
74 Informatica Economică vol. 16, no. 4/2012

Smart Data Web Services

Cătălin STRÎMBEI
Al. I. Cuza University of Iasi, Faculty of Economics and Business Administration,

Department of Business Information Systems
linus@uaic.ro, catalin.strimbei@gmail.com

In the new world where the Internet business resembles with a large and distributed sea of links, using
Cloud architectural model, the web-service interoperability and SOA model one could deploy an ar-
guably new class/generation of apps/services that could leverage the marriage of these originally dis-
tinct computing models to be real smart, as autonomous, dynamic and agile, but open to integrate and
adapt.
Keywords: Web Services, Cloud Computing, SEO, SQL, XML

Introduction
The Web Service Technology seems to have

passed the over-hype phase by trying to reach to
the maturity level that will finally enable its mass
adoption. The Cloud computing era could be the
trigger factor to overspread the web services as
the foundation or the platform of choice for the
Internet applications or, at a larger scale, for the
Internet business systems.
In this regard, we believe that in the context of
the marriage with cloud computing paradigm, the
web service architecture could achieve some spe-
cial advantages in the following directions:
 data access openness and standardization;
 autonomy of underlying supporting infrastruc-

ture;
 dynamic search and discovery using the al-

ready widely spread searching technologies
like SEO (as Search Engine Optimization).

In fact, we believe that a new web services gen-
eration could come (must come?) on the stage of
the business applications and technologies, in or-
der to leverage the true opportunity of Cloud ar-
chitecture in the Internet-based business process-
es area. The Cloud services providers made some
strides on storage and office-based applications,
but for the actual business platforms and applica-
tion services the big wave is yet to come over.
In our opinion an enhanced support of business
processes and business functions will have a ma-
jor impact on the proliferation of the Cloud-based
architectures. The current SaaS model (Software
as a Service) that delivers business oriented ap-
plications has some serious limitations that slow
down its adoption:
 preserving a quasi-monolithic approach re-

garding aggregation of the available business
functions (integrated, but not enough modu-

larized);
 deep dependency on the backend Cloud infra-

structure (limited autonomy and agility);
 poor integration with other business oriented

services, as they aren’t built with large-scale
inter-connectivity in mind, and preserving a
quite inflexible layered architecture that is
clearly delimited between the boundaries of a
business system template (limited openness to
interchange data protocols).

As we will argue in the followings, the “smart-
ness” capacity of the new kind of web services
will be sustained on a sum of characteristics com-
ing from three service models (see Fig.1), charac-
teristics as agility, openness, dynamic, autono-
mous.
These characteristics could leverage a higher ar-
chitectural level consisting in smart data integra-
tion in the web context, meaning: no more pro-
prietary drivers to access data sources, no more
proprietary and private encrypted data formats,
no more static referencing or integrating data
sources (smart as dynamic discovery and refer-
ence of valuable data sources).
We think that the business oriented web services
will have to deal with, among others, at least two
fundamental challenges, as they are stated in the
SOA blueprints:
 business processes control or orchestration;

one potential initiative in this area could be a
form of standardization of some kind of
event-based web services (we intend to argue
and develop such architecture in a future pa-
per);

 data query, data interchange and data man-
agement; the current paper will try to argue
and outline a possible feasible architecture.

1

Informatica Economică vol. 16, no. 4/2012 75

Fig. 1. A Vision on Cloud Computing and Web Services marriage

Concerning the special kind of data centric web
services, we think that they have some character-
istics that could make them even better suited
with/into cloud based architectures, because:
 they are structured (borrowing some features

from databases interoperability with tradition-
al data oriented software components of the
business systems) thus assuming:
 structured (or, at least, semi-structured) da-

ta definitions (metadata);
 structured and declarative data requests;

 they are data intensive:
 taking into account the large data amount

to interchange;
 taking into account the data integration is-

sues (the need for interchangeable data
format);

 taking into account the large data amount
for storage;

 taking into account the data processing
computing capabilities (such as OLAP or
Data Mining);

 they could be integrated into larg-
er/aggregate/composed/derived structural ar-
chitectures, thus implying:
 data consolidation of heterogeneous data

systems (integrated OLTP systems);
 data aggregation for analytical processing

specific to decision-making business pro-
cesses (such as OLAP-based systems).

In this paper we will try to argue the advantages
and the appropriate engineering principles to
support such cloud-based data centric web ser-
vices.

2 Backgrounds
As current state of the field we will present three
service models which we consider the most influ-
ential to the technological features of the current
Internet business systems.

SOA and Web Services Models
The Service Oriented Architecture propose a new
and revolutionary distributed component model,
mentioned sometimes as service oriented compu-
ting, and aimed to increase the efficiency and
productivity [1:25-66] of business processes sup-
ported by the emerging Internet-based application
systems.
SOA has the merit to introduce a new kind of
technological “democracy” where the application
systems are considered a federation per se, thus
opening the doors to a new kind of logical dis-
tributed computing approach where the techno-
logical platforms are downgraded to the imple-
mentation or physical level. Here we have to
mention that database design methodologies and
systems have introduced/recognized for quite
some time a system with three architectural lev-
els: conceptual, logical and physical [2], [3]. In
this context, the business process design with
languages like BPMN covers the conceptual level
(or the organizational, enterprise level), with lan-
guages like BPEL and web services specification
covers the logical level, and with web services
implementation platforms (like JEE or .NET) co-
vers the third level, as one can see in Figure 2.

76 Informatica Economică vol. 16, no. 4/2012

Fig. 2. SOA architectural levels

In other words, the data independence principle
has to be recognized and could be applied also in
the SOA context, because we think that this kind
of architectures is indeed compatible with it. Alt-
hough the database systems have recognized this
principle and have even standardized the data ac-
cess level, the interoperability issues still re-
mained and broke the independence principle,
consequently the federated database systems be-
came a very complex and difficult research topic
because of the heterogeneity of database systems
and of the heterogeneity of their access protocols.
SOA has been conceived as an evolutionary stage
in the technological landscape of the distributed
computing, but, although it borrowed many prin-
ciples and design patterns [20] from the tradition-
al distributed solutions and methodologies, we
think that, in the end, this effort proves to be dis-
ruptive and revolutionary if we take into account,
beyond the technological consequences, the (not
so side) effects on the Internet business: e.g. vir-
tual organizations become a practical kind of
business enterprise in the specific context of SOA
(see [4] and [5] for a methodological argumenta-
tion of virtual organizations or enterprises).
The need of service orientation [1: 81-85] came
from the effort to surpass an entire class of com-
plex issues and traditional solutions that, ulti-
mately, ended by mixing the logic of business
rules, the component integration and the physical
interoperability into the same context or layer.
The service principles stated to overcome these
problems are the following:
 service loose coupling to minimize dependen-

cies;
 service abstraction to minimize the availabil-

ity of meta information;
 service composability to maximize the inter-

operable possibilities;
and also:
 standard service contract;

 service reusability to implement generic and
reusable logic contract;

 service autonomy to implement the functional
boundaries independently from runtime envi-
ronments;

 statelessness services to free service logic
from their state-management;

 service discoverability to implement commu-
nicative meta-information.

Consequently, one of the primary merits of the
services consists in their characteristic of being
agnostic to the application-specific logic with
some important direct or indirect consequences,
as those presented in [1:81-84]:
 increasing of data consistency and behavioral

consistency and predictability;
 decreasing the dependencies in the same time

with increasing reusability regarding business
processes and configurations (increase agili-
ty).

SOA presumably involves some kind of central-
ized orchestration model as the SOA design pat-
terns require; in this regard one could review the
Service Controller pattern and the Workflow
Connector pattern presented in [6]. The SOA ar-
chitectural style imply that the involved services
become, more or less, parts of an aggregate struc-
ture; therefore having a limited area of responsi-
bility and action, as one could conclude from the
discussion on service autonomy presented in
[1:293-323]. Thereby the SOA “canonical” ser-
vice model, with its “classic” service categories
and their formal possibilities to integrate (cou-
ple), to reuse and to compose, proposes a loose-
coupling architecture but in the context of a cen-
tralized approach, as in Fig.3. We think that this
kind of model could limit, at some degree, the
agility objective of SOA, and an alternative mod-
el centered on dynamic discovery and composa-
bility (autonomous services model) could lever-
age the context of Web services.

Informatica Economică vol. 16, no. 4/2012 77

Fig. 3. “Canonical” SOA Service Model

Web Services as a logical foundation of SOA
In our vision, the services are conceptually
grounded as being “beyond the objects” at the ar-
chitectural level (the Web Service Model is out-
lined in Fig.4). One of their most “suggestive”
principles comes from the object oriented inter-
face pattern [7], but, additional, the web services
are agnostic to the programming level. In fact,
the architectural principle of “separation of con-
cerns” is generically assumed by the specific na-
ture of the service concept. The services from the
SOA architectures are somehow distinct from the
Web Services due to the "technological agnostic"
SOA principle [1:114-115]. Consequently, the
enterprises have the freedom to choose the solu-
tion to declare or to specify the formal service

definitions and the freedom to choose the imple-
mentation technology of the actual service com-
ponents, as proprietary (EJB, .NET business
components), message-oriented or Web based
frameworks. In this context, the Web Service
Technology has developed as the most appropri-
ate “logical” foundation of SOA [1:45-50], to the
extent that it adheres most “naturally” to the SOA
service principles due to its extensive standardi-
zation (WSDL, XSD, SOAP, UDDI and WS-*
extensions), contract-based inter-operability and
document-oriented data interchange protocols. In
fact, many consider that WS-Architecture as be-
ing a distinct and more “liberal” architectural
style of SOA.

Fig. 4. Web Services Model

Cloud Platforms for Web Services
The Internet ready applications and the web host-
ing had a determinant influence to the “dot com”
or “eCommerce” revolution. Beyond the broken
economic model of the first generation of these
business technologies and architectures, the
cloud-based initiatives seem to be an evolution-
ary step ahead, from both points of view of busi-

ness model and of technological model. In this
context, it is important to mention that the com-
panies that survived and proliferated despite the
“dot com bubble burst”, like Google or Amazon,
have reconsidered and have redesigned their web
based applications and platforms from the ground
up. In their vision, an iBusiness (as an internet or
web-based business) or an iApplication (as an in-

78 Informatica Economică vol. 16, no. 4/2012

ternet or web-based application) will be a link (an
URL or URI) in a world of inter-related links
[8:24-29], in fact a distributed model pulled up to
an extreme. In this context, the key elements of
cloud computing model [9:4-5] are:
 computing resources, wrapped up as com-

modities for web access;
 extremely easy access to web resources for

clients (end users);
 business/economic model based on “pay

just for what you use” principle.
In other words, cloud computing means dynami-
cally delivering of scalable, elastic, shared and
virtualized resource as services accessible over
the Web [10:2-4].
Generally, the cloud services are considered to
come in three flavors [10:16-17]:
 SaaS, Software as a Service, like

Salesforce.com services, is considered as
an evolution of the earliest Cloud initia-
tives named ASPs (Application Server
Providers) that focused on delivering high-
ly customizable and end-user oriented
packaged and deployed applications that
run entirely on the vertical infrastructure of
the provider. One of the main evolutionary
characteristics of SaaS is the customizabil-
ity that it is heavily based on metadata in-
terpreted at runtime and being, obviously,
user-oriented (or client-oriented).

 IaaS, Infrastructure as a Service, with Am-
azon EC2 as the flagship initiative, is a
questionable but determinant step to deliv-
er more control of cloud resources to the
clients. If SaaS could be considered as very
business oriented and on top level of poten-
tial Cloud services, IaaS is considered as
operating on the other end and is the area
were virtualization of computing resources
(software and hardware) gain full traction.
In this context, one could build SOA archi-
tecture with full responsibility on manag-
ing and optimizing the supporting re-
sources for services, having to take care to
all dimensions of the architectural pyramid,
but with a highly effective cost control.

 PaaS, Platform as a Service, with Google
as one of the leading providers, is a verita-

ble disruptive paradigm and has a major
impact on the Web Services programming
models: if IaaS allows to virtually install,
manage and deploy software components
on a full-blown application server in a very
similar way as in a traditional, private con-
text, PaaS should provide the control of the
application server specific resources (but
not to the application server itself) yet the
performance levels will be controlled as a
quality agreement with the provider. Con-
sequently, Google App Engine could be
viewed as a global, unique but highly dis-
tributed Application Server Environment.
In this context the cost control could be
even more effective being even more gran-
ular as in IaaS case: per open sessions, per
user numbers, per calls etc. PaaS offers a
very unique advantage for web service de-
velopment and deployment: the clients
should concentrate only on the business
logic and on the architectural business as-
pects and should be less concerned on the
low level performances or on other physi-
cal aspects.

No matter in what format cloud computing is de-
livered, the abstraction and virtualization [11:91-
198] are the basic features of the Cloud model,
presented in Fig.5, features that makes Cloud
computing extremely complementary to Web
Services, so that very often one can use just the
simple term of Cloud Services.
We think that the IaaS strategy has an advantage
over PaaS by potentially preserving the in-house
services architectures that will be more likely to
migrate to this kind of cloud computing, as the
client could replicate their original deployment
environment by configuring accordingly the
cloud context. On the other side, the PaaS ap-
proach forces to redesign the deployment proce-
dure and even to redesign the application logic of
the existing web services, this way favoring
building a new generation of web services to
support business processes, but, in the same time,
taking advantage of a new service programming
model, as MapReduce [9:131-143] or Dev2.0
[9:143-157].

Informatica Economică vol. 16, no. 4/2012 79

Fig. 5. Cloud Service Model

As the IaaS architecture resembles with the tradi-
tional but virtualized physical infrastructure of
resources going down to the operating systems,
the PaaS architecture abstracts the service re-
sources like application engines, data stores and
even file systems, along with some very active
resources as memory cache or schedulers. Our
opinion is that the PaaS architecture seems to be
more compatible with the “canonical” service
model from Fig.3.
The Cloud architectural platforms and their eco-
nomic models focus mainly on performance (e.g.
scalability) and costs. We think that this model is
“criticisable” from some specific points of view:
 the cloud platforms tend to be proprietary

and tend to limit the service deployment
possibilities and make difficult if not im-
possible the deployment switching;

 even with many providers, the market
seems to be excessively consolidated thus
the clients easily become captive and this
fact could prove a broken business model
that is not focused on client, but on plat-
form.

Consequently, even with the flexibility of the
IaaS or PaaS model, the portability issues keep

being relevant. We think that the standardization
of each of the already established Cloud models
(like Open Cloud Computing Interface, OCCI,
family of specifications presented in [12]) has to
be a desirable and that could prove to be a evolu-
tionary step so that Cloud technological service
model and Cloud service economic or market
model could reach a real maturation level.

3 Discussions
In the background section we have tried to out-
line some of the defining characteristics of the
paradigms of the three service models that will
shape the Internet business of tomorrow. Our
opinion is that these three service models have a
set of compatible and complementary objectives
and features. Consequently, we think that there is
a need to converge them into a common but more
powerful meta-model of services. The Web ser-
vice model seems to be a natural fit for the SOA
architectural model, and, in the same time, web
services are becoming a determinant factor for
the Cloud computing proliferation, especially in
the PaaS format (see Table 1).

Table 1. Service Model Convergence

SOA Service Model Cloud Platforms

Task service layer WS as applications deployed on SaaS

Entity service layer WS as data providers from DBaaS

Utility service layer WS as web resources on IaaS

SOA as Platform as a Service (PaaS)

80 Informatica Economică vol. 16, no. 4/2012

The Data Web Services will be our use case that
we will use in the followings to argue the con-
vergence which could augment the Web Services
determinant features. We will finally call them
Smart Web Services.
In this context, the data centric services have
some particular requirements that make them il-
lustrative to analyze:
 (data) modeling requirements;
 (data structure) representation requirements;
 (data) resource (linking) requirements.
There isn’t a formal definition of the Data Web
Services, but there are several approaches, related
to data implications on the web services, like:
 the use of web services for accessing data and

building distributed applications [13];
 SSOA, as semantic SOA, that implies ontolo-

gy-based data exchange [14];
 the web services whose behavior is deter-

mined by their interactions with a repository
of stored data [15];

 the web service architecture to optimize the
exchange of large (XML) data volumes [16];

 the collection of interrelated data web services
to handle enterprise data access [17].

Presumably every kind of Web service uses some
kind of data interchange procedure, at least to
evaluate the parameters or arguments of web ser-
vices operations. But there is a “class” of web
services to which data represents the determinant
or the dominant factor at least from the business
logic perspective, relative to either:
 data interchange protocol (data access);
 data interoperability architecture;
 data resources (internal data storage).
From the SOA perspective the “most” data cen-
tric services revolve around the entity service
layer [18:28], [1:485]. Some entity services will
tend to have a coarse-grained functional scope
because they are composed from other more
granular data (or document) oriented along with
their agnostic CRUD aggregated operations. For
that matter, the entity services are sometimes pre-
sented as entity-centric business services or as
simple as business entity services. They don't
necessary orchestrate business processes but they
could be the common denominator of a set of in-
ter-related process services, business process
services, or simply orchestration services. Even
though their database support is not obvious (the
entity services being technologically agnostic and
their ultimate scope being to assume the concep-
tual role played by database in traditional busi-
ness information systems) are very likely to en-

capsulate database resources or to invoke infra-
structure services that access inner databases.
The database support or database implications on
entity services are more relevant from the per-
spective of their technological implementations
on Cloud computing platforms. In this regard, the
newly emerged Cloud platforms and their pro-
viders embraced two kinds of approaches
[9:117], [10:136]:
 to provide database infrastructure services

through IaaS platforms, thus preserving the
traditional database technologies enhanced
with IaaS specific scalability features, e.g.
Amazon EBS Relational Services, Google
SQL Cloud, and Oracle12C expected database
version;

 to provide a new data storage infrastructure,
thus entirely changing the database paradigm
and aiming even to replace it with a new kind
of storage services and a new kind of data ori-
ented programming model, like Google’s
DataStore based on BigTable data model with
MapReduce programming model, Amazon’s
SimpleDB data model with Hadoop on EC2
programming model.

Consequently, relational database systems have
survived in the new era of cloud-based data stor-
age, but facing great competition from so-called
NoSQL systems designed to be highly scalable
especially for reading access, but, in our opinion
owning a broken data integrity model.
In our opinion, there are three major Data Web
Services flavors that form a variable geometry
that could cover one or more of these three per-
spectives:
 Business Centric as Entity Services, whose

primary role is structuring and orchestration
of business entities;

 Distributed Data Access Centric, as Database
Access and Integration Service, DAIS [19];

 Data Storage Management Centric, as hetero-
geneous and distributed data storage and scal-
able in memory (active) and persistent work-
loads.

We outlined that the service model of SOA could
be completed with the Web Service Model, and,
in the same time, could be completed with ser-
vice model specific to Cloud Computing. In our
opinion the intersection or the overlapping area
of those three service models could define a new,
enhanced or “smarter” service model.
In our vision, the Smart Data Web Services could
be defined through an inter-related set of “smart”

Informatica Economică vol. 16, no. 4/2012 81

features or capabilities like: dynamic and adap-
tive interoperability, autonomy and agility.
Analyzing this complementary approach, we
have identified at least three directions where the
cumulative effects of the three outlined service
models could make “smarter” the Web Data Ac-
cess Services:
 dynamic data interchange with dynamic

metadata;
 service discovery enhanced by specific tech-

niques like Search Engine Optimization;
 distributed linked service queries;
 dynamic resource (as storage) service acquisi-

tion (for autonomy and agility).

4 Experimental Projects
In order to build a feasible technological frame-
work to productively develop Data Web Services,
we are implementing some experimental projects
taking into account those directions outlined
above.

 Dynamic data interchange with dynamic
metadata
There are several initiatives related to the normal-
ization of the data access and the data inter-
change in the Web Services context, like the WS-
DAI standard specifications [19] or the SOA
framework of the View-based Model-driven Data
Access Architecture VMDA [21]. In this context,
we have some practical achievements starting
with the Service Data Objects specifications [22]
whose defining features refer to:
 unifying the heterogeneous data resource ac-

cess across different data source types;
 unified support for static and dynamic data

types;
 support for disconnected programming mod-

els;
 enabling applications, tools and frameworks

to more easily query, view, bind, update, and
introspect data.

Fig. 6. SDO-based Web Data Service for Oracle Database

Using the Web Service model with the SDO
standard implemented by the open source frame-
work library of EclipseLink project, we have
managed to ground a dynamic and agile data in-
tegration platform where the integration specific
to the database federations have been addressed
by turning object relational databases into Data
Web Services, as in Fig. 6.
The SDO framework assumes self-describing
XML data-sets containing inter-referenced data-
objects that could be interchanged between data
services in the context of SOA architecture. The
XSD standard used to describe the SDO data sets

is a natural fit to WSDL documents that contain
the meta-data to describe interconnected Web
Services.

Service discovery enhanced
Discoverability is one of the fundamental princi-
ples of service model (from SOA or from just
plain Web Services Spec) having a major impact
on reusability (developer does not need to build
new services if there are other services providing
the needed business functions or infrastructure
functions). Also, we think that this principle has
an overall impact on the agility of the dynamic

82 Informatica Economică vol. 16, no. 4/2012

service architecture: agile services could dynamic
discover, interpret and dynamic-bind to the re-
source-partner-services they need. This is a direct
consequence of the separation of concern princi-
ple applied on SOA-WS systems so that every
architectural component (Web Service) has to
fulfill a clear delimited and modular function thus
becoming a simple link that refers to other specif-
ic but distinct linked functions (from the Internet
of Services). The standard Web Services specifi-
cations propose a protocol model based on ser-
vice registries to store the WSDL-metadata need-
ed to manage and dispatch the Web Services de-
scriptions covering from real locations and de-
clarative business functions (goals and require-
ments) to data-interchange protocols and invok-
ing endpoints.
In our opinion, building, managing and promo-
tion of this kind of service registries is a major
bottleneck in the way of publishing and reusing
Web Services in global architectures. The global
architecture of Web Services could be a new In-
ternet market for a new Internet business era
where the very dynamic, virtual and collaborative
enterprises will proliferate.
In this regard, we have started to develop an ex-
perimental proposal to use the existing searching
infrastructure (meaning public search engines
like Google and their enormous databases) as a
huge and efficient global web service search en-
gine. Our Web Service search (or discovery) pro-
tocol is based on these relatively simple but rele-
vant principles and actions (sketched as a work-
flow in Fig.7):
1. registering every Web Service as (or into) a

regular web application/website using a
range of techniques starting from the tradi-
tional HTML meta-tags to the very sophisti-

cated online marketing strategies like paid
Add-Words (see
https://adwords.google.com/) or Add-URL
messages (see http://www.google.com/
intl/com/add_url.html);

2. searching by using the specific search engine
APIs, like Google Search API that could be
invoked using Restful Web Services proto-
col. A search query could have a special dy-
namic subset of filters to get only relevant re-
sults containing:
○ URLs that reference to WSDLs;
○ web pages containing WSDL URLs or

containing whole descriptors either as
meta-information, either folded into
special nodes (visible or not) of JSON
documents which are parse-able using
a JS/JQuery functions;

○ direct URL to Web Service endpoints
ready to be invoked right away;

3. parsing the resultset of the search query pro-
cessed by the search engine and discovering
the relevant results that could contain Web
Services descriptions or WSDL-URLs for
Web Services matching searching criteria;

4. interpreting the Web Services standard de-
scriptions from WSDL and
○ get the WS-endpoints with their opera-

tions that could be invoked;
○ get the WS-data-interchange-format,

maybe from SDO-XSD documents;
5. checking WS availability and binding WS-

endpoint-URLs to the data resource de-
scriptors from a local service registry, in or-
der to be re-checked and reused without hav-
ing to go throughout the entire search and
discovery cycle.

Informatica Economică vol. 16, no. 4/2012 83

Fig. 7. Discovery model based on GoogleSE

Distributed linked service queries
There are several theoretical and technological
frameworks to process distributed data resource
queries like DQP, Distributed Query Processor,
of Open Grid Services Architecture-Data Access
and Integration Services initiative [19], [23]. In
this regard we have started our own experiment
using Oracle APEX platform in order to ground a
feasible framework to parse and execute OLAP
distributed queries where dimensional data links
represent the distributed data resources accessible

as Data Web Services. We are building a techno-
logical extension to the already present Oracle
SQL OLAP language that is natively accessible
from the APEX environment. Our extension al-
lows the distributed Web Services links to be di-
rectly referenced into SQL queries (FROM
clauses) being static described into a local
metadata repository or dynamically resolved us-
ing a technique inspired from service discovery
framework based on SEO, as we have already de-
scribed.

Fig. 8. OLAP Web Service

84 Informatica Economică vol. 16, no. 4/2012

This way could be developed an entire distinct
Web Service computing model to build and to
operate with a special type of Data Web Service,
that we called OLAP-WebService as in Fig.8.

5 Conclusions
In this paper we have tried to analyze and to out-
line the defining characteristics of the current
generation of Web Services and we have ex-
plored their “smart” opportunities for the upcom-
ing potential Internet of services. We have identi-
fied a common service model of SOA, Web Ser-
vices and Cloud Computing, which could en-
hanced the characteristics of its basic standards,
specifications and platforms to describe truly dy-
namic, agile and autonomous Web Services.
We have explored some developing aspects of
this kind of services, proposing some practical
approaches like the dynamic discovering and
linking protocol to achieve dynamic inter-
operability (and resource acquirement) between
Web Services. In the near future we will start to
experiment a method to dynamic deploy the Web
Services into the global net of cloud platforms.
Also, we intent to build a consistent and coherent
development platform from these practical
achievements, and to develop a set of measure-
ments to assess the quality of these web services
in order to further analyze their impact on the
cloud service economic model.

Acknowledgements
This work was supported by the project "Post-
Doctoral Studies in Economics: training program
for elite researchers - SPODE" co-funded from
the European Social Fund through the Develop-
ment of Human Resources Operational Program
2007-2013, contract no.
POSDRU/89/1.5/S/61755.

 References
[1] T. Erl, SOA Principles of Service Design,

Prentice Hall, Crawfordsville, Indiana, USA,
2008, ISBN-13: 9780132344821

[2] C.J. Date, An Introduction to Database Sys-
tems (8th Edition), ISBN-13: 978-
0321197849, Pearson Education, 2006

[3] M. Fotache, Proiectarea bazelor de date.
Normalizare si postnormalizare. Implementa-
ri SQL si Oracle, ISBN 973-681-898-5, Edi-
tura Polirom, Iasi, Romania, 2006

[4] I. Ivan, C. Ciurea, M. Doinea, “Collaborative
Virtual Organizations in Knowledge-based
Economy”, Informatica Economica, vol. 16,
no. 1/2012, pp. 143-154

[5] L.G. CRETU, “Cloud-based Virtual Organi-
zation Engineering”, Informatica Economică
vol. 16, no. 1/2012, pp. 98-109

[6] R. Daigneau, Service design patterns : fun-
damental design solutions for SOAP/WSDL
and restful Web services, Addison-Wesley,
Pearson Education, Inc, Westford, Massachu-
setts, USA, 2012, ISBN-13: 978-0-321-
54420-9

[7] P. Kuchana, Software Architecture Design
Patterns in Java, AUERBACH PUBLICA-
TIONS, 2004, ISBN 0-8493-2142-5, pp. 31-
33

[8] J. Jarvis, What Would Google Do?, Publisher:
HarperCollins Publishers, Inc.,ISBN:
0061726338, New York, USA, 2009

[9] G. Shroff, Enterprise Cloud Computing:
Technology, Architecture, Applications,
Cambridge University Press, Cambridge CB2
8RU, UK, 2010, ISBN 978-0-521-76095-9

[10] D. E.Y. Sarna, Implementing and developing
cloud computing applications, CRC Press,
Auerbach Publications Taylor & Francis
Group, New York, USA, 2011

[11] B. Sosinsky, Cloud Computing Bible, Wiley
Publishing, Inc. Indianapolis, USA, ISBN-13:
978-0470903568, 2011

[12] A. Edmonds, T. Metsch, and A. Papaspyrou,
“Open Cloud Computing Interface in Data
Management-Related Setups”, in Sandro
Fiore and Giovanni Aloisio editors, Grid and
Cloud Database Management, Springer-
Verlag Berlin Heidelberg 2011, ISBN 978-3-
642-20044-1, Crawfordsville, Indiana, USA,
2009, pp.24-48

[13] V.F. Pais, V. Stancalie, ”Using web services
for remote data access and distributed appli-
cations”, Fusion Engineering and Design 81
(2006), pp. 2013–2017

[14] S. Xiao, Z. Lin, G. Guang-hong, “Digital
product data exchange in semantic service-
oriented architecture”, COMPEL: The Inter-
national Journal for Computation and Math-
ematics in Electrical and Electronic Engi-
neering, Vol. 28 No. 6, 2009, pp. 1560-1578

[15] I. Saleh and G. Kulczycki, “Demystifying
Data-Centric Web Services”, IEEE INTER-
NET COMPUTING, SEPTEM-
BER/OCTOBER 2009, Published by the
IEEE Computer Society, pp. 86-90

[16] S. Amer-Yahia, Y. Kotidis, “AWeb-Services
Architecture for Efficient XML Data Ex-
change”, Data Engineering, 2004. Proceed-
ings. 20th International Conference on, IEEE
Xplore, 2004, pp. 523-534

Informatica Economică vol. 16, no. 4/2012 85

[17] V. Borkar, M. Carey, N. Mangtani, D.
McKinney, R. Patel and S. Thatte, “XML Da-
ta Services”, International Journal of Web
Services Research, 3(1), 85-95, January-
March 2006, IDEA GROUP PUBLISHING,
Hershey, USA

[18] T. Erl, A. Karmarkar, P. Walmsley, H. Haas,
U. Yalcinalp, C. K. Liu, D. Orchard, A. Tost,
J. Pasley, Web Service Contract Design and
Versioning for SOA, PRENTICE HALL,
ISBN-13: 978-0-13-613517-3

[19] S. Lynden, O. Corcho, I. Kojima, M. Anto-
nioletti, and C. Buil-Aranda, “Open Stand-
ards for Service-Based Database Access and
Integration” in S. Fiore and G. Aloisio edi-
tors, Grid and Cloud Database Management,
Springer-Verlag Berlin Heidelberg 2011,
ISBN 978-3-642-20044-1, Crawfordsville,
Indiana, USA, 2009, pp. 3-21

[20] B. Sosinsky, Cloud Computing Bible, Wiley
Publishing, Inc. Indianapolis, USA, ISBN-13:
978-0470903568, 2011

[21] C. Mayr, U. Zdun, S. Dustdar, “View-based
model-driven architecture for enhancing
maintenability of data access services”, Data
& Knowledge Engineering; 70-2011; 70;
p.794-819.

[22] L. Resende, “Handling heterogeneous data
sources in a SOA environment with service
data objects (SDO)”, SIGMOD '07: Proceed-
ings of the 2007 ACM SIGMOD international
conference on Management of data, ACM,
New York, NY, USA, 2007, pp. 895–897

[23] B. Dobrzelecki, A. Krause, A. Hume, A.
Grant, M. Antonioletti, Y. Alemu, M. Atkin-
son, M. Jackson, E. Theocharopoulos.: Inte-
grating distributed data sources with OGSA–
DAI DQP and Views. Phil. Trans. R. Soc. A
368(1926), 4133–4145 (2010)

Cătălin STRÎMBEI has graduated the Faculty of Economics and Business Admin-
istration of Al. I. Cuza University of Iaşi in 1997. He holds a PhD diploma in Cy-
bernetics, Statistics and Business Informatics from 2006 and he has joined the staff
of the Faculty of Economics and Business Administration as teaching assistant in
1998 and as senior lecturer in 2005. Currently he is teaching Object Oriented Pro-
gramming, Software Development Environments and Database Design and Admin-
istration within the Department of Business Information Systems, Faculty of Eco-

nomics and Business Administration, Al. I. Cuza University of Iaşi. He is the author and coauthor of
four books and over 25 journal articles in the field of object oriented development of business applica-
tions, databases and object oriented software engineering.

