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This paper’s contribution is placed into decision-making process research area. In our previ-
ous papers we showed how decision maker’s behavior can be captured in logs and how an 
aggregated decision data model (DDM) can be mined. We now introduce two recommenda-
tion algorithms that rely on a DDM. Each algorithm aims to steer the decision maker’s ac-
tions towards a fully informed decision by suggesting the next action to be performed. The 
first algorithm is a Greedy approach that recommends the most frequent activities performed 
by other decision makers. The second algorithm is inspired from A* path finding algorithm. It 
finds a decision sub-objective and tries to guide the decision maker on the path to it. We eval-
uate these algorithms by comparing them with each other and to the classical association 
rules approach. It is not our intention to recommend the better decision alternative. We want 
to make sure the decision makers made an informed decision by correctly and completely 
evaluating all alternatives. This is an extended version of the paper published at IE 2012 
Conference.  
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Introduction 
Decision theory and analysis focus on 

various aspects of decision making such as 
the overall phases of decision making, how 
to generate decision alternatives and which 
are the strategies that can be employed in 
choosing one of the alternatives [1]. The 
classic approach over the decision process is 
generic and focuses decision making phases 
like: a) knowing the context and gathering in-
telligence about the decision at hand; b) de-
signing an approach to solve the problem and 
building various decision alternatives; c) 
choosing and d) implementing one of the al-
ternatives [2]. Compared to this research, our 
approach is fine-grained. We argue that the 
decision making process can be look at as at 
a sequence of actions performed by the deci-
sion maker.  
By taking a closer look at several decision 
makers performing the same decision, we no-
ticed that there are several common actions. 
But, we also found that there are a lot of ac-
tions performed by just a sub-set of the deci-
sion makers. We also observed that, usually, 
the sequence of actions is unique for each 
decision maker. Therefore, the decision-

making process is fuzzy and rarely per-
formed in the same way by two individuals. 
The link with decision theory is that those fi-
ne-grained actions, once made explicit, can 
be included in the general phases of decision 
making. We argue that existing high-level 
approaches to decision process modeling 
cannot precisely show why some decision 
makers succeed where others fail and it also 
cannot enable the transfer of knowledge from 
one individual to another. Therefore, a finer-
grained approach is needed. As far as we are 
aware, there is no research that tries to model 
individual decision-making processes as a 
workflow.  
Because of the fuzziness of individual deci-
sion-making, we looked at workflow man-
agement and process mining because it aims 
to analyze existing event logs produced by 
process or workflow aware software (such as 
ERP, CRM, SCM, etc.) and to extract various 
models [3]. The result of process mining is a 
model that reflects a real life process in an 
enterprise [3], extracted by various algo-
rithms from trace data stored in some logs. 
The most comprehensive collection of such 
algorithms can be found in ProM Framework 
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(available at www.processmining.org). Our 
approach extracts and creates a model, but of 
the mental decision making process rather 
than of some physical process in the enter-
prise. The basic assumption is that the ac-
tions of a decision maker will provide an ex-
ternal observer with a better understanding of 
a process than what the person says about 
that workflow.  
The paper is organized as follows. In the next 
section we provide some details about data 
modeling, process mining and decision mak-
ing framework. The third section aims at de-
scribing the formal approach for decision da-
ta models and for the two recommendation 
algorithms considered. The fourth section of 
the paper is focused on the actual implemen-
tation of the algorithms. In the fifth section 
we try to validate our assumption by using a 
case study and comparing the results we pro-
duce with the output of association rules. In 
the last section we present the conclusions 
for the work developed during this research.   
 
2 Related Work 
2.1 Similar Approaches 
We have specified that the past actions of the 
users are important landmarks for recom-
mending future actions. Our approach pre-
sents two recommendation algorithms, but 
there are several approaches to recommenda-
tion described in the specialized literature: 
content-based recommendation, collaborative 
filtering (or collaborative recommendations) 
and hybrid methods (that combine the first 
two methods) [4].  
Content-based recommendation systems out-
put recommendations for a certain user based 
on his own past preferences [4]. Content-
based recommendation methods perform 
item recommendations by predicting the 
utility of items for a particular user based on 
how similar the item are to those he/she liked 
in the past. 
On the other hand, collaborative filtering (es-
pecially using association rules) refers to 
processing transactions of all users for pre-
diction or classification. The key characteris-
tic of collaborative filtering is that it predicts 
the utility of items for a particular user based 

on the items previously rated, purchased or 
executed by other like-minded users. There-
fore, association rules method is comparable 
to our algorithms because the aggregated de-
cision model we use is mined from logs that 
store data of the user interaction with a soft-
ware. 
In order evaluate the recommendation algo-
rithms by comparison to association rules 
method, we use some metrics that are based 
on understanding and measure of relevance. 
These metrics are precision and recall. When 
calculating these values, a higher recall 
(closer to 1) indicates that the algorithm re-
turned most of the relevant results. High pre-
cision means that the recommendation algo-
rithm returns relevant operations in higher 
proportion than the irrelevant operations. Our 
goal is to demonstrate that the recommenda-
tion algorithms hold better values for preci-
sion and recall than association rules ap-
proach.  
 
2.2 The Decision-Making Process Mining 
and Modeling Framework 
The framework used for our research is de-
picted in Fig. 1. We rely on simulation soft-
ware that introduces the users to all the data 
needed for making some decision. The soft-
ware also logs all the actions of the user dur-
ing decision making (a trace of the process). 
The logs containing all the traces are then 
mined and a Decision Data Model (DDM) is 
extracted [1]. This is a model that deals well 
with fuzzy (no two decision makers perform 
exactly the same process), data-centric pro-
cesses (as most business decisions are). The 
DDM can be individual (shows what an indi-
vidual decision maker has done) or aggregate 
(shows the behavior of any number of users). 
We argued that the DDM (individual or ag-
gregate) can be easily understood by users 
with no prior knowledge of it. The aggregat-
ed DDM can be interpreted by an engine that, 
given an ongoing decision process, will pro-
vide the recommendations about the next ac-
tions that may be performed. The engine im-
plements several recommender algorithms. 
One of those is covered in the remainder of 
this paper. 
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Fig. 1. The decision mining framework 

 
To understand the recommendation algo-
rithm one needs to understand the DDM. The 
formalism of the DDM is available in [5]. To 
ease the understanding, we introduce a small 
example in Fig. 2. The model contains two 
types of elements: data items and operations. 
The data items are either basic (e.g. period in 
Figure 1) created by basic operations or de-

rived (e.g. Derived Data 1 - DD1) created by 
deriving operations. An operation is a tuple 
composed of: the name of the outputted data 
element (e.g. DD1), the value of the output 
(e.g. 5000), the inputs (pairs of mathematical 
operations and input data elements) (e.g. (+, 
property_price), (-, savings)) and the time of 
the operation’s occurrence (e.g. t19). 

 

 
Fig. 2. The Decision Data Model 

 
3 The Formal Approach 
The problem of providing recommendations 
is to determine the “best” path through the 
DDM. Our problem can be mapped to a gen-
eral search problem with five components 
[6]: S, S0, Sg, successors and cost; where:  

 S is a finite set of states;  
 S0   S is the non-empty set of start states;  
 Sg   S is the non-empty set of goal states;  
 successors is a function S → P(S) which 

takes a state as input and returns another 
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state as output (probabilities may be used 
in connection with it);  

 cost is a value associated to moving from 
state s  S to s´  S).  

The total cost is the sum of the costs incurred 
by a sequence of movements from state s  
S0 to a state s´  Sg. A recommended strate-
gy is a sequence of actions such as the total 
cost is minimized (or maximized under some 
circumstances). A particular feature of our 
problem is that, because we use simulation 
software, there are no costs for moving from 
a state to the next (as used in classical search 
problems). Instead, the notion of cost is de-
rived from the notion of frequency. 
Definition 1: A Decision Data Model (DDM) 
is a tuple (D, O) with [6]:  
– D: the set of data elements d, D = BD  
DD where BD is the set of basic data ele-
ments and DD is the set of derived data ele-
ments; 
– O: the set of operations on the data ele-
ments. Each operation, o is a tuple (d, v, DS, 
t), where:  

•   d  DD, d is the name of the output ele-
ment of the operation; 

•   v is the value outputted by the operation. 
Can be numeric or Boolean; 

•   DS, a set of d  D, is the set of input da-
ta elements of the operation. 

•    t  T, where T is the set of timestamps 
at which an operation from O occurs (i.e. 
the  time when the element d is creat-
ed using o). 

– D and O form a hyper-graph H = (D, O), 
connected and acyclic. 
In order to give recommendation to users in 
decision process, several algorithms were 
developed [8]. The naive one suggests the 
next operation by considering the absolute 
frequency. It has no clear target, and only 
aims to guide the user through the most fre-
quent operations. The second algorithm as-
signs priorities to operations producing a fi-
nal derived data element (which are actually 
the decision criterions). Then, it guides the 
user along a path so that the operation pro-
ducing a certain final data element is reached 
at a minimal cost. 
Algorithm 1: We first introduce a naive algo-

rithm which uses a Greedy approach, rec-
ommending the most frequent operations that 
is enabled [6]. 
1. Let DDMagg = (Dagg, Oagg); 
2. Let op be the list with the operations in 

Oagg; 
3. Let no_of_occurences be the list with the 

number of occurences for each op; 
4. Select op with max(no_of_occurences) 

and place it in Max_Occ set; 
5. Compute Enabled and Executed sets; 
6. For each in Executed set, search for mu-

tually exclusive operation. If found, move 
them from Enabled set to Executed set; 

7. Compute Recommendation = Max_Occ ∩ 
Enabled 

 
Algorithm 2: This approach is inspired from 
the A* path finding [7] algorithm [6].  
1. Create array Final with the operations 

that output final data elements (fo) and 
their frequency (ffo); 

2. Use depth-first search to calculate the di-
rect paths to each element in Final and 
place them in Paths; 

3. Evaluate each in Paths using formula Fi 
= (G + H) where F is the score of each 
path, G is the total individual cost of the 
operations executed in the prior states of 
the process and H is the total cost of the 
remaining operations along the selected 
path. The cost of an operation is calculat-
ed as the sum of the frequencies of all 
operations divided to the frequency of 
that operation; 

4. Current path = the element from Paths 
where Fi is minimal; 

5. Recommendation = max frequency (Ena-
bled ∩ Current Path); 

6. If Recommendation = ø  
 End  
Else Compute New State and go to step 
3. 

One can notice that there is a potential prob-
lem with the Greedy approach (Algorithm 1). 
It can get stuck in providing the same rec-
ommendation over and over if there is a high 
frequency operation that is repeatedly ig-
nored by the user. The second algorithm 
adapts itself to the decision process by 
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changing the objective if a path with a lower 
cost is available to a final derived data ele-
ment (decision criterion) when the user re-
peatedly ignores the recommendation.  
Precision and recall  are described in [8] and 
are popular metrics for evaluating infor-
mation retrieval systems. Precision is defined 
as the ratio of relevant items selected to 
number of items selected [8]. Precision rep-
resents the probability that a selected item is 
relevant. Recall, is defined as the ratio of rel-
evant items selected to total number of rele-
vant items available [8]. Recall represents the 
probability that a relevant item will be select-
ed. The formulas for calculating precision P 
and recall R are: 
                                      P = Nrs / Ns;       R = Nrs 

/ Nr 

Where:  
Nrs is the number of relevant items selected; 
Ns is the number of the items selected; 

Nr is total number of relevant items. 
The problem of mining association rules de-
scribed in [4] can be stated as follows:  
Let I ={i1, i2, …, im} be a set of items. Let T 
= (t1, t2, …, tn) be a set of transactions (the 
database), where each transaction ti is a set of 
items ii, such that ti ⊆I. An association rule 
is an implication of the form, 
X → Y, where X ⊆ I, Y ⊆ I, and X ∩Y = . 
X (or Y) is a set of items, called an itemset. 
 
4 Implementation 
In Fig. 1 is depicted the framework of deci-
sion making process mining. After users in-
teraction with decision-aware system, the de-
cision logs are mined trough ProM software 
and an aggregated model is obtained. All the 
data from the aggregated model can be trans-
posed in relational database tables as pre-
sented in Figure 3. 

 

Fig. 3. The Database 
 
In the next paragraph, we will consider a 
running example to understand better how 
this transposition works. Fig. 4 is a represen-

tation of a small part of the aggregated mod-
el. 
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Fig. 4. Running example for transposition 

 
In Fig. 5 we observe the tables that corre-
spond to this example and which represent 

the equivalent of the DDM in terms of 
MySql table. 

 

 
Fig. 5. (left) DDMAGG table; (right) Operations tables for the running example 

 
Every operation that has input ∅ (0 in the ta-
ble) is considered to be a leaf. A leaf opera-
tion can be executed (is enabled) anytime 
during user’s actions. Every operation that 
has different input than 0 is considered to be 
a derived element because it is conditioned 
by the operation from the input. So, for ex-
ample, operation 3 cannot be performed until 
operation 2 is performed. Operation may 
have multiple inputs (e.g. operation 25 is de-
pendent on the execution of operation 4 and 
operation 12). Therefore, there are two rows 
for dependency in table Operations. 
In order to better understand Algorithm 1 and 
Algorithm 2 we will show in the next two 

subsections the processing steps performed 
by the algorithms mentioned above.  
 
Implementation of Algorithm 1 
Firstly, we transpose the aggregated DDM 
model into the ddmagg table. It contains the 
(most relevant) attributes opID, Name, Val-
ue, Freq, which refer to operation ID, de-
scription of the operation, the value of the 
operation and the number of occurrences for 
the operation (meaning the frequency).  
The Operations table contains the inputs for 
each operation. The output is the parent op-
eration and input represents the child opera-
tion. A parent operation can have more than 
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1 child. It can be queried so that all inputs of 
an operation can be extracted. 
The Input_string table captures the last op-
eration performed by the user and its details 
like the value of the operation and the PIID 
(Process Instance ID) of the user who per-
forms the action.  
Trace table focuses on operations performed 
by all users. An important attribute of trace 
table is Name2.This attribute stores content 

of Name attribute in a different form: every 
operator +, -, *, /, every =, ‘ ’, (, ) sign is re-
placed with “#”. We used this transformation 
to have uniform expression for each opera-
tion so that the inputs can be easily extracted 
no matter how complex the expression is. 
Every input string received from the web ap-
plication is stored in table trace while the last 
string is captured in input_string. 

 
Fig. 6. The Architecture of the recommender system 

 
In fact, as it can be observed in Fig. 6, the 
application focuses on creating recommenda-
tion for end-users in real time.  
In order to understand the user’s perspective 
over the recommendation algorithms we in-
troduce in Figure 7 the system’s user inter-
face. There are three main parts in this inter-
face. Section A refers to operations per-
formed by the user in the current work ses-
sion. Section B aims to describe the outputs 
of the recommendation algorithms and sec-
tion C consists of the basic elements that are 
the base of the decision (textboxes that con-
tain particular data for the context of renting 
or buying a certain house).    
In part A one can see that the user first per-
formed the operation: expens-

es_for_purchasing_house + 
price_of_the_house=, which is operation1. It 
continues with (expens-
es_for_purchasing_house + 
price_of_the_house=) - savings= , which is 
operation 2. Afterwards, the user chooses to  
perform ((expenses_for_purchasing_house + 
price_of_the_house=) - savings=) * inter-
est_per_year_loan=, that is operation 3.  
In part B one can see that the Greedy algo-
rithm recommends at this point two opera-
tions: savings - moving_cost and month-
ly_income – monthly_rent_for_house be-
cause they have the same maximum frequen-
cy. For now, the user can pick any recom-
mendations out of these or perform another 
operation as he agrees. 
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Fig. 7. Running example 1– performing operations and receiving recommendations on the 
web application 

 
In the next part of this section we will ex-
plain how those recommendations are pro-
duced. First of all, the input string opID is 
searched in ddmagg table. After the recogni-
tion of the opID, some SQL queries are per-

formed. In order to achieve the goal which is 
offering recommendation for end-users some 
steps are followed. For a graphical overview 
of the steps described below, we will use the 
activity diagram in Figure 8.  

  

 
Fig. 8. Activities diagram for algorithm 1 
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Steps 
1. We select the only activities performed by 
the current user, in Unique_trace table. 
2. For the current user we extract the basic 
enabled operations, but not executed. 
3. The executed operations are displayed for 
the current user in q1 Executed. 
4. Operations with executed input are shown 
in q2 Ops with executed inputs. This SQL is 
based on the last SQL and the Operation ta-
ble. 
5. In q3 we extract operations with executed 
and unexecuted inputs. 
6. In q4 Ops we extract operations with un-
executed input. 
7. In q5 we extract the derived enabled op-
erations. 
8. In q6 we filter the records from q5 by add-
ing a new request: the operation must not be 
executed. 
9. In query10 we select all enabled opera-
tions, whenever they are basic or derived. 

10. In RECOMMENDATION are selected 
the recommendations for the most frequent 
operations. 
The decision aware system and the results of 
the recommendation algorithms can be tested 
and used by logging-in at 
http://www.edirector.ro/v4_1/ (user: test, 
password: test). Next, we will consider two 
running examples to demonstrate how this 
algorithm works.  
In order to understand better the explanations 
above, we show an actual numerical exam-
ple. The database and the queries associated 
with users actions are illustrated in Fig. 9. 
The last operation performed by this user is 
((price_of_the_house+ expenses_purchase) – 
savings)* interest_loan)/months_in_year, its 
value 500 and the PIID of the user 1 (which 
is allocated dynamically in the web applica-
tion) are retained in the input_string table, 
but also in trace table. Unique_trace in Fig. 
9.1 contains only the operations performed 
by the user 1 which are 1, 2, 12, 4.

 

 
Fig. 9. Data Processing Second Example of the Recommender System 
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The next step indicated in Fig. 9.2 is to iden-
tify the operations which are basic enabled, 
but not executed. These are operations 6 and 
7, because they have 0 as input. In other 
words these are leaf elements for the DDM. 
Furthermore, we are interested in details re-
lated to the executed operations. So, (in 3) 
we observe operation 2 appears as input, but 
also as output and that it has two parents 3 
and 5. Moreover operation 25 has two inputs: 
4 and 12. 
It is very important to understand that the 
recommendation algorithm will recommend 
an operation only if all its children operations 
are already executed. At (4) the operations 
with executed input are listed: 2, 3, 5, 25. 
In this example there are no operations with 
unexecuted inputs (Fig. 9.6), so in Fig. 9.5 
the list of operations with executed and un-
executed operations remains 2, 3, 5, 25. If we 
consider the hypothesis of a user, named user 
X who performs the exact operations as user 
1 except the last one is not done (meaning 
operation 4), than in this case the list of oper-
ation with unexecuted input would contain 
25. This element would have an executed in-
put element (12) and an unexecuted input el-

ement(4).In this case (Fig. 9.7) the derived 
enabled would display only 2, 3, 5.We have 
ended this assumption and return to the initial 
example. So (Fig. 9.7) is illustrated the de-
rived enabled operations which are: 2, 3, 5, 
25. Some of these derived enabled operations 
might already be executed. 2 is the operation 
in this terms. So, (Fig. 9.8) those operations 
that are enabled, but not executed are: 3, 5, 
25. Now an union is necessary between basic 
and derived enabled but not executed (Fig. 
9.9).The list is 3, 5, 6, 7, 25.To verify the re-
sult union the results from (2) and (8). There 
is only one step to be done to obtain the rec-
ommendation for this example. In Fig. 9.10 
we select the operation from 9 top 1 in a de-
scending order with frequency criteria. The 
result is operation 6 and 3 with the same fre-
quency, 11.  
 
Algorithm 2 
We use the following tables as input for this 
second recommendation algorithm: ddmagg, 
operations, trace, input_string. Ddmagg 
and operations table are presented in Fig. 5 
and the last two tables are the ones below. 

 

 
Fig. 10. Running Example Data for Algorithm 2 

 
PRELIMINARY STEPS: 
At first, the user has to perform an operation 
which is inserted in the input_string and 
trace table. Every operation in trace table has 
the attribute opID. So for every operation 
that was performed by a certain user we have 
to find the correspondent in table ddmagg in 
order to see if the same operation was per-
formed earlier by other user. If the result is 
positive, the attribute trace.opID for the last 
row is updated from default 0 to the opID 

found for the same operation name by exe-
cuting the sql command: "update trace set 
opID='$opID_ddmagg', PIID='$piid' where 
Name='$name'". 
Secondly, we select only those operations 
from trace that were executed by the current 
user, in unique_trace. In our scenario, the PI-
ID of the user is 1, so the unique_trace will 
contain all the operations performed by this 
user. Remember that in trace table the con-
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tent refers to all users and all operations. The unique_trace table is described in Fig. 11. 
 

 
Fig. 11. Table unique_trace which contains the operations made by the current user 

 
Steps: 
1. We create final array which contains all fi-
nal operations and their inputs. The SQL 
command which illustrates the final opera-
tions is: "SELECT operations.output, opera-
tions.input FROM operations LEFT JOIN 
operations AS operations_1 ON opera-
tions.output = operations_1.input WHERE 

(((operations_1.output) Is Null))". This 
sql returns only those operations that are only 
output and not input for other operations. The 
result of this SQL is described as follows: 
output 5, 6, 7, 25, 25; input: 2, 0, 0, 12, 4. 
For every element in output list exists an el-
ement in the input list on the same position. 
The result is viable for the running example 
considered.  
2. For every final operation in final, meaning 
for 5, 6, 7, 25 we have to perform depth 
search algorithm in order to find the path(s) 
to them. We use the DDM in Fig. 4 for the 
running example. The graphical presentation 
in  Fig. 12 will be very useful in 
understanding  the results of the depth search 
algorithm.  
 

 
Fig. 12. The table of all paths for the running 

example 

 
The next subsection describes Depth-First 
Search Algorithm in order to understand how 
table path was created: Input: Operations 
table (in the theoretical approach this is a 
graph G and a vertex v of G). 
Output: Path table (in the theoretical ap-
proach this is a labeling of the edges in the 
connected component of v as discovery edg-
es and back edges) 
  procedure DFS(G,v): 
      label v as explored 
      for all edges e in G.incidentEdges(v) do 
          if edge e is unexplored then 
              w ← G.opposite(v,e) 
              if vertex w is unexplored then 
                  label e as a discovery edge 
                  recursively call DFS(G,w) 
              else  
                 label e as a back edge 
3. The depth search algorithm will return for 
final element 5 the list 1, 2, 5; for final 6, the 
list 6; for final 7, the list 7; for final 25 two 
different lists: 12, 25 and 1, 2, 3, 4, 25. We 
create the path table in Fig. 12  in 2 essential 
steps. At first we count the number of col-
umns then we create a matrix which contains 
on each column the path to follow to get to 
the final operation. The table path presented 
in Fig. 12 is such a matrix (we used -1 value 
to fill the empty cells).  Further, we concen-
trate our attention on each of these columns.  
4. Afterwards, the sum of frequencies must 
be calculated in order to find out the cost of 
every operation that is considered in ddmagg 
table. Therefore, by using a SQL statement, 
the sum is returned. In our case, the total sum 
of frequencies is 113 as indicated in Fig. 13. 
Hence, the operation cost for every operation 
is calculated as:  
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ݐݏܿ ൌ
ݍ݁ݎ݂݂݉ݑݏ
ݍ݁ݎ݂

, ݅ ൌ 1,… , ݊ 

where: n is the total number of operations, 
sumoffreq is the total sum of frequencies in 
ddmagg and opfreqi is the frequency for eve-
ry operation in ddmagg.  
In Fig. 13, we show the costs for every op-
eration. We need the opcost to calculate the F 
function as inspired from the A* algorithm. 
 

 
Fig. 13. Operation costs 

 
5. Hence, we start by calculating the G and H 
function for every column in path. We have 
to perform recursive calculations for every 
path. In our case there are 7 paths to take into 
consideration. g function receives as a 
parameter every column from path and 
calculates for every path the cost F as G+H. 
Afterwards the algorithm will recommend 
the next operation to be performed from the 
path with the lowest cost.    
6. At first, we want to take all opID of 
operations that are considered to be in the 
standard path of the goal,  and to calculate 
the cost  F_all of this path without any 
deviation. Therefore all operation cost for 
every  column in path is sumed up. For 
example, for our last column in path, which 
contains 1, 2, 3, 4, 25 elements (while others 
are equal to -1) with the costs 3.53, 3.9, 
10.27, 12.56, 22.6; the total cost calculated is 
52.86. This was the straight-up way to 
calculate the path cost. What if there are 
multiple operations performed outside the 
path? How does this aspect affect our 
approach? 
Well, it adds suplimentary cost and so G is 
increased. Hence, if G becomes so large that 
by calculating F=G+H, the sum will exceed 
the F of another path from which we haven’t 

performed any operation, then we have to 
give up the initial path and recommend 
performing operations from the latter. 
7. Therefore, we identify the elements that 
are executed from the path and name them 
G_executed_inside_path. In our case 
operations 1, 2 and 4 were performed with 
costs 3.53, 3.9 and 12.56. The total cost for 
these elements is 19.99.  
8.If there are operations executed outside the 
path, we name this as 
G_executed_outside_path. For path c7 in our 
example, we identify that op 12 is executed 
outside the path and its cost is 11.3. We will 
see if this operation will not change our 
direction towars another path that has a lower 
cost in being performed (although it contains 
or not operation 12).  As a result,  
G=19.99+11.3=31.29 (for path c7).  
9. Furthermore, we concentrate on those 
operations that are inside the path, but 
weren’t executed until now. We name this 
operations as H_not_executed_from_path.  
For path c7, H_not_executed_from_path 
consists of 3 and 25 with opCost 10.27 and 
22.6. So in order to achieve the goal of 
executing all operations from path c7 the sum 
10.27+22.6=32.87 must be added. 
10. So, F is the cost of all operations that are 
executed along the path plus all operations 
that are executed outside the path. In other 
words: 
ܨ ൌ ሺ݀݁ݐݑܿ݁ݔܧ	 ∩ ሻ݄ݐܽܲ ∪ ሺ݀݁ݐݑܿ݁ݔܧ ∖

 .ሻ݄ݐܽܲ
For path c7, F= 31.29 + 32.87 = 64.16, while 
if no deviations were made from this path, 
i.e. no other operations were performed, then 
the F would be equal to  52.86.  
 

 
Fig. 14. F function 

 
11. After, calculating the F values for all 
paths, we observe path c1 is the least 
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expensive path of all. We remind that ideal 
path c1 means  performing 1, 2, 5 operations. 
In our running example it is intuitive that 
operation 5 must be performed because 1 and 
2 have already been performed as 
unique_trace indicates and operation 5 is the 
next father operation. Anyway, our real path  
c1 involves 1, 2, 4, 12 operations until now. 
As the calculations indicate real path c1 owns 
the lowest cost of all. Therefore, we have to 
analyze which is the next operation from 
ideal path that is next to be performed.  At 
first we indicate all operations that weren’t 
executed inside the path.  
Afterwards we have to indicate which are the 
name of the operations that weren’t executed. 
Hence, an inner join is required between rec 
and ddmagg as follows: 

$sqlp="SELECT ddmagg.Name, rec.col, 
ddmagg.Freq FROM rec INNER JOIN ddmagg 
ON rec.col = ddmagg.opID". 
From the entire list of operations the 
algorithm selects only those operations with 
the highest level of frequency. The sqls 
related to this are: 
$sqlr="SELECT ddmagg.Name, rec.col, 
ddmagg.Freq FROM rec INNER JOIN ddmagg 
ON rec.col = ddmagg.opID ORDER BY 
ddmagg.Freq DESC LIMIT 1"; 
$sqls="SELECT ddmagg.Name, rec.col, 
ddmagg.Freq FROM rec INNER JOIN ddmagg 
ON rec.col = ddmagg.opID WHERE 
ddmagg.Freq=$Freqqq".  

For our example, the list of final 
recommendation with maximum frequency 
consists of 
((price_of_the_house+expenses_purchase)-
savings)/loan_period.

 

 
Fig. 15. Final recommendation for the second algorithm 

 
5 Validation 
The aggregated DDM in Fig. 16 is extracted 
from 50 individual traces [9]. It shows only 
data elements with a frequency greater than 

2. Operations that had been performed only 
once, are considered to be outliers and, there-
fore, safe to be abstracted from.

 

 
Fig. 16. Aggregated DDM (frequency of data elements greater than 2) 

 
The algorithms rely on this aggregated DDM to produce recommendations. Each algorithm 
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will perform the processing steps explained 
in the previous section using the relational 
database representation of this model (stored 
in ddmagg table). Our main validation ap-
proach is to demonstrate that our algorithms 
have a higher precision and recall than asso-
ciative rule approach. 
Let us consider a partial trace T1 that consists 
of three operations:  
expenses_for_purchasing_house + 
price_of_the_house,  
(expenses_for_purchasing_house + 

price_of_the_house)-savings,  
((expenses_for_purchasing_house + 
price_of_the_house)-
savings)*interest_per_year_loan. 
The preliminary steps for receiving recom-
mendation are: a) identifying the operations 
already performed by the user, and b) observ-
ing whether the operation is unique or it fits 
an operation already in the DDM (was al-
ready performed by other user as stated in 
Fig. 16). In fact, the operations performed by 
this user are op1, op2 and op3.  

 
Table 1 shows the next recommendations 
generated by Algorithm1, Algorithm 2 or As-
sociation rules.  
To establish which algorithm performs best 
we will calculate precision and recall metrics 
for these recommendations. To do that, we 
have to establish which the relevant opera-
tions to be performed are. This is a critical is-
sue since both precision and recall rely heavi-
ly on the notion of ‘relevant’ items. For our 
problem it is a difficult task since there is no 
right and wrong in decision making and eve-
ry decision maker may rely on different op-
erations in order to reach the same conclu-

sion. Therefore, the output one expert could 
be considered irrelevant by another. Even 
more, the choice of relevant items needs not 
to bias towards any of the algorithms. 
First, we will use the set of available items as 
the set of operations that can be performed 
by any user (whether they were or were not 
performed). Our first choice for the set of 
relevant items is the set of operations that are 
enabled at a certain time during the decision 
process (i.e. all operations that can be per-
formed at a certain point are considered rele-
vant). The second choice is to ask experts to 
identify possible next operations, given a par-
tial trace of operations.  

 
Table 1. Recommendation comparison for algorithm 1, algorithm 2 and associative rules at 

step 4 of the trace 
Algorithm 1 

 Recommendation 
Algorithm 2 

Recommendation 
Predictive a priori 

acc:(0.75471) 
op6=  
savings-moving_cost 
(freq 11) 

op14 = 
monthly_income-
monthly_rent_for_house  
(freq 11) 

op26= 
(((expenses_for_purchasing_house + 
price_of_the_house)-savings) 
*interest_per_year_loan)*no_years 
 (freq 4) 

op14 =  
monthly_income-
monthly_rent_for_house  
(freq 11) 

- op28 =  
((((expenses_for_purchasing_house+ 
price_of_the_house)-
savings)*interest_per_year_loan)* 
no_years)-
(expenses_for_purchasing_house+ 
price_of_the_house)-savings  
(freq 5) 

 
We will explain the first approach to choos-
ing relevant items by using the DDM in Fig. 
16. An operation is enabled if all the input 
data elements are known and, therefore, the 

operation can be performed. This action can-
not take place, if an operation is dependent 
on some child operation that is not executed 
at this moment. For example, consider that in 
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trace t operations op6, op10 are performed. If 
the user wants to perform operation op 15, 
this cannot be done at this time, unless opera-
tion op16 is performed first. If an operation is 
not enabled, then is included in the set of ir-
relevant operations. It is important not to for-
get this aspect, especially in associative rules 
approach because this method does not take 
into consideration the order of the operations 
and make association based only on occur-
rence of the operation. We consider that our 
approach is somehow superior to it because 

our algorithms are alert to occurrence and 
position as well. 
In Table 1, the relevant items selected by the 
first algorithm are 4, and the total number of 
items selected is 4. Therefore, precision is 1 
for both recommendations. The total number 
of relevant items available (enabled opera-
tions considering the partial trace and the 
DDM in Fig. 16) is 9. Therefore, recall is 
4/9=0.44. For the second algorithm precision 
is also 1 and recall 0.44.  

 

 
Fig. 17. Precision and recall for algorithm 1, algorithm 2 and predictive a priori association 

rules for the example in Table 1 
 
While considering predictive a priori ap-
proach we observe two possible associations. 
If we look at the two recommendations, we 
notice that op 28 cannot be performed before 
op 26. So in this case, op 28 is included in 
the set of irrelevant operations. Therefore, 
precision is calculated as ¾=0.75 an recall as 
3/9=0.33. 
Fig. 17 reveals that the algorithms returned 
almost half of the relevant results. Precision 
is 1 for our algorithms which means that the 
recommendation algorithm returns only rele-
vant operations, whereas for the predictive a 
priori association rules approach we have a 
case for which precision is 0.75 and recall is 
0.33. This proves that Algorithm 1 and 2 al-
ways provide operations that can be executed 
at the next step of the process because they 
output results only from the Enabled opera-
tions set. The drawback of a priori is that 

there could be some recommendations that 
are not possible to execute at the next step. 
This drawback is more evident as the partial 
trace is longer (i.e. the more previous opera-
tions performed by the decision maker). 
Since Algorithms 1 and 2 seem a better fit for 
our domain, we will compare one against the 
other in order to evaluate which approach is 
better. For this approach we selected several 
partial traces and asked two experts to give 
us a number of n choices about alternative 
operations that may be performed next. We 
compared each answer to the first n recom-
mendations produced by our algorithms. We 
didn’t use the comparison with the associa-
tive rules recommendation because the long-
est extracted rules had a length of 3. There-
fore, we cannot produce a recommendation 
for a longer partial trace.  
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Table 2. Recommendation comparison for algorithm 1, algorithm 2 and experts 
Partial trace Algorithm 1 

 Recommenda-
tion 

Algorithm 2 
Recommendation

Expert 1 
Rec 

Expert 2 
Rec 

op1,op2,op6 op3,op14,op4 op14,op29,op5 op10,op16,op15 op3,op26,op10 
op1,op6,op7 op2,op3,op14 op14,op24,op2 op24,op3,op27 op10,op26,opx1
op1,op2,op3, 
op4 

op6,op14,op29 op14,op29,op5 op27,op11,op22 op5,op6,opx2 

op1,op2,op5, 
op18 

op6,op14,op3 op14,op29,op20 op3,op4,op27 op3,opx3,opx4 

op1,op2,op11, 
op8,op14 

op6,op3,op29 op29,op5,op20 op22,-, - op5,op3,opx5 

 
As it is observed in  
Table 2 we selected a number of 5 partial 
traces for which we expected 
recommendations from the algorithms 
developed and from accounting and decision 
process mining experts. We asked the experts 
to provide 3 alternative operations that might 

be performed next. We consider that the 
process of evaluating algorithms 
recommendations is valid only if we compare 
the algorithms recommendations to the ones 
provided by experts. Therefore, we have 
calculated precision and recall metrics for 
every trace and showed the results in Fig. 18.  

 

 
Fig. 18. Precision and recall for the five traces 

 
We discovered that precision values for 
algorithm 1 was 0.67 in four out of five cases 
and one out of five for algorithm 2. This 
indicates that the recommendations 
algorithms return relevant operations in 
higher proportion than irrelevant operations. 
We have to discuss the 0 value for precision 
and recall for the recommendations provided 
by the second algorithm reffering to trace 
106/107. This trace is an exception because 
none of the second algorithm 
recommendations were found in the set of 
relevant items. This set consists of all 
recommendations provided by experts. 
Therefore, for our study we considered the 

union of operations recommend by expert 1 
and expert 2 be the set of relevant items. The 
cardinal of this set is 18 operations. The 
explanation for this result is the small 
number of operations in the set of relevant 
items. We consider that asking more experts 
in the field for choices can lead to an 
increasing number of operations in the set of 
relevant items. Moreover, this leads to a 
higher probability that the recommendations 
provided by our algorithms are included in 
the set of relevant items and therefore 
precision gets higher. The highest value for 
recall is 0.33. This indicates that the 
algorithms returned some of the relevant 
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result, but in none of the cases were 
recommended all relevant recommendations.    
We conclude that, the research presented in 
this paper  strengthens the fact that providing 
recommendations is not an allways an easy 
task, although is performed by implemented 
software algorithms.  
 
6 Conclusions 
The goal of our research is to improve deci-
sion making by using a process model that 
explicitly shows the steps that need to be per-
formed by the decision maker towards choos-
ing one alternative. It is not our intention to 
recommend the better decision alternative. 
We want to make sure the decision makers 
made an informed decision by correctly and 
completely evaluating all alternatives. There-
fore, the notion of recommendation used in 
this paper refers to the best next step (data 
aggregation operation) to be performed dur-
ing the decision making process. To this end, 
we introduced two recommendation algo-
rithms that rely on a model extracted before. 
The first algorithm simply recommends the 
most frequent operation(s) that may be exe-
cuted at the next step. The second algorithm 
takes a more complex approach. It tries to 
guide the user towards a sub-objective of the 
decision process (e.g. evaluating some crite-
rion). 
The paper explicitly shows how those two 
algorithms actually work and how they are 
implemented in our test application. To this 
end we provide both running examples and 
coding insights. 
The validation part of the paper introduces a 
comparison of the two algorithms with the 
association rules-based recommendations. 
We conclude that the classical approach is 
unfit to our domain because it produces rec-
ommendations that cannot be executed. 
The second part of the validation section re-
veals that the first algorithm produces better 
recommendations than the second. However, 
the conclusion is limited because of the dif-
ference in decision making profiles of hu-
mans. Still, the experiment we performed 
supports our claim that, if the essence of 
what a large number of decision makers is 

extracted, the results are close enough to the 
performance of experts. The recommendation 
engine acts like an expert system by giving 
advice to the user while making the decision. 
Somehow, our decisions are influenced by 
others way of thinking. By taking such an as-
pect into consideration, we trust more or less 
the global opinion of the crowd. As much as 
we discover their proficiency in opinion, the 
confidence gets a higher rate. These two al-
gorithms are based on user’s interaction and 
the generality of opinions is granted by a 
large number of users. 
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