
Informatica Economică vol. 16, no. 4/2012 93

Requirements of a Better Secure Program Coding

Marius POPA
Department of Economic Informatics and Cybernetics,
Academy of Economic Studies, Bucharest, Romania

marius.popa@ase.ro

Secure program coding refers to how manage the risks determined by the security breaches because of
the program source code. The papers reviews the best practices must be doing during the software
development life cycle for secure software assurance, the methods and techniques used for a secure
coding assurance, the most known and common vulnerabilities determined by a bad coding process
and how the security risks are managed and mitigated. As a tool of the better secure program coding,
the code review process is presented, together with objective measures for code review assurance and
estimation of the effort for the code improvement.
Keywords: Secure Coding, Code Vulnerabilities, Code Review

Requirements of the Secure Software
Development Process

Reducing the software vulnerabilities and
increasing the software protection against the
cyber-attacks are critical to increase the
confidence in software products. Details and
issues regarding information and computer
systems, the security and objective assessments
of these systems are presented in [1], [6], [8],
[10], [13], [16] and [17].
To achieve the above goals, specific activities
have to perform during the software development
life cycle. The software developers, integrators,
operators and end users are factors that lead to
improved software products.
There are many software development
methodologies. According to [21], the common
elements of these methodologies and their
characteristics are:
 concept – the software goals, interactions

with the users and other components of the
IT infrastructures are defined;

 requirements – they are established in a
measurable, observable and testable form;
the software functionalities are defined
together with the impact on the next stages
of the software development life cycle;

 design and Documentation – it is a critical
stage for an efficient programming; also, a
very detailed documentation is the main
source for the documentation of the released
product;

 programming – design and specifications are
translated into code; best practices and
according to standards are required for an
effective program coding;

 testing, Integration and Internal Evaluation
– coding process is verified and validated as

completeness, covering of the requirements,
test plans and documentation;

 release – potential clients can use the
available software product; the software
vendor assures the software marketing and
distribution;

 maintenance, Sustaining Engineering and
Incident Response – they aim the support for
the software product as bug fixes, user
interface enhancements, modifications
regarding the usability and performance; the
support elements are used for new versions
of the software product.

In [21], best practices for secure software
application during its development life cycle are
highlighted and defined as it follows:
 security Training – includes the activities

regarding the security and privacy issues
addressed to the software development team;
it is a requirement given by the complex
tools used in software development allowing
the security vulnerabilities to creep in the
software product;

 defining Security Requirements – is made in
the same time with the software
development; security requirements address
architecture and design, software
development and programming best
practices, and assurance, testing and
serviceability; for a better effectiveness, the
security requirements are integrated into a
framework to implement the security
requirements traceability into the software
development life cycle;

 secure Design – permits the identification
and addressing the potential threats and the
ways to reduce the risk to the acceptable or
manageable level; the goal is to develop a

1

94 Informatica Economică vol. 16, no. 4/2012

software product designed to be secure; for a
better effectiveness, abstract designs are
built as secure design patterns as descriptors
used in many different situations; using the
secure design patterns reduces or eliminates
or mitigates the effects of the accidental
insertion of vulnerabilities into code;

 secure Coding – implies the using of the
best programming practices to build a secure
software product; it is performed by source
code review as combination of manual
methods and/or automated analysis tools to
identify the potential security defects that
are exploited as software vulnerabilities;
software vulnerabilities are reduced or
eliminated by identifying the coding errors
and defects before the software deployment;

 secure Source Code Handling – aims all
measures to assure the access control to the
source code, tracking and confidentiality
protection of the source code; without a
management of the source code handling,
malicious code can be intentionally or
unintentionally inserted in the software
product; also, the development team
manager has to know the traceability of the
source code written by software developers;

 security Testing – represents a specialized
validation of the security requirements,
design and coding best practices are covered
by the software product; at implementation
time, the security testing implies
vulnerability analysis, penetration testing,
and use of testing techniques; the following
concepts have to be met by a secure
software: confidentiality, integrity,
availability, authentication, authorization
and non-repudiation;

 security Documentation – helps the software
customers to configure the security controls;
the configuration options have to be
established in such a way to prevent
explosion of the potential security
vulnerabilities of the software product;

 security Readiness – is the final check of the
software product made by developer;
security issues are evaluated, documented
and assessed by developer before to proceed
with software product releasing;

 security Response – manages the
vulnerabilities exploited by attackers or
identified by customer in released software
product; the software vendor or developer
communicates with the customer and

investigates the vulnerability to mitigate the
risk; as result, a patch for the released
software can be provided to the customer;
also, the risk mitigation is made by a
automatic patch policy for released software
product;

 integrity Verification – is used to verify the
legal and correct software utilized by
customer; in such a way, a compromised or
corrupted software product can be easily
identified and the risks of using this kind of
software are mitigated;

 security Research – helps to identify new
attack ways of the existing technologies,
new risk mitigation methods and techniques,
and to adapt the new technology for an
improved software security;

 security Evangelism – aims the promoting of
the best practices by software assurance
specialists in open forums, articles, papers
and books.

The best practices applied during the software
development life cycle contribute to software
assurance. The software assurance is a process
continued by software integrators, operators and
end users after the software product development.
Description of these roles is made in [21] as it
follows:
 Integrators – work with software vendors

and developers to identify and mitigate the
vulnerabilities resulted from increasingly
higher information system environments and
integration of the new application with other
software products and legacy systems;
within integrated information system, the
component subsystems have to work
together in such a way to mitigate the
vulnerabilities;

 Operators – configure the system in an
optimized manner from security point of
view; configuration options aim software
patching and defense measures; operators
manage security, user access and monitor
and perform routine operations in the
information system;

 End Users – are responsible users of the
information system; they have to report
potential bugs and vulnerabilities, and to
prevent introduction of software from
untrusted sources into the system.

The software assurance is implemented by
applying the best practices during the software
development life cycle. The best practices are

Informatica Economică vol. 16, no. 4/2012 95

separated depending on the role of each actor in
the software development life cycle.

2 Methods and Techniques for a Secure
Program Coding
The secure code is an artifact meeting the
following requirements as it is presented in [3]:
 covers all technical and functional software

specifications;
 remains within trust boundaries;
 validates all inputs in the proper way;
 escapes all outputs in the proper way;
 does not hardcode personal or sensitive data;
 does not violate any security standard

specification and recommendation;
 cannot be hacked.

The program coding is a stage of the software
development life cycle in which the design
requirements of the software are implemented
into the source code written in programming
language. The design requirements include
security issues to address the software product
security.
The secure program coding is a process aiming
the increase of the code quality and decreasing
the security risk. It is implemented by the
following activities as it is shown in [3]:
 strategy and metrics;
 policies and compliance;
 education and guidance;
 threat assessments;
 security requirements;
 secure architecture;
 design reviews;
 code reviews;
 security testing;
 vulnerability management;
 environment hardening;
 operational enablement.

The secure program coding refers the elimination
of software defects during the implementation of
the design requirements into the source code.
This goal is accomplished by using the best
programming practices. According to [20], the
best programming practices are:
 minimization of the unsafe function use –

eliminates the buffer overrun vulnerability
from C and C++ code; the vulnerability
cause is given by unsafe string- and buffer-
copying functions at run-time;

 using of the latest compiler toolset – offers
defense for buffer overrun at compile-time
and run-time; the defense tools of the
compiler are: stack-based buffer overrun

support, image and stack randomization,
CPU-level No-eXecute support, exception
handler protection, warnings for insecure C
runtime function detection and removal;

 using of static and dynamic analysis tools –
aids source code and binary analysis to find
vulnerabilities; they are complementary to
manual reviewing; these tools are used on
large amount of results containing many
false positives;

 manual reviewing of the code – is made on
high-risk code; it addresses to the following
classes of vulnerabilities: buffer overruns
and integer arithmetic issue, web
vulnerabilities, database vulnerabilities and
cryptographic issues;

 validation of input and output – eliminates
the most common vulnerabilities; it
establishes whether the format of incoming
data is correct applying validation
procedures on strings for text and XML data
as string comparisons or verifying the data
length and field validity for binary data;
validation of output data mitigates
vulnerabilities as cross-site scripting, HTTP
response splitting and cross-site request
forgery;

 using of anti-cross site scripting libraries – is
very useful to encode the web-based output;

 using of canonical data formats – derives a
canonical expression from polymorphic
expressions; canonical data format is filtered
by the security mechanisms;

 avoiding the string concatenation for
dynamic SQL – eliminates building of SQL
statements by concatenation of untrusted
data with string constants; instead of
concatenation, a better way to build SQL
statements is to use placeholders or
parameters;

 elimination of the weak cryptography – aims
the insecure cryptographic entities to be
used within software applications; it is better
to use cryptographic algorithms and
implementation proven to be secure by
security standards;

 using of the logging and tracing – implies
data recording for successful and failed
events, and bug detection in the software
application.

The security of software during its development
life cycle is improved by establishing the coding
guidelines for commonly used programming

96 Informatica Economică vol. 16, no. 4/2012

languages. For example, secure coding standards
are:
 ISO/IEC 9899:1999 for C programming

language;
 ISO/IEC 14882:2003 for C++ programming

language;
 Java Platform Standard Edition 6.

In the above secure programming standards, there
are defined recommendations, rules and risk
assessment summaries grouped into categories.
For instance, the attempt to modify string literals
in C is a rule defined in the category Characters
and Strings. The rule explains the concept of
string literal, when and how a string literal is
created, what are the noncompliant and compliant
code cases. For example, attempting to modify a
string literal has the following noncompliant
content in C programming language [24]:

char *p = "string literal";
p[0] = 'S';

The char pointer p is initialized to the address of
the string literal. The second source code line
causes undefined behavior of the program
because the location p[0] cannot be overwritten
by the symbol S.
The compliant solution is to use an array instead
of pointer. A copy of the string literal is stored in
the space allocated to the character array. The
string stored in a is safely modified in the second
line of the below source code.

char a[] = "string literal";
a[0] = 'S';

Another common example of insecure program
coding aims the buffer overflow. Buffer overflow
occurs when a program allows writing the
allocated memory by data having longer length
than the allocated memory one. Thereby, an
attacker gains the control or crashes a program.
The most affected programming languages are C
and C++. In other languages, the array length
checking is performed and native string types are
used [15].
In the below example, the argument is copied
into buffer without checking its length. This is
the buffer overflow vulnerability.

int main (int argc, char const *argv[])
{

char buffer[4] = "ABC";
strcpy(buffer, argv[1]);
printf("bufffer: %s\n", buffer);

return 0;

}

Integer overflow is a coding vulnerability causes
by the limited range of the values for program
variables defined on standard data types of the
programming language. Integer overflow occurs
when the developer tries to store in the memory
area a value outside the range.
In the below example, the variable v is defined
by the int data type and it is initialized with the
maximum possible positive value for a long
integer.

void main(){
 int v;
 v = 0x7fffffff;
 printf("val = %d \n", v);
 v = v + 1;
 printf("v + 1 = %d \n", v);
}

The initializing value of variable v is given in
hexadecimal which means 2147483647 in base
10. The int data type has the long specifier which
means 4 bytes reserved in stack area at compiling
time. The first figure of the values stored by v is
7, having the following binary representation:
0111. The long int is a signed data type which
means that the most significant bit is the sign bit.
For previous binary representation, the most
significant bit has the value 0, the value stored by
v being a positive one.
When the value stored by v is incremented by
value 1, the result has the hexadecimal
representation 0x80000000. The first figure of
the representation is 8 which means the binary
representation 1111. As result, the variable v
permits accessing of an negative integer in
contradiction with the developer’s expectations.
Format strings are used by an attacker to print
data from the stack memory allocated for the
process, execute arbitrary code, or disclose
information [15]. The format strings control the
behavior of the printf() family functions. The
main problem is that the compiler does not detect
the lacks of the format for printf() family
functions. As result, an attacker removes the
format strings, or arguments that have to be
associated with the format strings.
Inappropriate uses of printf() family functions
are highlighted in the below program code:

void main(int argc, char * argv[])

Informatica Economică vol. 16, no. 4/2012 97

{
 char text[] = " string literal ";
 printf(argv[1]);
 printf(text);
 printf ("%s%s%s%s");
}

A program containing the above coding
vulnerability crashes at run-time.
Command injection occurs when an application
accepts untrusted or insecure inputs. Programs
without validation or a proper escaping of the
inputs are vulnerable to these types of attacks
[19].
The following program code is injectable:

int main(char* argc, char** argv) {
 char cmd[CMD_MAX] = "/usr/bin/cat ";
 strcat(cmd, argv[1]);
 system(cmd);
 return 0;
}

The above C code is exploitable in computers
using UNIX operating systems. The program
attaches a filename passed as command line
argument to the string stored by variable cmd.
The program has root privileges and system()
function executes with root privileges. The
application runs appropriately when in argv[1] a
filename is passed. However, other strings can be
passed to the application in such way that the
program causes damages in the computer.
The same coding vulnerability is exploitable in
cross-platform programming languages like Java
which implements linking ways to the native
code. Such methods are java.lang.Runtime.exec
and java.lang.Runtime.getRuntime.
Sending malicious code from web application to
end-user using a form in a browser side script is
cross-site scripting coding vulnerability. The
vulnerability has the following types of behavior
[15]:
 Non-persistent cross-site scripting –

malicious code is reflected to the client’s
web browser;

 Persistent cross-site scripting – malicious
code is stored on server side;

 Document Object Model based cross-site
scripting – the client side code executes in a
different manner due to modifications in the
DOM environment.

Document Object Model is represented by
objects provided by browser to the JavaScript

code when the JavaScript is executed at the
browser.
A simple example of cross-site scripting
vulnerability is provided in the below example,
according to [23].

<% String eid = request.getParameter("eid");
%>
 ...
 Employee ID: <%= eid %>

The code is provided for a web application
developed in Java Server Page. The JSP code
operates correctly when eid contains standard
alphanumeric text. When eid has an inappropriate
content as meta-characters or source code, the
application is vulnerable.
The web applications developed in different
technologies are vulnerable to this type of attack
when input validation mechanisms are not
implemented.
Cross-site request forgery consists of forcing an
end-user to execute unwanted actions on a web
application in which the end-user is authenticated
[19]. Thus, an attacker compromises user data
and operation. The web applications using the
authentication on cookies or session identifier are
vulnerable to cross-site request forgery. The
attacker obtains and uses the login credential to
force requests to the trusted site where the victim
has a login account and operations can be made
by attacker on behalf of victim.
An example of cross-site request forgery, in [19]
is provided a HTTP POST request.

POST
http://TicketMeister.com/Buy_ticket.htm
HTTP/1.1
Host: ticketmeister
User-Agent: Mozilla/5.0 (Macintosh; U; PPC
Mac OS X Mach-O;) Firefox/1.4.1
Cookie:
JSPSESSIONID=34JHURHD894LOP04957H
R49I3JE383940123K
ticketId=ATHX1138&to=PO BOX 1198
DUBLIN 2&amount=10&date=11042008

Other example of cross-site request forgery aims
to build an URL in the same manner which a
browser sends the sensitive data to the server.
The built URL is hidden under a link and attacker
must convince the end-user to click it. After
clicking, the URL with embedded data regarding
the malicious intent is sent to the server and it is

98 Informatica Economică vol. 16, no. 4/2012

operated as end-user’s action, but with results for
attacker’s intent.
SQL injection occurs when SQL command is
embedded in data sent by the user from a web
form to a page hosted by server in such way that
the control mechanisms implemented in web
application are passed by. The embedded data
introduce operation like displaying, adding,
deletion, or manipulation in backend database.
A classic malicious input as SQL statement is:

Select * from LOGIN where username=
’john_smith’ and password = ’ ’ or 1=1;

The SQL statement is provided in an input
control of a web form. It checks if the username
john_smith is stored in the table LOGIN. If the
user john_smith is found, then the attacker has
the login credentials of that user.
During program coding, direct object references
are exposed. When exposing is made in an
insecure manner, the application becomes
vulnerable. The direct object references have the
following forms: URL, form parameter, file,
directory, or database record [15].
As examples, the following methods are used for
URL references:
 a malicious URL is loaded as part of

another, and the obtained URL is considered
valid;

 a malicious URL is used as parameter of a
function which redirect the end-user to
malicious web sites;

 a malicious URL is used in search scripts to
redirect the end-user to malicious web sites.

Improper error handling and information leakage
can introduce vulnerabilities in an application
because the feedback information can leak the
internal state, system configuration, or hardware
and software resources used to operate the
application [15]. A possible attacker can use
information about internal algorithms,
functionality, database structure, user IDs to plan
an attack scenario. The program code must
manage errors in such way that the feedback
information cannot be used for an attack.
Insecure storage and improper use of
cryptography aim the security issues regarding
management of confidential information as
passwords, keys and certificates. Also, using of
weak cryptographic algorithms and hard coding
of keys cause security breaches of an application
[15].
The mistakes in program coding are the main
cause of security breaches. During the

implementation stage of the software
development life cycle, the developers must
consider the cryptography of the application
server or runtime environment, operating system
and hardware in addition to cryptographic
mechanisms implemented by them in the
software product.
Time of check vs. time of use aims the time
difference between the two moments and the
value of a resource considered at one of the two
moments. This type of vulnerability is related to
multithreading codding.
For each programming language, the best
practices to eliminate the software vulnerabilities
introduced by insecure coding are developed.

3 Processes of Secure Code Review
The code review is a systematic examination of
the program source code. The security code
review aims the security issues of the program
source code like security requirements of the
software product or secure development of the
application.
Security code review is different than code
security audit. Security code review aims to find
the known security vulnerabilities during
implementation stage of the software
development life cycle. Once a vulnerability
being identified, the development team must
implement solutions to eliminate or mitigate it.
Code security audit consists of all examinations
performed respecting compliance with
specifications, standards, contractual agreements,
or other criteria, and expresses a neutral opinion
regarding the code security. Also, the code
security audit is made on formal or documented
procedures and it is included in security system
audit process.
The code review is a process more or less formal.
In [18], the review processes are listed:
 ad hoc review – it is made by a temporary

group of experts selected on their expertise
and experience;

 passaround – it is used to select the expert
participant in the code review process with
no specific roles assigned to them; reviewers
examine the program code from specific
perspectives, and the program code is
distributed among the reviewers’ team;

 pair programming – it is an agile software
development technique in which a computer
is shared by two programmers; one writes
the program code while the other reviews
the code lines;

Informatica Economică vol. 16, no. 4/2012 99

 walkthrough – the reviewers ask questions
and make comments on program source
code; there are the following roles in the
reviewers’ team: the author who presents the
program source code, the walkthrough
leader who leads the meeting, and the
recorder who notes the potential defects;

 team review – it is an assessment process of
the team members to be up to date to the
new threats for the software products and
new coding methods and techniques
introduced by new software development
technologies;

 inspection – it uses a well-defined process to
find the program code defects; the program
code is approved by reviewers before its use
in the software project; the inspection has
the following stages: planning, overview
meeting, preparation, inspection meeting,
rework and follow-up.

The quality and improvement basis of the review
process are highlighted by the following metrics
as it is shown in [22]:
 total labor hours for planning the review

process (TP);
 total labor hours for overview meeting

(TOM);
 total labor hours preparing for the review

process (TPR);
 total labor hours for correcting the defects

(TC);
 total hours of the review meeting (TM);
 total number of major defects found by the

review team (DFM);
 total number of minor defects found by the

review team (DFm);
 total number of corrected major defects

(DCM);
 total number of corrected minor defects

(DCm);
 total physical lines of code to be reviewed

(SP);
 total physical lines of code reviewed

actually (SA);
 number of active participants in the review

meeting (NR);
 decisions about disposition of the reviewed

program source code (IA).
The above metrics highlight the total effort made
for a code review process implementation. They
offer an objective picture of the inputs and
outputs for a review process. Also, they are used
to define indicators as it is shown in [22]:
 total labor hours of the review process (TR):

TR = TP + TOM + TPR + TC + TM

 total number of found defects (DFT):

DFT = DFM + DFm

 defect density (DD):

ܦܦ ൌ 	
ܶܨܦ
ܣܵ

 total number of corrected defects (DCT):

DCT = DCM + DCm

 number of labor hours per defect (ED):

ܦܧ ൌ 	
ܴܶ
ܶܨܦ

 number of labor hours per unit size (EUS):

ܷܵܧ ൌ 	
ܴܶ
ܣܵ

 percent of reviewed code (PRC):

ܥܴܲ ൌ 	
ܣܵ
ܵܲ

	 ∙ 100

 percent of major defects (PMD):

ܦܯܲ ൌ 	
ܯܨܦ
ܶܨܦ

	 ∙ 100

 rate of review (RR):

ܴܴ ൌ 	
ܣܵ
ܯܶ

 rate of preparation (RP):

ܴܲ ൌ 	
ܵܲ
ܴܶܲ
ܴܰ

 number of rework hours per defect (RD):

ܦܴ ൌ 	
ܥܶ
ܶܥܦ

The above metrics and indicators are used to
analyze the accuracy and performance of code
review process or to improve the activities

100 Informatica Economică vol. 16, no. 4/2012

carried out during implementation stage of the
software development cycle. The improvements
of the implementation activities aim
vulnerabilities detected and mechanisms avoiding
their exploitation, and secure development
practices applied during software development.

The relation between code review process and
using the metrics and indicators during code
review processes are depicted in [19] and they
are presented in Figure 1.

Fig. 1. Relation between code review process and review metrics or indicators [19]

In [19], the metrics and indicators used for a
secure software development are presented. The
metrics and indicators are:
 defect density – it is defined as indicator DD

presented above; the indicator is not able to
isolate the major defects, and all defects
have the same importance; so, only DD does
not highlight the program code security;

 lines of code (LOC) – they can see like the
metric SP or SA; the metric attempts to
quantify the size of the code; it is not
relevant for security vulnerabilities that can
be found in the program code;

 function point (FP) – other way to quantify
the program code, taking into account the
functionality; it measured by number of

statements for implementation of a specific
task;

 risk density – it is similar to defect density,
but it is rated by risk and reported to lines of
code or function points;

 cyclomatic complexity (CC) – shows the
complexity of the flow of control through
the program code; it may be used as a
confidence measure for a program code,
because it is calculated as a number of
independent path through the program code;
a bigger value of CC means a higher
complexity of the program code, so a higher
risk of defects because it is difficult to
understand, test and maintain it; the risk
intervals depending on CC are presented in
Table 1;

Code submitted
for Secure Code

Review

Code re-
submitted for

re-review

Trend analysis

Has the
context of
code been

Recommend
Code Triage

meeting

Review
performing

Criteria defining:
Project or

vulnerability
based?

Findings
recording

Metric and
indicator

development

Policies

Standards

Guidelines

Communicate
results to team

Previous
findings

Code review
database

YES

NO

Informatica Economică vol. 16, no. 4/2012 101

Table 1. Risk intervals depending on CC [19]
 Interval of values

for CC
Type of risk Complexity of

program code
0 – 10 Low Acceptable complexity
11 – 15 Medium Program code more complex

16 – 20 High
Too many independent paths for

the program code

 inspection rate – it is similar to indicator

RR; it highlight the code coverage per unit
of time during the review process; the
calculated value may show the quality of the
code review process;

 defect detection rate (DDR) – it measures
the number of defects per unit of time; like
RR, it is an indicator may be used to
highlight the quality of the code review
process; a smaller value of RR may lead to a
higher value of DDR;

ܴܦܦ ൌ 	
ܶܨܦ
ܴܶ

 code coverage – it is similar to indicator

PRC; it shows the proportion of the
reviewed code;

 defect correction rate – it is similar to ED;
knowing the time needed to correct a defect,
the management team of the software
development project optimizes the project
plan;

 re-inspection defect rate (RDR) – it is
defined as the number of defects detected
after the review process, given by the
defects remained after review and new
defects generated by the correction process
(DAR), reported to the initial total number
of defects;

ܴܦܴ ൌ	
ܶܨܦ െ ܶܥܦ ܴܣܦ

ܶܨܦ

A value below 1 of indicator RDR means
that the number of defects detected after the
review process is less than before. A value
above 1 of indicator RDR means that after
the review process the number of defects is
higher than before.

Depending on the type of software product and
the target clients’ group, more organizations have
elaborated recommendation and best practices to
be followed during the secure program coding
process. The secure code review must take into

account the best practices used in program coding
to increase the quality of the software product.
In order to code the program specifications with
high level of quality, including the handling of
the security issues, the software developers must
use the best methods and techniques provided by
the development environment, their expertise and
skills, and coding procedures standardized in
documents agreed by the best specialists in
software development life cycle.
The secure code review has not the scope of an
informatics audit process. But, if the review
process is closed to the audit procedure, then the
developed software product has the all
characteristics like a certified product on audit.
Also, the requirements specified in audit
standards may be easily accomplished therefore
the software product is in accordance with the
best quality standards. More details about the
informatics audit process are presented in [2], [4],
[5], [9], [11] and [12].
At Stanford University, the National Accelerator
Laboratory, SLAC Computer Security, has
established the following top 10 best practices in
secure coding process [25]:
 input validation – data coming from external

sources must be considered as untrusted; a
proper input validation mechanism
eliminates the most part of vulnerabilities
from data sources as command line
arguments, network interfaces,
environmental variables, and user controlled
files;

 heeding at compiler warnings – it
recommends elimination of compiler
warnings by modifications of the program
code; if the code modification is not needed,
it recommends insertion of a comment with
reasons to keep the code unaltered;

 building software architecture and design for
security policies – the implementation of the
security policy is forced by the software
architecture and design defined by
developers’ team;

 keeping a simple design – a complex
software design leads to complex

102 Informatica Economică vol. 16, no. 4/2012

mechanisms to implement quality assurance
and system security; the simplicity reduces
the likelihood of error making during
implementation, configuration and use of the
software product;

 default denying – there are defined
conditions and rules when the access is
permitted;

 adhering to the principle of least privilege –
the elevated privileges are temporarily
granted to the process; thereby, an attacker
has not time to prepare and execute
malicious code with elevated privileges in a
software system;

 data sanitizing – depending on the context at
runtime, a process has to determine the data
sainting before of the subsystem invoking; if
the process fails to do that, then malicious
data may reach to the subsystem and the
attacker obtains information to prepare and
execute an attack on the subsystem;

 defensive in depth – it refers to the defensive
strategies of the risk management; a system
of layers is built to cover many cases as
possible regarding the risk management;

 using of effective quality assurance
techniques – quality assurance techniques
lead to effective identifying and
management of the vulnerabilities; as quality
assurance techniques the following are
included: code and functionality testing,
secure code reviews and audits, independent
and external security reviews;

 secure coding standard – a secure coding
standard is developed or applied to coding
process in accordance with the programming
language and development environment.

The SANS Institute considers the following
fundamental practices for secure software
development as it is depicted in [14]:
 minimize use of unsafe string and buffer

functions – depending of programming
language, there are string- and buffer-
copying function families which introduce
vulnerabilities in the software code; over
time, safer function families have been
developed to mitigate the vulnerabilities;

 input and output validation – the most
common vulnerabilities are mitigated by
mechanisms of input and output validation;
input and output data are managed by
program variables those content is validated
according to the following guidelines:

- the input variable has to exist and to be
in accordance with the data type;

- data stored by program variable is
normalized or it has a simple or short
representation;

- data has to respect the data type and to
be in accordance to the output recipient;

- data has to respect the value range of the
data type or required by program
specifications;

- input limitation to allowed values and
types.

 use robust integer operations – they are used
for dynamic memory allocations and array
offsets; the best practices aim use unsigned
integers for array indexes, pointer offsets,
buffer size, increment and decrement
operation within loop structures;

 use XSS libraries – the XSS libraries are
specific to the web-applications; they are
used to mitigate the vulnerabilities of Cross
Site Scripting family; the anti-XSS
techniques include: constrained input,
normalized input, input validation at server
side, encoded outputs and client side
protection by limitation of cookie use or
non-availability, anti-virus software;

 use canonical data formats – data are
converted to a canonical, standard or normal
form; therefore, an expression do not pass
any security filter mechanisms;

 avoidance of string concatenation – the
concatenation is used for dynamic SQL
statements; operation permits to build
malicious SQL statements injected to the
target software system; it recommends use
the functions built within programming
languages, libraries or frameworks, a proper
configuration of the SQL engine to avoid
SQL statements out of the rules defined by
developer;

 use strong cryptography – it has an
important impact on software application
security; standardized protocols instead of
low-level cryptographic algorithm,
standardized cryptographic algorithms (if
necessary), secure management of access to
the cryptographic keys are used or
implemented in developed software
application;

 use logging and tracing – the aim is to
identify and mitigate the software
vulnerabilities exploited by an attacker,
using information stored in the system about

Informatica Economică vol. 16, no. 4/2012 103

the access in the system and operations
performed by the system users; therefore, it
can be established what happened to
implement measures for vulnerability
mitigation.

The improvements regarding the use best
practices in coding process are established on
review metrics and indicators. Depending on the
calculated metrics and indicators, the
development team chooses the proper security
coding best practices.

4 Conclusions
Software development improvements are
necessary for a better software security. Using of
best practices during the software development
life cycle is a critical requirement to achieve an
improved security.
As stage of software development life cycle, the
program coding contributes to software assurance
using the best practices and standards in program
coding. The goal is to eliminate or mitigate the
software security risks resulted from a wrong
implementation of the design and specifications
in a programming language.
Minimization of the code improvement costs is
made considering the best practices applied in the
coding stage of the software development life
cycle. The code improvement cost has the
following components:
 cost of the code review process;
 cost of the code correction;
 cost of the re-review process after the

correction stage.
The re-review process is necessary because the
code correction stage may lead to keeping of
some initial vulnerabilities or appearance of new
ones. It is possible that the corrected code to be
worst that the code before the correction stages.
All these elements must be considered when a
code review program is implemented in the
software development life cycle together with the
component of risk management.

Acknowledgement
Parts of this paper were presented by the author
at “11th International Conference on Informatics
in Economy – Education, Research & Business
Technologies”, Bucharest, Romania, 10 – 11
May 2012.

References
[1] C. Boja and M. Doinea, “Security Assessment

of Web Based Distributed Applications”,
Informatica Economică, vol. 14, no. 1, 2010,

pp. 152 – 162
[2] C. Ciurea, “The Informatics Audit – A

Collaborative Process”, Informatica
Economică, vol. 14, no. 1, 2010, pp. 119 –
127

[3] J. Canup, Secure Coding: Best Practices,
North America CACS, May 8, 2012

[4] I. Pedrosa and C. J. Costa, “Financial
Auditing And Surveys: How Are Financial
Auditors Using Information Technology?:
An Approach Using Expert Interviews”,
Proceedings of the Workshop on Information
Systems and Design of Communication
(ISDOC 2012), ACM New York, NY, USA
2012, pp. 37-43

[5] I. Pedrosa and C. J. Costa, “Computer
Assisted Audit Tools and Techniques in Real
World: CAATT's Applications and
Approaches in Context”, International
Journal of Computer Information Systems
and Industrial Management Applications,
Volume 4, 2012, pp. 161-168,

[6] P. Pocatilu and C. Boja, “Quality
Characteristics and Metrics Related to M-
Learning Process”, Amfiteatru Economic,
vol. 11, no. 26, 2009, pp. 346 – 354

[7] M. Popa, “Security Characteristics of the
Program Coding”, Conference Proceedings –
The 11th International Conference on
Informatics in Economy – Section: Audit and
Project Management, 2012, ASE Publishing
House, Bucharest, pp. 211 – 215

[8] M. Popa, “Characteristics of Program Code
Obfuscation for Reverse Engineering of
Software”, Proceedings of the 4th
International Conference on Security for
Information Technology and
Communications, ASE Publishing House,
Bucharest, 2011, pp. 103 – 112

[9] M. Popa, “Framework for Evaluation of the
IT&C Audit Metrics Impact”, Informatica
Economică, vol. 15, no. 4(60), 2011, pp. 119
– 133

[10] M. Popa, “Techniques of Program Code
Obfuscation for Secure Software”, Journal of
Mobile, Embedded and Distributed Systems,
vol. 3, no. 4, 2011, pp. 205 – 219

[11] M. Popa, “Methods and Techniques of
Quality Management for ICT Audit
Processes”, Journal of Mobile, Embedded
and Distributed Systems, vol. 3, no. 3, 2011,
pp. 100 – 108

[12] M. Popa, “Techniques and Methods to
Improve the Audit Process of The Distributed
Informatics Systems Based on Metric

104 Informatica Economică vol. 16, no. 4/2012

System”, Informatica Economică, vol. 15,
no. 2(58), 2011, pp. 69 – 77

[13] G. Sabau, M. Muntean, A. R. Bologa, R.
Bologa and T. Surcel, “An Evaluation
Framework for Higher Education ERP
Systems”, WSEAS Transactions on
Computers, vol. 8, Issue 11, 2009, pp. 1790 –
1799

[14] S. Simpson (editor), Fundamental Practices
for Secure Software Development 2nd Edition,
Software Assurance Forum for Excellence in
Code, February 8, 2011

[15] T. Shiralkar and B. Grove, Guidelines for
Secure Coding, Atsec Information Security,
January 2009

[16] C. Toma, “Security Issues for 2D Barcodes
Ticketing Systems”, Journal of Mobile,
Embedded and Distributed Systems, vol. 3,
no. 1, 2011, pp. 34 – 53

[17] C. Toma and C. Boja, “Survey of Mobile
Digital Rights Management Platforms”,
Journal of Mobile, Embedded and
Distributed Systems, vol. 1, no. 1, 2009, pp.
32 – 42

[18] K. E. Wigers, Peer Reviews in Software: A
Practical Guide, Addison-Wesley, 2001

[19] Open Web Application Security Project,
Code Review Guide, V1.1, OWASP
Foundation, 2008

[20] Software Assurance Forum for Excellence in
Code, Fundamental Practices for Secure
Software Development, October 2008

[21] Software Assurance Forum for Excellence in
Code, Software Assurance: An Overview of
Current Industry Best Practices, February
2008

[22]http://www.cs.toronto.edu/~sme/CSC444F/h
andouts/inspection_process_model.pdf
(October 2012)

[23] https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS) (October 2012)

[24]https://www.securecoding.cert.org/confluenc
e/display/seccode/STR30C.+Do+not+
attempt +to+modify+string+literals (October
2012)

[25]http://www2.slac.stanford.edu/computing/sec
urity/TEA/Programming_Tips_Best_
Practicies. htm (October 2012)

Marius POPA has graduated the Faculty of Cybernetics, Statistics and Economic
Informatics in 2002. He holds a PhD diploma in Economic Cybernetics and
Statistics. He joined the staff of Academy of Economic Studies, teaching assistant
in 2002. Currently, he is university lecturer in Economic Informatics field and
branches within Department of Economic Informatics and Cybernetics at Faculty of
Cybernetics, Statistics and Economic Informatics from Bucharest University of
Economic Studies. He is the author and co-author of 9 books and over 120 articles

in journals and proceedings of national and international conferences, symposiums, workshops in the
fields of data quality, software quality, informatics security, collaborative information systems, IT
project management, software engineering. Also, he was involved in 14 national research projects as
team member and 2 national research projects as project manager. From 2009, he is a member of the
editorial team for the Informatica Economică and between 2003 and 2008 he was a member of the
editorial team for the journal Economic Computation and Economic Cybernetics Studies and Re-
search.

