Implied volatility, deter-
mined at a previous time, from the last ob-
served transaction, can be introduced in [1] at 
the current time in order to determine a pre-
dicted option price. This approach is good 
when the variations of the stock price are 
small, but has an important role in proving, 
empirically, that an option on an underlying 
asset is dependent on this asset, but independ-
ent from the other options that share the same 
underlying. Using implied volatility, skewness 
and kurtosis in [6] we will use the previous 
three transactions to estimate the option price 
of an option to any given moment; 

 the second approach (A2) takes into consider-
ation that an option is valued based on trans-
actions from a farther moment of its life than 
in first approach. Thus, the implied volatility 
is a result which, obtained by a non-linear 
minimization and introduced in [1], verifies in 
the best way (through a Euclidian distance) 
the traded prices of the derivative since its 
birth (or some given transaction) to the last 
transaction. In case of implied volatility, 
skewness and kurtosis we will use a non-
linear minimization for three parameters 
through a Euclidian distance. We introduce, 
on this occasion, an original iterative method 
(IM) that finds a value for an implied variable 
in one parameter non-linear minimization. 

Data used in research consists in more than 35 
000 observations (Appendix 1) and is taken from 
the French CAC 40 Index from the 2nd of January 
1997 to the 30th of December 1998, a period that 
covers the Asian financial crisis. 
We provide lines of code source for some proce-
dures implemented in Matlab and we also make 
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appeal to algorithms and functions already im-
plemented in Matlab. 
This paper is organized as follows: in section two 
we present a definition of knowledge society, 
formulae used in this research are displayed in 
the third section, IM and some other numerical 
methods, used in this paper to estimate option 
prices, are presented in section 4, in the fifth sec-
tion we discuss the results obtained with different 
approaches and methods and the last section pre-
sents the most important conclusions. 
 
2 Knowledge Society and Option Trading 
For the last decades there have been many at-
tempts to define information society and, more 
lately, some others for knowledge society. Based 
on the online version of Merriam-Webster Dic-
tionary [7], a literally explanation of the expres-
sion knowledge society takes into account a third 
common notion: association. We regard 
knowledge as a condition of knowing something 
through experience and association, learnt and 
understood by reasoning on truth. Society is a 
voluntary association of individuals that shares 
common goals, beliefs, traditions, an interde-
pendent system of biological units. Briefly, 
knowledge society is a large community of peo-
ple that are dependent on each other and each of 
its members is equally important as one’s work 
and experience is a strong contribution to achiev-
ing individual and common ends. Information is 
another key concept for knowledge society and, 
according to UNESCO [8] we cannot speak of a 
global society when information is impeded, ma-
nipulated and/or censured. More, information and 
communication technologies (ICT) are not means 
to an end but to create knowledge societies that: 
“are about capabilities to identify, produce, pro-
cess, transform, disseminate and use information 
to build and apply knowledge for human devel-
opment” [8] In a knowledge society we build our 
cooperation on trust, empathy and respect and we 
achieve them through a continuous collaboration 
between its individual members. This society is a 
democratic one, highly participative, not only in 
political processes, but more of a social significa-
tion. The cooperation is based on non-sum-zero 
games, and the attempt to default from one mem-
ber leads to poorer individual and common re-
sults [9]. 
How do we look at option trading and what is its 
purpose in the context of knowledge society? Its 
original goal is to limit the risk of increase or de-
crease of the underlying asset price when the last 
one is subject to direct trading. Nowadays, the 

end for trading options is more speculative, either 
to discover the real price of the underlying asset 
[10] or to simply speculate in the options market, 
based on the information asymmetry or differ-
ences of opinion [11]. While “the productive or 
knowledge-increasing financial wager enlarges 
knowledge” speculative option trading might be a 
cry for help: “For aristocrats, workers and mar-
ginalized ethnic groups, gambling served the 
purpose of setting the culture of risk apart from 
the culture of control” [12]. But knowledge so-
ciety is a large community that shelters everyone 
who is willing to cooperate for the benefit of all 
and where there is no room for exclusion. Still, 
speculative trading does affect not only the spec-
ulators but all the other members of the commu-
nity, and if the monitoring and diminishing of 
such activities is a first solution [8] the major ac-
tion should be taken by speculators themselves 
who are supposed to become more responsible. 
In this paper we try to prove that speculation is 
hardly achievable on option trading, as the mar-
ket itself gives enough information to estimate a 
fair price based on previous transactions of an 
option. 
 
3 Option Pricing Methods 
We have already pointed up that there are two 
approaches used in this paper to determine the 
implied variables needed for option pricing. 
These two approaches will be applied for each of 
the two models of option pricing, and each of the 
models has a specific formula. 
We start by displaying the most consecrated 
Black-Scholes [1] formula and we also introduce 
some standard notations used in this paper: 
 t : any given time or current time 
 T: expiration date 
 T-t: duration of the option 
 Ct: call price at t time 
 St: underlying price at t time 
 N: cumulate distribution function 
 K: exercise/strike price 
 r: annualized risk-free interest rate, continu-

ously compounded 
 σ: historical volatility – a constant value 
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We bring one amendment to formula (1) such as 
σ is not considered a fixed value, but an implied 
volatility and it is calculated using the two ap-
proaches already described: 
 t 1  is the implied volatility, determined at a 

previous time t-1, from the last observed 
transaction. It is introduced in formula (1) at 
current time t in order to determine an esti-
mated call option price 1

-1 tCE . 

 x,t 1  is the implied volatility of an estimated 

price 1
, 1x tCE  , obtained by a non-linear mini-

mization. Introduced in formula (1), verifies 
in the best way (through a Euclidian distance) 
the traded prices of the option since the first 
chosen transaction at time x until the previous 
last transaction at time t-1. 

The model of Corrado and Su [5] is practically an 
extent of Black-Scholes model [1] from the per-
spective of the existence of the first five statisti-
cal moments of the non-normal distribution of 
the underlying return. Using volatility, skewness 
and kurtosis, the call option price formula (2) 
presented in this paper is a variation of [5] and 
belongs to Negrea et al. [6]: 

 3
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BSC is the call option price from formula (1) 

with *d  instead of id , i=1,2  

 CSC is the option price of the model [5] modi-

fied in [6] 

   * ' '
1 3 2 4CS BSC C f Q f Q     (2) 

We also bring a few amendments to formula (2) 
and we take σ as an implied volatility σcs, 1  as 

an implied skewness scs and 2  as an implied 

kurtosis kcs. The same two approaches, A1 and 
A2, are used to calculate the three implied values: 

 cs cs cs
t 3,t 1 t 3,t 1 t 3,t 1σ  ,s  , k       are implied volatility, 

skewness and, respectively, kurtosis of the es-
timated call price 2

3tCE  , calculated using the 

previous three transactions, from moment of 
time t-3 to moment of time t-1. 

 cs cs cs
x,t 1 x,t 1 x,t 1σ  ,s  , k    are implied volatility, 

skewness and, respectively, kurtosis of esti-

mated call price 2
, -1x tCE , calculated from the 

first chosen transaction at time x to previous 
transaction at time t-1. 

 
4 Numerical Methods 
There are four types of implied variables that 
have to be calculated, using formulae (1) and (2) 
for both approaches A1 and A2: 
 V1: t 1   

 V2: x,t 1   

 V3: 
cs cs cs
t 3,t 1 t 3,t 1 t 3,t 1 ,  ,s k        

 V4: 
cs cs cs
x,t 1 x,t 1 x,t 1 ,  ,s k     

We will present numerical methods that yield the 
values of variables for each of Vi, i = 1, 4 and we 
also make some comments on these methods. 
 
4.1 Bisection versus Newton-Raphson Method 
in Calculating V1 
There are two main ways to solve a non-linear 
equation: bisection method or methods that use 
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derivatives of the equation’s function. While bi-
section method is not as fast as methods that use 
derivatives of a function, it is more accurate, al-
ways converging to a result, if this result exists. 
We provide Matlab implementation for both bi-
section method in Appendix B1 and Newton-
Raphson (tangent) method in Appendix B2. For 
bisection method we use an iterative and also a 
recursive approach, and in both cases we obtain 
the same correct result. Two approaches of New-
ton-Raphson method lead to the same incorrect 
result, using, in the first case, a numeric deriva-

tive of function and, in the second case, the ana-
lytical Vega. We remind that Vega is the deriva-
tive of call option function (1) with respect to σ. 
Using Bailey’s numerical method, that takes into 
consideration not only the first derivative, but al-
so the second derivative of call option function 
with respect to σ, will only accelerate the behav-
ior of tangent method, leading to an inaccurate 
result with fewer iterations. 
Figure 1 illustrates the comparison between bi-
section and Newton-Raphson and how each 
method yields its result: 

 

 
Fig. 1. Comparison between bisection (a) and Newton-Raphson (b) 

 
As Figure 1.a shows, bisection method needs two 
initial guess solutions X1 and X2 and the interval 
determined (X1, X2) must contain the final solu-
tion X. In case of tangent method, see Figure 1.b, 
the method does not converge to a correct result 
X, but jumps the value of X, converging to a val-
ue close to zero, see Table 1. The lack of conver-
gence might appear due to the fact that call op-

tion function does not have a regular shape as 
function f in Figure 1. 
We conclude our investigations on methods that 
find a good solution for V1 by presenting and 
explaining some results obtained, for different 
transactions, with bisection and tangent method. 
Table 1 shows a comparative analysis of the two 
methods, for a precision 10-4 of t 1  : 

 
Table 1. Comparison between bisection (M1) and tangent (M2) methods 

C K S r T-t V1: t 1   t 1f( )   

(currency) (currency) (currency) (%) (days) M1 M2 M1 M2 
130 2200 2283.02 3.41 84 0.1605 -0.0074 130.0009 -7.11E-37 
165 2200 2286.91 3.41 271 0.0961 -0.0061 165.0005 -1.36E-34 
43 2350 2265.99 3.41 83 0.1627 0.005 43.0011 5.30E-33 

55.6 2350 2304.41 3.41 80 0.1588 0.0028 55.6019 2.77E-21 
355 3550 3391.12 3.54 189 0.4072 0.0036 354.9985 2.03E-26 
61 4450 2984.03 3.55 363 0.3052 0.0265 61.0013 1.47E-42 

 
While tangent method yields results close to zero 
and even negative values, see first two lines of 
Table 1, bisection method always converges to a 
decent result. More, it takes around 20 iterations 
for bisection method to yield the result, while 
tangent method converges to an inaccurate value 

of σ after 100 iterations or so. For bisection 
method, verifying the values of t 1  and its cor-

responding variables (i.e. K, S, r, T-t in Table 1), 
with formula (1) we always obtain a value of 

t 1f( )  equal, for a precision of 10-2, to observed 
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price of the call option (i.e. C in Table 1). In case 
of Newton-Raphson method, introducing the re-
sulted t 1   and its corresponding values in for-

mula (1) we only obtain a value of t 1f( )  equal 

to zero, for a very high precision of 10-20. 
 
4.2 Iterative method (IM) for One Parameter 
Non-Linear Minimization in a Series of Data 
We will use IM to calculate V2, but we will also 
use IM in further researches to determine differ-

ent values for initial solutions for variables of V3 
and V4. 
Let us introduce some notations: 
 n - number of transactions: from the first or 

chosen one to the previous transaction 
 Ci - real call option price in transaction i, a 

given value 
 CEi - estimated call option price in transac-

tion i, a function: CEi = CEi(σ) 
Let us take: 

        2
2

1

,  ,  ,  is minimum
n

i i
i

d C CE C CE d C CE  


   

Let us define: 

      x,t 1

2

1

, hence  is that value of  which makes  minimum
n

i i
i

Q C CE Q  


   

Let us read: 

1 5 ,  ,      

and take 

1 5
3 2

  
  

where 1  and 5  are two initial values, the low-

er and upper bounds for the result, stored in a 
vector σ with 5 elements.  is the level of accu-
racy, also called the tolerance or the precision. 
Step 1  

1 3 3 5
2 4 , 

2 2

     
   

Step 2 

 
 

   1 2 3 4 5 1 2 3 4 5

 ,  1,5

 ,  ,  ,  ,    ,  ,   ,  , 

i iv Q i
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Step 3 
Ascending sorting of the vector 

 1 2 3 4 5 ,  ,  ,  ,  a a a a a a  

Step 4.1 
Take 1 2 3,  , a a a  and determine their positions 

1 2 3, ,p p p  in vector  1 2 3 4 5 ,  ,  ,  , v v v v v v , such 

as 1 2 3p p p   

Step 4.2 
IF NOT 

(      1,2,3   2,3,4   3,4,5p or p or p   ) 

stop! 
 The algorithm could not find a global minimum. 
ELSE 
        IF 1 1p  , THEN 5 3 3 2    and      

        ELSE IF  1 2p   THEN  

  1 2 5 4  and      

                ELSE 1 3 3 4  and      

Step 5 

IF 1 5     , THEN  

    * *
, 1 , where min v σv    x t    

STOP! 

ELSE (i.e. 1 5    ) GO TO Step 1. 

We would like to point up the importance of IM 
by comparing with an algorithm that uses the first 
derivative of the function that describes any of 
the observation in a series of data. IM has the 
same behavior as bisection method, which is a 
source of inspiration for IM. It requires two ini-
tial solutions, instead of only one for a method 
that utilizes a first derivative, and it is slower. But 
it does not depend on the initial solution to con-
verge to a decent result, for a given precision. 
More, it does not require a proof for the continui-
ty of the function which is derived, even if deri-
vation is applied numerically and not analytical-
ly.  
In case of methods with derivatives, non-linear 
minimization might yield a local minimum and 
they depend on how far is the initial solution 
from the final result. We will make a proof for 
the accuracy of IM (see Matlab implementation 
in Appendix B3), by comparing with Matlab 
function lsqnonlin [13], which may use one of 
the two algorithms: Levenberg [14], rediscovered 
by Marquardt (LM) [15], or trust region interior-
reflective Newton algorithm (TR) [16]. When 
calculating V2, the initial solution for methods 
implemented by lsqnonlin is not very important, 
even for values which are far from the final re-
sult, but it is important when calculating V3 and 
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V4. Table 2 present the proof that IM is con- sistent and accurate for a precision of 10-5: 
 

Table 2. Comparison between IM, Levenberg-Marquardt (LM) and trust region (TR) 
No. of 
obs. 

C K S r T-t V2: x,t 1   

(currency) (currency) (currency) (%) (days) IM LM TR 
1 195 2500 2608.54 3.32 217 - - - 
2 195 2500 2610.05 3.32 217 0.123277 0.123277 0.123277 
3 170 2500 2562.56 3.38 194 0.132041 0.132041 0.132041 
4 172 2500 2567.17 3.38 194 0.135732 0.135733 0.135733 
5 174 2500 2574.46 3.38 194 0.136986 0.136984 0.136984 
6 174 2500 2573 3.38 194 0.138083 0.138080 0.138080 

 
Non-linear minimization was applied to obtain 
V2, using antecedent observations for each of im-
plied volatilities from Table 2. The values of 

x,t 1  are identical for LM and TR and almost 

identical for IM. This proves that IM yields good 
results and we would also like to prove that it 

does not depend on its initial guess solution. In 
Table 3 we calculate V2 for different initial solu-
tions (bounds) of x,t 1  , using the following nota-

tions: LB – lower bound, UB – upper bound and 
NI – number of iterations. 

 
Table 3. V2 with different LB and UB 

No. 
of 

obs. 

LB = 0 UB = 1 LB = 0 UB = 5 LB = 0 UB = 10 LB = 0 
UB = 
100 

V2: x,t 1   NI V2: x,t 1   NI V2: x,t 1   NI V2: x,t 1   NI

2 0.12327576 18 0.12327671 20 0.12327671 21 0.12327731 25 

3 0.13204193 18 0.13204098 20 0.13204098 21 0.13204217 25 

4 0.13573456 18 0.13573170 20 0.13573170 21 0.13573170 25 

5 0.13698578 18 0.13698578 20 0.13698578 21 0.13698339 25 

6 0.13808060 18 0.13808250 20 0.13808250 21 0.13808012 25 
 
It is obvious that bounds of IM do not affect con-
sistently, for a precision of 10-5, the resulted val-
ues of x,t 1  , see Table 3. There is also important 

to point up the fact that a larger interval for the 
initial solutions has little influence on the number 
or iterations that IM requires to yield the opti-
mum result, see Figure 2. Thus, we can use IM 

without being concerned that the final solution 
might not be close to an initial solution, required 
by algorithms based on derivative of a function. 
This will be very helpful especially when calcu-
lating V3 and V4, which have a much larger range 
for their optimum solutions. 

  
Fig. 2. Logarithmical dependency between NI and UB for IM for a precision of 10-5 
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Figure 2 illustrates a logarithmical dependency 
between NI and UB, although we only used five 
observations. Still, this encourages us to believe, 
see also Table 3, that IM is not substantially af-
fected by large intervals between the two initial 
guess solutions. 
 
4.3 Methods to Determine V3 and V4 
Values of V3 and V4 are calculated using formula 
(2) and both approaches A1 and A2. For both V3 
and V4, the following steps are required in order 
to obtain initial solutions: 
 Using IM, first step finds the implied vola-

tility cs with formula (1). 

 Using IM, the implied volatility cs from 
first step is introduced in formula (2) and 
we obtain the implied skewness css when 

implied volatility cs is fixed and kurto-

sis csk is neglected (i.e. 2 0  ). Thus, for-

mula that is used to find css  becomes: 

 * '
1 3CS BSC C f Q   

 Finally, using IM, implied volatility cs and 

skewness css from previous steps are intro-

duced in formula (2) and implied kurto-
sis csk is found. 

The initial values cs cs cs, ,s k  are used as guess 
solution in solving a system of non-linear equa-
tions in case of V3 and in a non-linear minimiza-
tion through a series of data in case of V4. In or-
der to find final solutions of V3 and V4 we will 
use Matlab functions: fsolve or lsqnonlin [13] for 
V3 and lsqnonlin for V4, which have implementa-
tions for LM and TR. 
We must say that using IM we offer a good initial 
for LM in both approaches A1 and A2 for V3 and 
V4. Otherwise, LM has issues in calculating dis-
tribution function for complex values that it occa-
sionally generates in its iterations. TR does not 
have this kind of problems, but it uses bounds 
that restrict the final results and it becomes an op-
tion when we want to obtain implied V3 and V4 
that still keep their statistical significance (i.e. 
negative asymmetry and positive kurtosis). 
We would like to underline the differences be-
tween results obtained with LM or TR, using or 
not using IM for initial solutions. Table 4 pre-
sents results of V3, obtained from observations 
from Table 2, using TR and LM: 

 
Table 4. Results for V3 with LM and IM 

No. 
of. 

obs. 

fsolve: LM with IM lsqnonlin: LM with IM lsqnonlin: LM 
cs
t 3,t 1    cs

t 3,t 1s    cs
t 3,t 1k    cs

t 3,t 1  
cs
t 3,t 1s    cs

t 3,t 1k    cs
t 3,t 1    cs

t 3,t 1s    cs
t 3,t 1k    

3 
0.0288 

-
167.0899 585.5107 0.0393

-
34.8398 11.6626 0.0402 

-
30.7379 3.2882

4 
0.0596 -16.9003 5.5834 0.0483

-
28.1049 23.6895 0.0184 1.1396 8.1237

5 
0.0479 -36.9400 35.8936 0.0453

-
39.8313 40.5228 0.0432 

-
19.6885 

-
16.5300

6 
0.0243 

-
214.4738 1247.0040 0.0482

-
37.5249 38.4458 0.0461 

-
16.1648 

-
17.7151

 
We may see in Table 4 that results are very dif-
ferent when changing the method of calculat-

ing cs cs cs
t 3,t 1 t 3,t 1 t 3,t 1 ,  ,s k       . The only occasion 

when variables of V3 do not keep their statistical 
significance, although with values larger than 

theoretical ones, is when IM is not used to obtain 
initial solutions. When using TR, V3 has incon-
sistent values. 
Table 5 presents results of V4 relatively to obser-
vations from Table 2 and Table 4: 

 
Table 5. Results of lsqnonlin for V4 with TR, LM and IM 

No. of. 
obs. 

TR TR with IM LM with IM 
cs
,t 1x   cs

,t 1xs   cs
,t 1xk 

cs
,t 1x   cs

,t 1xs   cs
,t 1xk 

cs
,t 1x   cs

,t 1xs   cs
,t 1xk   

3 0.0346 -68.2585 100 0.0346 -68.2585 100 0.0288 -167.0899 585.5107
4 0.0402 -30.5804 3 0.0402 -30.5804 3 0.0404 -30.1034 2.0520 
5 0.0403 -30.4728 3 0.0403 -30.4728 3 0.0430 -20.2410 -15.7377 
6 0.0403 -30.4615 3 0.0403 -30.4615 3 0.0423 -22.5352 -11.9254 
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In Table 5 lower bounds are (0, -100, 3) and up-

per bounds are (1, 0, 100) for cs cs cs
x,t 1 x,t 1 x,t 1 ,  ,s k    . 

These bounds are used for TR, which yield the 
same results using or not IM. More, for TR and 
TR using IM for initial solutions, the upper 
bound is reached once (i.e. first observation in 
Table 5) and lower bound is reached three times 
(i.e. last three observations in Table 5).  This 
might raise questions about the final results if fi-
nal results were not bounded. LM, using IM for 
initial solutions, proves that variables of V4 might 
lose their statistical significance reaching values 
which are not theoretically consistent. Without 
using IM for initial solutions, LM cannot yield 
any result in most of the occasions. 
We have seen (Table 4 and Table 5) that methods 
of determining the optimum solutions in a non-
linear minimization may be difficult to be cho-
sen. There is no guarantee that one or another 
method will yield a better if not an optimum re-
sult. The problem of choosing the best method is 
based on different attempts, intuition and 
graphics of one of the: call option price, underly-

ing asset price or previous implied variables. 
Still, using IM to obtain initial solutions for any 
of the methods of non-linear minimization for 
more than one parameter, we obtain encouraging 
results for implied variables V3 and V4. 
 
5 Final Results and Discussions 
Both formula (1) and (2) are designed for a con-
tinuous time approach. We take this continuous 
time condition as being satisfied when a deriva-
tive instrument is subject to trading a few times 
each day from its birth to the expiration date. The 
call options analyzed in this paper have more 
than 1000 transactions during their entire life that 
can range from three to nine months and they are 
extracted from 35807 transactions (Appendix 
A.1). The transactions of 10 derivative instru-
ments (Appendix A.2), taken into consideration 
in this paper, are classified by two keys: strike 
price K and expiration date T (i.e. Option ID) and 
sorting by day and time of trading. In Table 6 we 
present estimations on different options using the 
four implied variables V1, V2, V3 and V4: 

 
Table 6. Estimations of call option price; t and x expressed as discrete observations. N: number of 

transactions observed for the entire life of the call option 
No
. 

of 
ob
s. 

Option ID N t x S r 
T-
t 

C 1
-1 tCE  

1
, 1x tCE 

 

2
3tCE   2

, -1x tCE

1 
2650_19970

930 

167

2 
570 560 

2628.

88 

3.3

4 

21

0 

12

5 

124.01

72 

123.05

84 

120.46

06 

128.89

86 

2 
2650_19970

930 

167

2 
570 565 

2628.

88 

3.3

4 

21

0 

12

5 

124.01

72 

124.39

92 

120.46

06 

124.18

08 

3 
2650_19970

930 

167

2 
570 566 

2628.

88 

3.3

4 

21

0 

12

5 

124.01

72 

124.43

66 

120.46

06 

123.00

86 

4 
2800_19970

930 

237

5 

120

0 

119

0 

2792.

65 

3.4

1 

13

2 

11

8 

118.60

34 

121.19

09 

117.41

34 

126.65

47 

5 
2800_19970

930 

237

5 

150

2 

148

5 

2533.

09 

3.6

3 

12

0 

32.

5 

34.131

9 

38.538

3 

33.033

8 

35.340

8 

6 
2950_19970

930 

233

2 

196

2 

193

5 

2808.

17 

3.4

1 
29 34 

34.099

8 

36.621

5 
0.0000 

41.033

4 

7 
2950_19970

930 

233

2 

196

2 

195

6 

2808.

17 

3.4

1 
29 34 

34.099

8 

35.421

9 
0.0000 

33.908

5 
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8 
3250_19980

331 

181

4 
786 756 

2732.

54 

3.6

6 

15

2 
60 

54.927

6 

67.818

5 

76.157

0 

66.730

5 

9 
3250_19980

331 

181

4 
786 776 

2732.

54 

3.6

6 

15

2 
60 

54.927

6 

60.093

6 

76.157

0 

60.759

3 

10 
3250_19980

331 

181

4 
786 780 

2732.

54 

3.6

6 

15

2 
60 

54.927

6 

58.353

4 

76.157

0 

60.065

1 

 
There are four options, each with several estima-
tions, presented in Table 6 and best estimation of 
the real traded call option price is highlighted 
(bold italic red color) for each observation. Be-

fore we continue with discussion on estimations, 
we also present in Table 7 the implied variables 
used to obtain data from Table 6, highlighting the 
implied variables that yield the best result: 

 
Table 7. Implied variables that yield results from Table 6 

No. of 
obs. 

Best 
method 

V1 V2 V3 V4 

t 1   x ,t 1   cs
t 3,t 1    cs

t 3,t 1s    cs
t 3,t 1k    cs

,t 1x   cs
,t 1xs   cs

,t 1xk   

1 1
-1 tCE  0.1375 0.1363 -0.4003 6.5891 -2.4549 0.0135 -100.00 3.000 

2 
1

, 1x tCE   0.1375 0.1380 -0.4003 6.5891 -2.4549 0.0129 -100.00 3.000 

3 
1

, 1x tCE   0.1375 0.1363 -0.4003 6.5891 -2.4549 0.0128 -100.00 3.000 

4 2
3tCE   0.1569 0.1608 -1.5589 1.7959 1.6842 0.0158 -100.00 3.000 

5 2
3tCE   0.1798 0.1894 0.4723 5.7970 26.7663 0.0726 -46.4898 86.9866

6 1
-1 tCE  0.2622 0.2716 0.0136 0.0131 2.9995 0.0842 -0.0001 60.3895

7 
2
, -1x tCE  0.2622 0.2672 0.0136 0.0131 2.9995 0.1007 -0.0001 38.2725

8 1
-1 tCE  0.2789 0.3033 0.2771 -0.0722 23.3609 0.1224 -39.533 73.0404

9 
1

, 1x tCE   0.2789 0.2889 0.2771 -0.0722 23.3609 0.1510 -0.0001 15.1048

10 
2
, -1x tCE  0.2789 0.2855 0.2771 -0.0722 23.3609 0.1469 -0.0001 15.3419

 
Calculations made with Vi, i= 1, 4, proves con-
sistent results for call option prices in Table 6 and 
intriguing implied values in Table 7. 
Looking at call option that has the id 
2650_19970930, first three observations in Table 
6, we notice that a variations of x (time expressed 
as discrete observation to start calculations) for a 
fix t (given time expressed as given observation) 
leads to improved results. For the same observa-
tions, the implied variables that give the closest 
estimation to the real call option price are V1 and 
V2 (see Table 7). 
For option with id 2800_19970930 for different 
moments of its life (i.e. different t) we obtain 
good estimations (see Table 6) with V3 (see Ta-
ble 7). But V3 has in both cases values that lose 
their statistical significance. More, value of 

cs
t 3,t 1   is negative for the first estimation (i.e. 

value of -1.5589) which is totally wrong from a 
theoretical point of view. Volatility must be non-
negative, but is implied volatility the same theo-
retical measure of risk or uncertainty? We do not 
want to start a debate on acceptance of negative 
value for volatility, but we would like to point up 
that an economic and algebraic explanation 
would argue that negativity means a local ten-
dency to contraction. We leave this debate for 
other researches; still, we would like to underline 
that not only implied volatility, skewness and 
kurtosis may have a reverse algebraic sign from 
an economic and statistic point of view, but also 
prices estimated with formula (2). 
Option with id 2950_19970930 has outstanding 
estimations for a fix t with two different x and 
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different implied variables (see Table 7). More 
important is the fact that the same price yielded 
by V3 are zero; it does not depend on x. There are 
occasions when prices estimated with V3 and V4 
are even negative, which, on a superficial expla-
nation, might be seen as a cost. Thus, in our case, 
for the last previous three transactions of call op-
tion at given moment t, the option becomes a 
burden for the investor. Still, the other methods 
of estimation prove that the price is fairly 
guessed (see Table 6). 
The last option from Table 6, with id 
3250_19980331, has two methods, based on V2 
and V4, which estimate for a fix t and different x 
similar prices of call option. All implied variables 
Vi, i = 1, 4, keep their statistical significance for 
all three observations (see table 7). 
We conclude our discussion on results and meth-
ods of estimation by stating that further research 
should investigate a pattern for choosing the best 
method of estimation. 
 
6 Conclusions 
This paper has the intention of proving that esti-
mation on option markets, the most leveraged 
one, are at hand of traders if they look at the in-
formation that market retains through its transac-
tions. Good estimations on call option pricing are 
possible if we treat each option as an autonomous 
asset that depends only on itself and its underly-
ing evolution. We need correct numerical meth-
ods of calculating implied variables that yield the 
estimated price. We proved the superiority of bi-
section over Newton-Raphson method. We pro-
posed an iterative method that finds a minimized 
implied volatility and initial solutions for three 
parameters non-linear minimization. This re-
search on calculating implied variables has 
shown that some aberrations may occur. It is not 
easy to deal with this kind of errors and it is also 
difficult to find an economic explanation for 
them. 
Although the values of the implied volatility, 
skewness and kurtosis are not in the range of a 
non-normal distribution with negative asymmetry 
and leptokurtic distribution, they represent, as 
implied parameters, new gauges of risk. The re-
sults obtained in estimating call option prices en-
courage us to believe that speculation is hardly 
profitable, taking into consideration only the in-
formation from previous transactions. Without 
information asymmetry, fair option price estima-
tions are available for all traders, with the right 
method. 

In a knowledge society, traders on derivative 
markets should be concerned with hedging, rather 
than speculating. It is true that liquidity is a very 
important aspect of economic world, but what are 
the medium and long term costs? We believe that 
traders should pay more attention and respect to 
the economic and non-economic world. Con-
straints on trading option must not come from 
state institution but from traders themselves. 
This paper tries to emphasize the validity of at 
least one option pricing model. The author has 
proposed himself to verify from a computational 
and from a logical point of view two of the op-
tion pricing formulae. One strong assumption 
have yet been made, that options, and especially 
index-option, should be treated independently 
from the other options that have or do not have 
the same underlying. In this paper, the author as-
sumes that a trader takes into consideration one 
kind of risk when one deals with one option. The 
liaison with other options, which mean another 
kind of investment and risk, it is totally explaina-
ble through the behavior of the underlying price. 
There is no point, in this article’s author opinion, 
to group the options altogether and to determine 
implied parameters through a common behavior 
of all these derivatives. Traders know very well 
that the market is continuously transforming and 
they do not expect the same behavior from all op-
tions, even when they have the same class of ma-
turity. We haven’t discussed about the fact that 
options deep in or out of the money have their 
behavior exaggerated by Black-Scholes formula 
and we didn’t even talk about the possibilities of 
arbitrage. We are assuming that the traded price 
is the real and objective price even when some 
aberrations might appear, like a decrease of the 
underlying price accompanied by an increase in 
the option call price. 
Future researches should determine a priori the 
right method for call option pricing and to find a 
pattern based on underlying asset and option evo-
lutions, and even on previous implied variables. 
Improvements of numerical methods may be 
based on algorithms that search deeply in the al-
ternatives of multiple parameters non-linear min-
imization, even with the cost of time. The objec-
tive is to prove that estimations can be handy for 
all traders and, thus, we may prevent speculation 
on a high leverage market. 
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Appendix 

A. Transactions 
A.1.  CAC 40 transactions 

http://turcoane.com/ie/Resource1.txt 
A.2. Transactions of ten call options 

http://turcoane.com/ie/Resource2.rar 
 

B. Code source 
B.1. Matlab implementation for bisection method 
http://turcoane.com/ie/Bisection.txt  
B.2. Matlab implementation for Newton-Raphson 
method http://turcoane.com/ie/Raphson.txt  
B.3. Matlab implementation for IM 
http://turcoane.com/ie/IM.txt  
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