
158 Informatica Economică vol. 16, no. 3/2012

Distributed Application Extensions and Obsolescence as Risk Generating

Factors

Cătălin Alexandru TĂNASIE

Bucharest University of Economic Studies, Doctoral School

catalin.tanasie@hotmail.com, catalin.tanasie@doesec.ase.ro

Extending distributed IT&C applications raises risks associated to integrating new modules

in already existing functional areas, influencing performance and data relevancy. The current

paper details on the actors and operational, as well as analytical areas of impact. The

software application used to test and refine assessment models, MERICS, is presented

alongside obsolescence-related factors. A model on evaluating moral decay is detailed and

conclusions are drawn relating to the effects of usage-stage distributed application-related

activities.

Keywords: Distributed Applications, Extensions, Obsolescence, MERICS, Risks

Risks Identified in DIA Extensions
Distributed applications are built and

used according to functional and technical

specifications that reflect the expectations

and requirements of an organization at the

moment of the development decision.

Company activity changes or extends to

cover new, related areas of interest, and

supporting applications need to be improved

in order to address these changes. The

intended lifespan of the application

influences the number and extent of added

features and components. In core banking

applications, where the extent of usage

reaches time spans in excess of 10 or 15

years due to the cost of replacing the

components, along with dependencies in

higher architectural level components, over

90% of the system’s life spans after the

initial release, with continuous updates on the

structure and logic. New DIA modules, the

alteration or addition of methods and

parameters, changes in user management and

security requirements developed after the

initial live release of the applications are

factors contributing to DIA extensions

development, as the users, administrators,

executives and various other organization

actors discover issues with the existing form.

Identifying DIA extension areas depends on:

 the development and usage plan relating

to the format of the initial release; large

applications are often split into stages,

with areas of usage prioritized and

implemented in a specific order; starting

with the second stage, the developers and

users include factors relating to the effects

on the existing version, as testing is done

on the whole and development potentially

affects performance and business

processes in already implemented

components; MERICS, the model testing

and refining application associated to the

current research, is released in 3 stages,

with successive completion and usage for

operational, web-based interfaces and

communication, as well as analytical

modules;

 the improvement or extension cause

affects the actors and format of the new

release – functional or logical error

removal, the adding of new

functionalities, updating software

technologies; the timing and budget

allocated for the improvement differs

accordingly – bug fixing is time-sensitive

and costs incurred on the system budgeted

as risks in the management’s view, while

new methods and components are

predicted and provided for in a controlled

environment.

1

Informatica Economică vol. 16, no. 3/2012 159

Fig. 1. Extending DIA components cycle

Figure 1 details on the actors and associated

actions in extending DIAs. The graph’s

arches, linking action nodes, identify the

order of the events. In addition, party

interactions identify areas where users,

administrators, analysts, designers,

developers and testers provide their input in

designing, implementing, validating and

deploying new application features.

The triggering stage in the cycle of DIA

extension consists of the interaction between

operational users, system administrators and

components or interfaces. Malfunctioning

sections, underperforming graphical or

abstract structures lacking in usability or

performance are identified through repetitive

accessing. Alternatively, new activities or

changes in component requirements or

external interactions – the expected

unavailability of an information source, the

changes made in Web services – trigger the

updating and extension of DIA modules.

Analysts and designers construct the

requirements and structure of the added

e-p Data Model

Interacting with DIA

components

Identifying

underperforming sections

Users

Identifying additional

requirements

Analysts

Designing additional

functionalities

Implmenting DIA

extensions

Testing new DIA features

Deploying updated DIA

sections

Designers

Developers

Testers

Administrators

Revizing features

160 Informatica Economică vol. 16, no. 3/2012

parts, leading to their implementation and

incipient testing by internal or external

teams. As new components affect the entirety

of the system by interacting and sharing the

same resources, testing is done by revising

all previously built modules. Error detection

and improperly constructed structures trigger

the repetition of development and testing

until a form considered appropriate for

deployment is available. The users interacting

with the application provide feedback over

time and the cycle repeats itself.

Estimating costs is relevant to prioritizing

extensions and determining the amount of

resources – personnel, technological costs

and licenses, development and testing

hardware and application downtime due to

reconfigurations and deployment – and

requires the considering of factors brought to

a common denominator – sales hours or

added value hours for MERICS. In assessing

costs to the enhancement of MERICS

components, time was chosen as the unifying

measurement criteria for the analyzed

feature.

Let 𝑖 be the component, method or

application usage parameter whose

enhancement or fixing is considered, 𝐹𝑖(ℎ)

the associated positive functionality impact

and 𝐿𝑖(ℎ) the costs induced by the

application dysfunction in its current form.

The enhancement 𝐸𝑖(ℎ) is effective if the

former are higher over the measured ℎ

interval, or

𝐸𝑖 ℎ = 𝐹𝑖(ℎ) − 𝐿𝑖(ℎ) > 0.

In order to properly address time valuation,

the costs of the actions and incidents are

represented based on the hourly income as

follows:

𝑐𝑖 ℎ = 𝑙𝑖 ,
𝑙𝑖 = 𝑘 ∗ 𝑠𝑖 ,

𝑠𝑖 =
𝑄𝑃(𝑖)

𝐻
,

where:

𝑠𝑖 – hourly sales or added value as

related to enhancement 𝑖;
𝑙𝑖 – costs associated to incident or

extension 𝑖, as payments

projected to be made by the

organization to internal and

external actors;

𝑘 – number of hourly sales, as loss

representation;

𝑄𝑃(𝑖) – Production function over the

measured interval, either in

monetary units or added value,

as relevant to enhancement i;

𝐻 – total number of hours in the

measured interval.

The individual gains, 𝐹𝑖 ℎ , losses 𝐿𝑖 ℎ and

overall effect 𝐸𝑖 ℎ of enhancement 𝑖,
decomposed in 𝑚 constituting factors, are

determined by the equations

𝐿𝑖 ℎ = 𝑐𝑎𝑗 ℎ

𝑡

𝑎=1

= 𝑙𝑖𝑗

𝑡

𝑎=1

= 𝑘𝑗 ∗ 𝑠𝑖𝑎

𝑡

𝑎=1

,

𝐹𝑖 ℎ = ℎ𝑖 ∗ 𝑠𝑖𝑗 = 𝑠𝑖𝑗 ∗ ℎ𝑖𝑗

𝑚

𝑗=1

𝑚

𝑗=1

,

𝐸𝑖 ℎ = 𝐹𝑖 ℎ − 𝐿𝑖 ℎ = 𝑠𝑖𝑗 ∗ ℎ𝑗

𝑚

𝑗=1

− 𝑘𝑖𝑎 ∗ 𝑠𝑖𝑎

𝑡

𝑎=1

,

where:

𝑚 – number of factors contributing to

the measurement of

enhancement 𝑖 gain effects;

𝑡 – number of factors contributing to

the measurement of

enhancement 𝑖 loss effects;

ℎ𝑖𝑗 – number of hours gained by the

implementation of extension 𝑖
determined by factor 𝑗;

Informatica Economică vol. 16, no. 3/2012 161

𝑘𝑖𝑎 – number of hourly sales, as loss

representation for extension 𝑖
due to factor 𝑎;

𝑄𝑃 – production over the measured

interval, either in monetary units

or added value;

𝐻 – total number of hours in the

measured interval.

Consequently, the total net gain𝐸 ℎ , total

added value of the extensions 𝐹(ℎ), as well

as subsequent total costs 𝐿(ℎ), are measured

by summing up the individual enhancements.

For 𝑛 updated items, 𝑚 positive and

𝑡 negative effects, the specified indicators

result from applying to the formulas

𝐹 ℎ = 𝐹𝑖 ℎ = 𝑠𝑖𝑗 ∗ ℎ𝑖𝑗 ,

𝑚

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

𝐿 ℎ = 𝐿𝑖 ℎ = 𝑘𝑗 ∗ 𝑠𝑖𝑎

𝑡

𝑎=1

,

𝑛

𝑖=1

𝑛

𝑖=1

and

𝐸 ℎ = 𝐹 ℎ − 𝐿 ℎ = 𝑠𝑖𝑗 ∗ ℎ𝑖𝑗

𝑚

𝑗=1

− 𝑘𝑗 ∗ 𝑠𝑖𝑎

𝑡

𝑎=1

.

𝑛

𝑖=1

𝑛

𝑖=1

The following considerations constitute

factors in the valuation of the 𝐹 and

𝐿 indicators:

 upgrade effect on application

productivity, 𝒘(𝒉), part of 𝐹, measured in

the user and process time gains derived

from the increase in speed and

optimization of interactions, as well as the

removal of unwanted glitches or

dysfunctional algorithms;

 reduction of risk incidence, 𝒓(𝒉), part of

measured over the analyzed period as a

product of losses and frequency;

 development and testing time, 𝒅(𝒉) part

of 𝐿, measured in hours added for all

members of the involved teams, or

derived from the costs in externalizing the

service, measured in hours using the 𝒄𝒊

function;

 negative effects on security, 𝒆𝒔(𝒉), part of

𝐿, including damage repair time or costs,

as well as the losses caused by the

application downtime;

 hardware and software costs hs(h), part

of 𝐿, measured either by replacing

damaged units or affected source code,

either by the upgrading and extending of

existing ones – buying licenses for new

software frameworks, adding processing

and storage capacity.

The factors contributing to the building of the

model are extendable in number with no

negative impact on the relevancy of the

estimator, as long as the cost correlation is

maintained.

The model presented in the previous section

is applied to 4 characteristics of the

algorithms and components in MERICS

image processing tasks – adding a

histogram-based method for static frames

comparison (1), implementing PKI-based

security in Web services effects on image

processing (2), and completing the

MERICS.COMMON module (3). As

MERICS is developed by the author, no

commercial value in sales is measured. 𝑠𝑖 is

valued at 6,25 units as a measure of an

average loading of 2000 images and derived

video frames per month over a period of 60

days, considering an 8-hour weekday

interval: 𝑄𝑃 = 2000, 𝐻 = 40 ∗ 8 = 320.

Table 1 details on the results obtained in

measuring the indicators, with the affected

MERICS component shown.

162 Informatica Economică vol. 16, no. 3/2012

Table 1. MERICS impact assessment for the three considerations

No Affected component 𝒘𝒊(𝒉) 𝒓𝒊(𝒉) 𝒅(𝒉) 𝒆𝒔(𝒉) hs(h

)

𝑭𝒊(𝒉) 𝑳𝒊(𝒉) 𝑬𝒊(𝒉)

1 MERICS.OPERATION

AL

112,5 31,2

5

24 0 50 143,

75

74 69,75

2 MERICS.WCF

MERICS.SERVICE

MERICS.OPERATION

AL

MERICS.AUTH.

87,5 268,

75

187,

5

0 106,

25

356,

25

293,

75

62,5

3 MERICS.WCF

MERICS.SERVICE

MERICS.OPERATION

AL

MERICS.AUTH.

MERICS.WEBAPP

MERICS.COMMON

356,25 62,5 500 18,75 137,

5

418,

75

626,

25

-

237,5

 TOTAL 556,25 362,

5

711,

5

18,75 293,

75

918,

75

994 -

75,25

Consequently, for the 𝑚 = 2 positive and

𝑡 = 3 negative factors mentioned as factors,

as well as 𝑛 = 3 enhancements detailed, the

generic formulas for F and L become

𝐿𝑖 ℎ = 𝑑𝑖 ℎ + 𝑒𝑠𝑖 ℎ + ℎ𝑠𝑖 ℎ ,

𝐹 ℎ = 𝐹𝑖 ℎ ,

3

𝑖=1

𝐹𝑖 ℎ = 𝑤𝑖(ℎ) + 𝑟𝑖 ℎ ,

𝐿 ℎ = 𝐹𝑖 ℎ ,

3

𝑖=1

𝐸𝑖 ℎ = 𝐹𝑖 ℎ − 𝐿𝑖 ℎ = 𝑤𝑖 ℎ + 𝑟𝑖 ℎ − 𝑑𝑖 ℎ − 𝑒𝑠𝑖 ℎ − ℎ𝑠𝑖 ℎ ,
𝐸 ℎ = 𝐹 ℎ − 𝐿 ℎ =

= 𝐹𝑖 ℎ − 𝐹𝑖 ℎ = 𝑤𝑖 ℎ + 𝑟𝑖 ℎ − 𝑑𝑖 ℎ − 𝑒𝑠𝑖 ℎ − ℎ𝑠𝑖 ℎ .

3

𝑖=1

3

𝑖=1

3

𝑖=1

In addition, factors are quantifiable as per

total of affected enhancements, with 𝑊(ℎ),

𝑅(ℎ), 𝐷(ℎ), 𝐸𝑆(ℎ), 𝐻𝑆(ℎ) calculated as

follows – generic and three item MERICS

form (shown in table 1):

𝑊 ℎ = 𝑤𝑖 ℎ

𝑛

𝑖=1

𝑅 ℎ = 𝑟𝑖 ℎ ,

𝑛

𝑖=1

𝐷 ℎ = 𝑑𝑖 ℎ ,

𝑛

𝑖=1

𝐸𝑆 ℎ = 𝑒𝑠𝑖 ℎ ,

𝑛

𝑖=1

𝐻𝑆 ℎ = ℎ𝑠𝑖 ℎ .

𝑛

𝑖=1

For 𝑛 = 3, the values for the indicators above

as determined as

𝑊 ℎ = 𝑤1 ℎ + 𝑤2 ℎ + 𝑤3 ℎ

𝑅 ℎ = 𝑟1 ℎ + 𝑟2 ℎ + 𝑟3 ℎ ,
𝐷 ℎ = 𝑑1 ℎ + 𝑑2 ℎ + 𝑑3 ℎ ,

𝐸𝑆 ℎ = 𝑒𝑠1 ℎ + 𝑒𝑠2 ℎ + 𝑒𝑠3 ℎ ,
𝐻𝑆 ℎ = ℎ𝑠1 ℎ + ℎ𝑠2 ℎ + ℎ𝑠3 ℎ .

Informatica Economică vol. 16, no. 3/2012 163

Fig. 2. MERICS components testing dependency, incident-originating component

representation

Figure 2 identifies testing steps in the

evaluation of changes made as part of the

MERICS.OPERATIONAL module, with the

affected neighbors in the architectural tree of

the application shown along with their own

influence on others forming second degree

dependencies to the subject of the measuring.

The impact of additional workload is

calculated using the 𝑐 function if necessary

and included in the 𝐿 indicator.

As observed, the implementation of the

MERICS.COMMON module has not, when

strictly considering image processing speed

and quality increase, contributed to the

improvement of DIA performance. The

uniting of common features under the same

architectural construction is however relevant

and profitable when considering security,

flexibility and usability over longer time

periods. The total, -75,25, is negative,

indicating that with no other considerations,

the update of the application within the

specified criteria is not recommended.

Evaluating the effects of extending or

modifying one of the application’s

components is done through testing sessions,

within the extent of the affected processes.

Within the first 6 months of MERICS usage,

testing for deficiencies and extended

features, as measured in work-hours,

accounted for 60% of the time, as per the

deployment and usage plan. Industry

applications sometimes associate more than

90% of post-development and roll-out

 cmp Data Model

MERICS.OPERATIONAL

MERICS.SERVICE

MERICS.WCF

MERICS.COMMON

MERICS.LOGICALMERICS.VideoOperations
MERICS.DataOperations

Operational

Database

Analytical

database

MERICS.ANALYTICAL

MERICS.Reports

MERICS.WEBAPP

164 Informatica Economică vol. 16, no. 3/2012

resources to testing, as even small changes in

core components have the capacity to affect

the whole of the application.

Deficiencies in extended DIA components

are searched for by specialized testing teams

and users based on the behavior of the

measured item and impact evaluation on co-

dependent modules, in decreasing order of

their relationship with the current one.

2 Obsolescence-Related Risks
The software market is characterized by

permanent evolution in software

technologies, triggered by the improvement

of hardware in both memory and

computation speed. The lifespan of

distributed applications is linked to their

capacity of solving tasks in acceptable

parameters with respect to alternative

solutions. Alongside technical

considerations, development budgets and

usage history determine resolutions on the

continuation of usage. Moral decay, or

obsolescence in functions, data structures and

technologies, is the main factor in

determining the moment of discontinuing

usage, and is defined as a continuous

depreciation in value for the software

components, triggered by new alternatives

and changes in both the user organization

activity and development practices.

Constructing an assessment indicator for the

degree of obsolescence in DIA components

considers the following relative factors and

implications in using the MERICS

application:

 relative component age, as the generic

indicator of moral decay, considering the

dynamicity of the industry; the basis of

the estimation is the predicted life

duration of the entire system as envisioned

by the owners based on operational

specifications; as the application

transitions through successive versions,

the updates include changes in framework

specifications or the rewriting of source

code in order to comply with performance

standards and provide flexibility and

extensibility in view of future changes;

 relative software technology usage time –

 based on development and deployment

platforms age or software development

technology usage duration; in older

programming frameworks, the increase in

stability due to repeated testing and

elimination of bugs, viewed as a

supporting factor in technological choice,

is diminished by the lack of support as

developers change their specialization to

match trends in software evolution, and

software development platform producers

discontinue maintenance and upgrade

operations on their products, leading to

increased costs for the DIA operators;

 error frequency dynamics, measured

considering the changes in user and

security specifications, operational

computing load on components,

communication strain due to increases in

message size and encryption algorithms

processing resource needs, as larger

ciphers are used in preventing brute force

attacks, with the increase in large-scale

availability hardware leading to

continuous improvements in synchronous

and asynchronous encryption;

 the inverted relative numerical evolution

of user accounts, indicating the percentage

of the current user load that the

component was originally designed to

serve; the indicator is calculated by

dividing initial to current numbers.

Considering the enumerated factors, let

𝑅𝑂𝑤 identify the DIA obsolescence risk

in component 𝑤, as an average value

measured in the [0,1] interval relative to

the moral decay of DIA components as

follows – general model:

𝑅𝑂𝑤 =
 𝑚𝑑𝑖

𝑛
𝑖=1

𝑛
,

where:

𝑚𝑑𝑖 – moral decay-triggering relative

factor 𝑖;
𝑤 – measured component indicator;

𝑛 – number of identified factors,

or, for the identified elements mentioned

in the current section

Informatica Economică vol. 16, no. 3/2012 165

𝑅𝑂𝑤 =
𝑐𝑜𝑚𝑝𝑤 + 𝑠𝑡𝑤 + (1 − 𝑒𝑟𝑟𝑤) + (1 − 𝑢𝑤)

4
,

where:

𝑐𝑜𝑚𝑝𝑤 – relative age of component 𝑤;

𝑠𝑡𝑤 – component 𝑤 relative

software technology usage

time;

𝑒𝑟𝑟𝑤 – relative 𝑤 error incidence,

𝑢𝑤 – inverted relative numerical

evolution, 𝑤 component.

Interactions in distributed application

components depend on the compatibility in

protocols and message formatting, encryption

and encoding technologies. Deprecation in

software technologies in one of the endpoints

leads to risks in the parsing and de-

serialization of the message content.

Although mediated by procedures that

exclude runtime errors due to differences in

standards or communication protocols,

communication is required to comply with

standards in software development as an

insurance policy when considering

development costs – as collaboration in

distributed systems is critical to obtaining the

output, obsolescence is prevented by constant

improving and evaluation of the

technological state of the components.

Considering the 𝑅𝑂𝑤 indicator assessment,

table 2 identifies year-based relative values

in MERICS modules that include

communication functions, considering a

lifetime of 10 years for the application, 8

years for deployment platforms and 4 years

for software frameworks – major versions,

chosen based on design specifications and

research project objectives, as well as usage

expectancy and backward compatibility for

Microsoft technologies.

Research done on MERICS modules and

communication context took place over a

period of 6 months and information

collecting is ongoing as of May 2012. Data

sources for included operational, derived

analytical, logging, system information from

the application and associated deployment

environment. Errors were filtered and written

in specialized segments of the file system,

and operational methods had their activity

monitored and associated to operational

information through unique IDs and session

information.

Table 2. MERICS – communication obsolescence measurement

Component Main software

framework

component

Deployment

platform

𝒄𝒐𝒎𝒑𝒘 𝒔𝒕𝒘 𝒆𝒓𝒓𝒘 𝒖𝒘 𝑹𝑶𝒘

MERICS.

DataOperatio

ns

ADO.NET Entity

Framework 4.1

Microsoft

Windows Server

2008 R2

1/10 =
0,1

2/8=

0,25

0,88 0,7 0,19

MERICS.WCF WCF

(API, .NET 4.0

version)

Microsoft

Windows Server

2008 R2

0,05

0,5 0,75 0,7 0,27

MERICS.WEB

APP

ASP.NET

4.0

Microsoft

Windows Server

2008 R2

0,05 0,5 0,6 0,7 0,31

MERICS.TEST

.

Desktop

Windows Forms

(API)

Microsoft .NET

4.0

Microsoft

Windows Server

2008 R2

0,1 0,5 0,6 0,7 0,32

Average

values, 𝑹𝑶

- - 0,07 0,43 0,7 0,7 0,27

166 Informatica Economică vol. 16, no. 3/2012

Fig. 3. Obsolescence-related performance drop and countermeasures

Considering the obsolescence assessment

model and project objectives, MERICS

communication components have a global

relative decay value of 0,27, or 27%, with

MERICS.DataOperations using the newest

technologies, having a 19% obsolescence

factor value, and MERICS.TEST.Desktop a

higher 32%, due to a higher error incidence

in testing environments and slightly longer

deployment age.

The evaluation of component and cross-

application obsolescence allows for the early

identification of vulnerable areas and

planning of update and replacement in both

software and hardware supporting

technologies. Figure 3 shows the update-

 e-p Deay of software technologies

Update software

technology?

[INTENSIVE]

Increase in DIA usage

and processing strain

Decay of software

technologies

Update hardware?

[EXTENSIVE]

End of

usage

Decreasing reliability in

hardware components

Usage

start

Loss of hardware

servicing support

Loss of software support

Changes in DIA logic

and task prioritizing

No

No

Yes

Yes

Informatica Economică vol. 16, no. 3/2012 167

extended lifetime of a DIA component,

differentiating between extensive, hardware

augmenting updates, and intensive, software

actualization and extension solutions.

DIA usage and processing increase, as the

application is deployed and popularized

through segments of the organization, leads

to both communication and computing

augmentation.

Let the 𝑢𝑚𝑑() function define the moral

decay in distributed application components

and technologies. As shown in figure 3,

correlations exist between it and functions

describing the evolution in number of users

𝑢, processing load 𝑝𝑢 and hardware

technology degradation ℎ𝑡. As all three of the

enumerated factors are time-dependent or

translatable to time-related functions

measured in number of hours, the following

are considered for set 𝑋 consisting of the

entirety of DIA items

𝑋 = 𝑥1, 𝑥2, …𝑥𝑖 , …𝑥𝑛 , 𝑖 = 1, 𝑛

𝑢𝑚𝑑 𝑥𝑖 = 𝑓𝑖 𝑢 ℎ , 𝑝𝑙 ℎ , ℎ𝑡 ℎ ,

𝑢 ℎ = 𝑢 ∗ ℎ𝑢 , 𝑢: 𝑁+ → 𝑁

𝑝𝑙 ℎ = 𝑝𝑢 ∗ ℎ𝑝𝑢 , 𝑝𝑙: 𝑁+ → 𝑁

ℎ𝑡 ℎ = ℎ𝑡 ∗ ℎ𝑡ℎ , ℎ𝑡: 𝑁+ → 𝑁
where

𝑥𝑖 – measured moral decay-

affected DIA component

or process

𝑖;
𝑖 – specific measured item;

𝑓𝑖() – cross-system moral

decay function for

element

𝑖;
ℎ, ℎ𝑢 , ℎ𝑢𝑝 , ℎℎ𝑡 – number of hours, as

relevant to the specific

function;

𝑢 ℎ – moral decay as a

function of usage time;

𝑝𝑙 ℎ – moral decay as a

function of processing

resources, time-based

representation,

ℎ𝑡 ℎ – moral decay as a

function of hardware

decay or age, time-based

representation.

3 Conclusions

Changes in DIA activity prioritization due to

transitions in user activity and optimization

of runtime parameters leads to a decrease in

original logic relevancy. Hardware and

software support diminishes with time as

acquisition of newer versions of the external

products is encouraged. Updating the moral

decay factors, either by choosing software or

hardware solutions, increases the life

expectancy for the targeted component, yet

the efficiency of the measure decreases with

successive uses due to changes in external

supporting factors – protocols, industry

standards, runtime platform support.

Augmenting DIA components benefits

specific tasks within the system’s activity

domain. As such, this operation is susceptible

to difficulties in evaluating the global impact

of changes:

 determining the effects of updating logical

and operational components on the

quality of information, as tested and

refined scenarios become irrelevant to the

new specifics of the data flows; users rely

on the validity of output, leading to

chained vulnerability patterns in

operational and analytical activities;

solutions rely on documenting and

disseminating factor change information,

allowing interested parties to account

eventual incidents;

 treating malfunctions triggered by

underperformance in external DIA

dependencies, outside the control of the

user organization’s decision factors;

extending the controls for better

prevention of newly encountered incidents

is not known a priori and therefore

constitutes a risk element itself;

developing flexible and easily

configurable application components

helps reducing the incident effects

removal time, for both developers and

administrators;

 understanding existing implementation

specifics, as development teams change

through-out the lifetime of the application,

either at individual or organization level;

documenting the development specifics

168 Informatica Economică vol. 16, no. 3/2012

reduces this risk, yet time pressures often

prevent the proper description of features,

as well as testing time, allowing for

technical bugs to remain undiscovered,

which leads to increased pressure on the

incident fixing team.

Due to changes in actors as compared to the

development stage, as well as qualitative

effects deriving from the increased time span

of DIA usage, procedural and technical

information is not readily available and must

be accounted for in management decisions.

Ensuring the proper conditions for DIA

usage reduces costs and helps interacting

parties rely on information quality in

addressing operational activities.

References

[1] M.P. Lima, J.M.N. David, B.T. Dantas,

Risk Management and Context in a

Collaborative Project Management

Environment for Software

Development, Brazilian Symposium of

Collaborative Systems - Simposio

Brasileiro de Sistemas Colaborativos

(SBSC), 5-8 October 2010, pp. 95 -

102, ISBN 978-1-4244-8445-4.

[2] B. Boehm, J. Bhuta, Balancing

Opportunities and Risks in Component-

Based Software Development, IEEE

Software, Volume 25, Issue 6,

December 2008, pp. 56 - 63, ISSN

0740-7459.

[3] W. Yu, X. Tuo, T. Zhao, A concrete

model of software risk development, 3rd

IEEE International Conference on

Computer Science and Information

Technology (ICCSIT), 9-11 July 2010,

pp. 472 - 474, ISBN 978-1-4244-5537-

9.

[4] J.A. Ibrahim, M. Majid, A.H. Hashim,

R.M. Tahar, Risk Quantification in

Coal Procurement for Power

Generation: The Development of

Supply Shortage Impact Matrix, Second

International Conference on

Computational Intelligence, Modelling

and Simulation (CIMSiM), 28-30

September 2010, pp. 401 - 406, ISBN

978-1-4244-8652-6.

[5] C. Huo, Y. Teng, Risks and risk

management in the development of

information system, Second

International Conference on

Communication Systems, Networks

and Applications (ICCSNA), Volume

2, June 29 - July 1 2010, pp. 345 - 349,

ISBN 978-1-4244-7475-2

Catalin Alexandru TĂNASIE, born at 18.08.1984 in Pitesti, Arges, is a

graduate of the I. C. Bratianu National College and of the Faculty of

Cybernetics, Statistics and Economic Informatics within the Bucharest

University of Economic Studies, the Economic In-formatics specialization,

2007 promotion. Starting 2007 he attended the Informatics Security Master

in the same institution, and is currently a PhD student at the Doctoral School

within the Bucharest University of Economic Studies. He has concerns in the

field of distributed applications programming, evolutionary algorithms development, part of

the field of artificial intelligence - neural and genetic programming. Currently he works as an

application designer in a financial institution. He is involved in creating commercial

applications using development platforms belonging to leaders in the field, companies

including Microsoft, Oracle and IBM.

