
68 Informatica Economică vol. 16, no. 4/2012

Improving Image Processing Systems by Using Software Simulated LRU
Cache Algorithms

Cosmin CIORANU1, Marius CIOCA2, Lucian-Ionel CIOCA2

1UEFISCDI, Bucharest
2”Lucian Blaga” University of Sibiu, Sibiu

cosmin.cioranu@gmail.com, marius.cioca@ulbsibiu.ro, lucian.cioca@ulbsibiu.ro

Today’s scientific progress is closely related with data processing, a process is implemented using al-
gorithms, but in order to have a result, algorithms need data, and data are generated by sensors, par-
ticularly satellite imagery or collaborative GIS platforms. The progress has made those imaging cap-
turing sensors more and more accurate therefore the generated data are becoming larger and larger.
The problem is mostly related to the operating system and sometimes software design’s inability to
manage contiguous spaces of memory. In an ironic turn of events, those data sometimes cannot be
held all at once in a computer system to be analyzed. A solution needed to be devised to overcome this
easy problem at first, but complex in implementation. The answer is somehow hidden, but is has been
around since the birth of computer science, and is called a memory cache, which is basically at its or-
igins a fast memory. We can adjust this concept in software programming by identifying the problem
and coming up with an implementation. The data cache can be implemented in many various ways but
here we will present one based on LRU (least recently used) algorithm mostly to handle three dimen-
sion arrays, called 3dCache which is widely compatible with software packages that supports external
tools such as Matlab or a programming environment like C++.
Keywords: Cache, LRU, Matlab, C++, Three Dimension Array, Satellite Imagery

Introduction
This paper describes a solution to a problem

that somehow it is hidden to the average and even
expert user of a computer system. When it comes
to operating large volumes of data, most comput-
er systems have a problem allocation large con-
tiguous space in memory [1], [14] even if it has
4, 8, 16 or more GB of RAM at their disposal.
The problem is mostly related to the operating
system and sometimes software design’s [10] in-
ability to manage contiguous spaces of memory
or model representation [4]. The problem be-
comes even more troubling when a processing
algorithm (written in Matlab, C++ or other envi-
ronment) behaves perfectly running on small
amount of data but when it comes to large vol-
umes it simply brakes down. The need for a solu-
tion came obvious where sophisticated pro-
cessing in the field of satellite imagery. For those
kind of data is common place to have a resolution
than 10000x10000 with 20 bands staked [6], hav-
ing a precision of 32 bit in depth, which means
roughly 8 GB of data and for the simplest opera-
tion we needed memory space of at least twice,
more than 16 GB of RAM. So, having this hy-
pothesis in place we created the 3dCache pack-
age which can be implemented and integrated in-
to C++ and all software packages which have the
ability to use compiled code, including Matlab.

2 General Overview
The current implementation is based on LRU
(Least Recently Used) algorithm, which has been
around since the birth of computer science, in
various implementations [3], [9], [11], web solu-
tions (proxies, web-servers, etc.), generic im-
provements of CPU execution time. In a comput-
er system, as a hole, enhancements are added in
order to overcome the never ending need of pro-
cessing power. One of those enhancements is the
addition a specialized memory between the CPU
and main system memory called a cache memory
[8]. The cache is much faster in terms of access
but is limited in size, therefore there is a need of
an algorithm to bring data information from the
main memory into the cache and to evict already
present data from to cache to the main memory
[5], [8], [15]. The performance as a hole depends
mainly upon the size of the cache, the internal
organization, the algorithm used to manage the
cache and of course the, nature of the data that
the CPU needs to execute. Currently there are a
number of tools, which can handle large data
volumes of information, such as BOOST Librar-
ies, represented by std::map class [11], but the
main problem with most of them is the inability
to predict the actual size the structure used, and
given the problem stated before, we encountered
the same problem with contiguous space alloca-
tion. Also, we should take into consideration that

1

Informatica Economică vol. 16, no. 4/2012 69

most satellite imagery processing needs more
than two result allocation (one as source and one
as destination) so we need a solution that can be
used in 100 % error free problems related with
memory allocation. The main point of view taken
into consideration had to be data itself and the
types of processing. Usually most satellite image-
ry (Visible, Infrared, Water Vapors) [6], [16] are
grouped into so called products. Those products
have some metadata attached but invariably are
composed by a stack of images usually the same
in width and height, each image from this stack is

called a band and represents in some form the
date taken from the sensor.

3 Technical Approach
The usual approach of a system that processes
data, in general and satellite products particularly
is described in figure 1. First a software package
detects the format in which the data are stored,
allocated the necessary memory for the selected
data, and then everything is loaded into internal
memory to be analyzed by an algorithm. This
process can be optimized in some ways but the
general approach remains the same.

Fig. 1. Usual image loading process

As it can be seen, to be effective, the data has to
be available, and for this purpose, the data has to
load into main memory. The main advantage is
speed. If the data is relatively small, there are no
special issues, but if the data is large, let’s say
more than 1 GB of data, some systems have real-
ly big problems managing data internal struc-
tures.
Our Approach is a little different. We follow the
same reasoning as before, but instead of putting
the data into memory we are putting it in a spe-
cial structure that works with a self-owned swap
space. From outside, the algorithm side, it may
see the hole data is stored in memory, but in re-

ality everything is swapped between the 3d des-
ignated swap space and an internal structure
(Figure 2).
In our technical approach we had to take into
consideration the following elements:
a) Types of processing in terms of operations

over stack layers;
b) Type of data contained in the fore mentioned

bands;
c) Operating system;
d) Concurrency, how many processing instances

are running in the same time.

70 Informatica Economică vol. 16, no. 4/2012

Fig. 2. Basic 3DCache Architecture

Usually most algorithms in this area, satellite im-
agery, use all the bands when a process decision
is been made, so in our architecture we had to
take into account this fact. The decision taken
was that we need to structure our cache system in
something called tiles. Usually tiles are 2d parts
of an image, described by width and height, but
given the stated issue, our tiles had to be parallel-
epiped in form (figure 3). The size of the tile is
specified by a set of parameters used upon the in-
itialization of the cache.

Fig. 3. Internal 3dCache Structure

The list of the parameters is as following:
a) Width, representing Maximum width of the
stack images;
b) Height, representing Maximum height of the
stack images;
c) NoBands, representing number of bands in the
stack images;

d) MaxCacheUnitSize, this is the maximum cache
that can be used for a tile of one depth. It is pos-
sible that de actual size will be smaller.
e) CacheSize, Number of cached elements.
f) bandResolution, representing the size in bytes
of the internal representation resolution. It can be
long, or double.
Total memory foot print of an internal structure
can be calculated using these simple operations:

ݐ݊݅ݎܲݐ݋݋ܨ ൌ ݁ݖ݄݅ܵ݁ܿܽܿ ∗ 																																	,݁ݖ݅ܵݐܷ݄݅݊݁ܿܽܥ݈ܽݑݐܿܽ
݁ݖ݅ܵݐܷ݄݅݊݁ܿܽܥ݈ܽݑݐܿܽ	݁ݎ݄݁ݓ	 ൏ ሺ1ሻ																				݁ݖ݅ܵݐܷ݄݅݊݁ܿܽܥݔܽ݉

The actualCacheUnitSize describes the actual
size in memory of the unit of cache and is calcu-
lated using the following algorithm:
a) Calculate the maximum area of a 2d tile (width
and height) that can be used for a one band tile:

ܽ݁ݎܣ݉ݑ݉݅ݔܽ݉ ൌ ඨ
݁ݖ݅ܵݐܷ݄݅݊݁ܿܽܥݔܽ݉

ݏ݀݊ܽܤ݋݊ ∗ ݊݋݅ݐݑ݈݋ݏܴܾ݁݀݊ܽ
																ሺ2ሻ

b) Calculate maximum tile width using the max-
imumArea
c) Calculate maximum tile height using the max-
imumArea
d) Calculating actualCacheUnitSize

݁ݖ݅ܵݐܷ݄݅݊݁ܿܽܥ݈ܽݑݐܿܽ ൌ ݄ݐܹ݈݀݅݁݅ݐ ∗ ݐ݄݃݅݁ܪ݈݁݅ݐ ∗ ݏ݀݊ܽܤ݋݊
∗ ሺ3ሻ		݊݋݅ݐݑ݈݋ݏܴܾ݁݀݊ܽ

Each cache unit is identified by an index, which
describes a portion of the large dataset into main
memory. The translation of a point P(x,y,z) is de-
termined by the internal address translation of the
3dCache. From the cache time point of view, the

Informatica Economică vol. 16, no. 4/2012 71

current implementation is using direct mapping,
which is faster in terms of internal selection, but
it may be insufficient in case of complex pro-
cessing, as stated in [11].
Given the fact that most processing data are build
using various types of data, we built our system
in two generic systems, one for integer types, and
one for double types
The operating system was an issue, so we choose
to build our system using C++ programming lan-
guage. First it was developed under windows
then ported over Linux.
One of the most important questions we had to
answer was if our system will be part of a data
processing server. Having this in mind we built
the entire cache system fully parametric (size of
working cache, size of one single tile, etc.)
Advantages of this approach:
a). Controllable foot print of each instance of this
specialized structure
b). No need or little alteration of preexisting algo-
rithms
Disadvantages of this approach
a). The problem is shifted from the main memory
to the disk space in terms of amount of data
stored
b). Speed may be an issue, but it depends of the
internal management of the 3d Cache

4 Integration and Usage
In Matlab one can import C/C++ (or other kind)
code by using the available installed compiler by
creating a MEX file [12]. A MEX file is a built-in
utility that enables you to call C, C++, or
FORTRAN code in MATLAB by compiling your
code into a MATLAB Executable called a MEX-
file. MEX-files are dynamically linked subrou-
tines that are called as regular MATLAB func-
tions. This requires you to replace your applica-
tion's main() with a special gateway function -
called "mexFunction" - to pass inputs and outputs
to and from MATLAB. The operation requires
some skills regarding the compilation stages but
it can accomplish by using the following steps:
a) On the host system it needs to be installed a
compiler [13] A full list can be found on the bib-
liography
b) Use the following command to compile
3dCache main file, let’s say Matrix.cpp

mex Matrix.cpp

c) Call from the Matlab console Matrix.cpp with
the documentation provided parameters.
To gain access from an IDE, Visual Studio or
otherwise to the enhancements provided by de

3dCache system you have to follow a few steps:
a) Import the necessary libraries
b) Instantiate the class using:
Cache3dDouble matrix(width,height,noBands,
maximulAllowedCacheUnitSize, noOfUnits)
c) Get a value double value=matrix(x,y,z)
d) Set a value matrix(x,y,z)=value

5 Results
The nature of the proposed algorithm and imple-
mentation makes hard or impossible to compare
it with other similar solution mainly due to:
a) It has been built to serve a specific kind of ap-
plications
b) Limited uses in terms of multidimensional da-
ta structure
c) Can hold only certain types of data, now are
available only long and double
Given the condition(s) above we will display
some results collected in contiguous mode set/get
of data and in random access of the structure. We
will choose for our demonstration the following
configuration:

- Image size: Width: 256, Height: 256, Number
of bands: 3, resulting in ~1.5 MB of data;

- Size of cache location (automatic) with a
maximum of 800 bytes, resulting in 768 bytes.

i) Contiguous Mode
In contiguous mode, we asked our structure, upon
initialization to retrieve the requested data, in
case of various allotted internal locations (Table
1) and (Figure 4).

Table 1. Analysis of hit rate in case of contigu-

ous access
No. Cache Locations Hit %

1 96 97.917

2 112 97.917

3 128 97.917

4 144 98.161

5 160 98.405

6 176 98.469

7 192 98.893

8 208 99.137

72 Informatica Economică vol. 16, no. 4/2012

Fig. 4. Graphical representation of hit rates on

various allotted number of cache allocation

ii). Random Mode
For the random experiments we have chosen
4096 points distributed randomly over the space
generated by the maximum range of the tested
product staked images.
The results are as following (Table 2).

Table 2. Results upon testing with random values
from entire space of possible images coordinates

No. Cache Locations Hit %

1 96 36.093

2 112 42.271

3 128 47.829

4 144 53.865

5 160 58.802

6 176 66.078

7 192 71.35

8 208 76.718

As it can be seen the results are not very promis-
ing, but we should take into consideration that we
kept in memory only about 10% at 208 cache lo-
cations of the entire image.
But, with 20% at 208 cache location, the effi-
ciency of the structure increased to 99% in case
of random values (Table 3).

Table 3. Efficiency of the structure in case of
20% image stored in main memory
No. Cache Locations Hit %

1 96 71.517

2 112 83.492

3 128 94.012

4 144 96.827

5 160 96.827

6 176 96.827

7 192 96.827

8 208 96.827

6 Conclusions
This architecture has proven its uses but there is
room for improvement, however it offers an al-
ternative in case of large amount of processing
data such as collaborative GIS (Geographical In-
formation System) platforms [7] or collaborative
DSS (Decision Support Systems) [2]. Among the
benefits of using the presented system is its flexi-
bility, it can be integrated with various profes-
sional software platforms and the proven viability
of concept, by using an well know algorithm,
such as direct mapped cached, with LRU as a
way to evict non used information from the main
system memory [8].
Feature developments include:

- Extending the dimensional limit, now we are
using only three;

- Implementing N-Associative cache, direct-
mapping has some issues regarding conflicts
of mapped memory [8], which may force the
3dCache to evict cache locations that may be
used in a future iteration.

References
[1] R.G. Belu, C. Oancea, A. Belu, L.I. Cioca, "A

2-d indoor radio propagation modeling by us-
ing MATLAB for classroom instruction" in
33 rd Annual Conference Frontiers in Educa-
tion, FIE 2003, ISSN 0190-5848, DOI:
10.1109/FIE.2003.1263385

[2] M. Cioca, L.I. Cioca, “Decision Support Sys-
tems used in Disaster Management”, in Deci-
sion Support Systems, Chiang S. Jao (Ed.),
ISBN: 978-953-7619-64-0, 2010.

[3] E J. O'Neil, P. E. O'Neil, G. Weikum, “The
LRU-K page replacement algorithm for data-
base disk buffering”, Volume 22 Issue 2,
June 1, 1993, Pages 297 - 306

[4] F.G, Filip, “Opti.mization models with sparse
matrices and relatively constant parameters”
in Systems Analysis Modelling Simulation.
Vol. 33, no. 4, pp. 407-430. 1998.

[5] J. B. Sartor, S. Venkiteswaran, K. S. McKin-
ley, and Z. Wang, “Cooperative Caching with
Keep-Me and Evict-Me”, INTERACT '05
Proceedings of the 9th Annual Workshop on
Interaction between Compilers and Computer
Architectures Pages 46 – 57, IEEE Computer
Society Washington, DC, USA 2005

[6] T. M. Lillesand; R. W. Kiefer; J. W. Chip-
man, “Remote sensing and image interpreta-
tion” in book “Remote sensing and image in-
terpretation 2004” Edited by Lillesand, T.
M.;Kiefer, R. W.;Chipman, J. W, ISBN 0-
471-45152-5

96
98
100

0 100 200 300

Hit rates against
cache locations …

Hit %

Informatica Economică vol. 16, no. 4/2012 73

[7] M. Cioca, S.C. Buraga, C. Cioranu, “Disaster
prevention integrated into commonly used
web rendered systems with GIS capabilities”,
INT J COMPUT COMMUN, ISSN 1841-
9836, 2012

[8] N. P. Jouppi, “Improving direct-mapped
cache performance by the addition of a small
fully-associative cache prefetch buffers”, IS-
CA '98, Pages 388-397

[9] Rachid El Abdouni Khayari, RaminSadre,
Boudewijn R. Haverkort, “A Class-Based
Least-Recently Used Caching Algorithm” for
WWW Proxies, 2012

[10] Image Acquisition Toolbox, Memory Limi-
tation http://www.mathworks.com/help/imaq/
imaqmem.html (accessed in 15.09.2012)

[11] LRU cache implementation in C++,
BOOST, std:map http://timday.bitbucket.org/
lru.html (Accessed in 01.11.2012)

[12] Matlab C++ Integration
http://www.mathworks.com/support/solutions
/en/data/1-GQC9 NF/index.html (Accessed in
25.10.2012)

[13] Matlab list of commercial and non-
commercial compilers
http://www.mathworks.com
/support/compilers/R2011b/win32.html (Ac-
cessed in 25.10.2012)

[14] Matlab Memory limitations
http://www.mathworks.com/help/matlab/matl
ab_prog/ resolving-out-of-memory-
errors.html (accessed in 25.10.2012)

[15] Organizarea si proiectarea microarhitec-
turilor de calcul http://webspace.ulbsibiu.ro/
lucia n.vintan/html/Organizarea.pdf (Ac-
cessed in 02.10.2012)

[16] Types of satellite imagery
http://www.srh.noaa.gov/mrx/sattype.php
(Accessed in 30.10.2012)

Cosmin CIORANU is working as Software Coordinator at UEFICDI (Executive
Unit for Higher Education, Research, Development and Innovation Funding) closely
involved in managing National Plan funded projects. Also, the satellite imagery sys-
tems are researched at ASRC (Advanced Studies and Research Center) in various
projects, some financed by ESA (European Space Agency). He has a PhD from
“Politehnica” University of Bucharest, Faculty of Power Engineering. Cosmin
Cioranu has extensive knowledge and experience in software design, stand-alone

and web..

Marius CIOCA – Marius CIOCA is a faculty member at the "Lucian Blaga" Uni-
versity of Sibiu (Romania). He earned his PhD from "Politehnica" University of
Bucharest, the Faculty for Automation and Computers. Dr. Cioca published numer-
ous scientific articles at prestigious international conferences under the aegis of
Elsevier and IEEE. The scientific training as young researcher also came from his
position as director of numerous research contracts awarded through national com-
petition. His domains of interest are: reference architecture, industrial information

systems, modeling languages, web engineering and technologies and decision support systems.

Lucian-Ionel CIOCA is a faculty member at the “Lucian Blaga” University of Si-
biu. Full professor (since 2007), has extensive experience in Fuzzy technology and
Matlab environment. Subsequently becomes expert in Healthcare and Occupational
Safety. He has published numerous scientific papers (IEEE, IFAC, Elsevier etc.)
and won the competition numerous research contracts.

