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In this paper, we research, analyze and develop optimization solutions for the parallel 
reduction function using graphics processing units (GPUs) that implement the Compute 
Unified Device Architecture (CUDA), a modern and novel approach for improving the 
software performance of data processing applications and algorithms. Many of these 
applications and algorithms make use of the reduction function in their computational steps. 
After having designed the function and its algorithmic steps in CUDA, we have progressively 
developed and implemented optimization solutions for the reduction function. In order to 
confirm, test and evaluate the solutions’ efficiency, we have developed a custom tailored 
benchmark suite. We have analyzed the obtained experimental results regarding: the 
comparison of the execution time and bandwidth when using graphic processing units 
covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104) and a 
central processing unit; the data type influence; the binary operator’s influence.     
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Introduction 
Initially, graphics processing units 

(GPUs) have been designed solely for 
graphic specific rendering purposes, but later, 
by the end of the 1990s, these processors 
became programmable at a hardware level. In 
November 2006, the NVidia company 
released the GeForce 8800 GTX, the first 
GPU to support the new CUDA (Compute 
Unified Device Architecture) by unifying 
both software and hardware components [1].  
This new parallel programming model uses 
the huge parallel computational processing 
power of the GPU to solve complex 
processing tasks in a much more efficient 
manner than by using traditional processing 
methods based on central processing units 
(CPUs).  This novel architecture offers 
several new components, specifically 
designed for alleviating the limitations of 
previous GPUs architectures and easing the 
processing of general-purpose computations 
through graphics processing units. Unlike 
previous GPU hardware architectures, the 
Compute Unified Device Architecture 
employs a unified implementation that makes 

it possible for the GPU to perform general-
purpose computations. 
In this context, the development of high 
performance optimization solutions using 
high-performance basic functional blocks 
(like the parallel reduction algorithmic 
function) leads to a tremendous improvement 
in the parallel data processing. In the 
scientific literature, this type of research is of 
great interest, many researchers studying the 
potential to optimize algorithmic functions 
using the CUDA architecture [2], [3], [4], 
[5], [6]. None of the works so far (to our best 
knowledge) has studied optimization 
solutions that scale in terms of resource 
allocation and performance on all the 
available CUDA architectures, especially on 
the latest Kepler CUDA architecture.  
The latest three CUDA-enabled graphic cards 
are GTX 280 from the Tesla GT200 
architecture, GTX 480 from the Fermi 
GF100 architecture and GTX 680 from the 
Kepler GK104 architecture [7].  
The GTX 280 graphics processor, launched 
on 16 Jun 2008, is based on 65 nm 
fabrication technology, has 240 CUDA cores, 
30 streaming multiprocessors and 1.4 billion 
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of transistors, the processor clock runs at 
1296 MHz, the graphics clock at 602 MHz. It 
comes with 1024 MB of memory in the 
standard configuration, having an effective 
clock of 1107 MHz, a 512-bit GDDR3 
memory interface width and 141.7 GB/sec 
memory bandwidth. It has the maximum 
board power (TDP) of 236 Watts, a texture 
fill rate of 48.2 billion/sec, 80 texture units 
and 32 ROP units.  
The GTX 480 graphics processor, launched 
on 26 March 2010, is based on 40 nm 
fabrication technology, 480 CUDA cores, 15 
streaming multiprocessors and 3.2 billion of 
transistors, the processor clock runs at 1401 
MHz and the graphics clock at 700 MHz. It 
comes with 1536 MB of memory in the 
standard configuration, having an effective 
clock of 3700 MHz, a 384-bit GDDR5 
memory interface width and 177.4 GB/sec 
memory bandwidth. It has the maximum 
board power (TDP) of 250 Watts, a texture 
fill rate of 42 billion/sec, 60 texture units and 
48 ROP units. 
The newest CUDA graphic card, the GTX 
680, released on 22 March 2012, is based on 
28 nm fabrication technology, 1536 CUDA 
cores, 8 streaming multiprocessors and 3.54 
billion of transistors, the boost clock runs at 
1058 MHz and the graphics clock at 1006 
MHz. It comes with 2048 MB of memory in 
the standard configuration, having an 
effective clock of 6000 MHz, a 256-bit 
GDDR5 memory interface width and 192.2 
GB/sec memory bandwidth. It has the 
maximum board power (TDP) of 170 Watts, 
a texture fill rate of 128.8 billion/sec, 128 
texture units and 32 ROP units. The GK104 
poses significant differences regarding the 
streaming multiprocessors, that are now 
called SMX units and incorporates several 
important architectural changes in order to 
deliver an improved performance and power 
efficiency. Taking into consideration the 
above-mentioned technical specifications, we 
aimed to research, develop and study 
optimization solutions for the parallel 
reduction function that fully uses the 
processing power of CUDA enabled GPUs 

covering the main generations (Tesla GT200, 
Fermi GF100, Kepler GK104). 
We paid particular attention to obtain a 
software solution that dynamically adjusts 
the number of thread blocks, threads per 
block and the number of processed elements 
per thread in order to harness the 
computational processing power of GPUs as 
to reach a performance peak. 
 
2 Designing an Efficient Scalable CUDA 
Parallel Reduction Algorithmic Function 
The reduction function is extensively used in 
many data parallel processing applications 
and algorithms, therefore its optimization 
improves the performance of all data 
processing algorithms and applications that 
implement the reduction function.  
In the following we define the reduction 
function, using an associative binary operator 
*, defined on the set of real numbers. For an 
input ݊-dimensional vector ݒ =[ܽ, ܽଵ, … , ܽିଵ] with real components, the 
reduction operation, denoted by ݀݁ݎሺ∗ሻ, 
produces an output real number, defined 
through:   
ݒሺ∗ሻ݀݁ݎ     = ܽ ∗ ܽଵ ⋇ …⋇ ܽିଵ                (1) 
The associative binary operator used in the 
definition of the reduction function can be 
the summation, maximum, minimum or the 
multiplication operator. In various scientific 
fields there are common applications that use 
the reduction function and the most common 
one is the computation of the scalar product 
of two vectors. Considering ݔ ,ݔ]= ,ଵݔ … , ݕ  ିଵ] andݔ = ,ݕ] ,ଵݕ … ,  [ିଵݕ
two vectors with real components, their 
scalar product is defined as the real number:  
ݔ     ⋅ ݕ = ∑ ିଵୀݔ                                 (2)ݕ
This computation requires ݊ multiplication 
operations and ݊ − 1 summation operations. 
Since multiplication operations are 
independent of each other, the reducing 
operation defined by (2) facilitates its 
execution through parallel multiplication 
computations, followed by sequential 
summations. Consequently, the main 
advantage of using implementations based on 
the parallel reduction is that it converts 
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fragments of sequential computations in 
parallel equivalent ones. 
The intuitive approach for designing the 
parallel reduction algorithmic function is to 
use only an execution thread that iterates and 
computes the sums in the shared memory 
starting from the input vector [1], but this 
method has a few disadvantages and 
limitations as the necessary execution time is 
proportional to the input vector’s dimension 
and there are hundreds of idle execution 
threads.  
A more advantageous designing method is 
based on the parallel execution of the 
reduction, because in this situation the 
execution time is proportional to the 
logarithm of the input vector’s dimension. 
When the size of the input vector is large, we 
split it into multiple fragments and allocate 
their reduction to a thread block that 
processes the fragment and stores its partial 
result in the global memory. Afterwards, 
these partial results are reduced to a single 
element, obtaining the output. We have 
called the reduction function at every thread 
block’s level depending on the input vector’s 
size and the thread block’s dimension, using 
the corresponding parameters in order to 
obtain the best performance. 
The main direction that we have followed 
when designing and developing the 
optimized parallel reduction algorithmic 
function was to obtain a CUDA processing 
solution, self-adjustable and self-
configurable (regarding the number of thread 
blocks, the number of threads in a block and 
the number of processed elements per 
thread), depending on the GPU’s 
architecture. Our solution offers a high 
degree of performance on a wide range of 
CUDA GPUs architectures: Tesla GT200 
(implemented in the GTX 280), Fermi 
GF100 (implemented in the GTX 480), 
Kepler GK104 (implemented in the GTX 
680). Thus, we have designed the parallel 
reduction algorithmic function as to use: a 
maximum of 256 threads per block on the 
GTX 280; a maximum of 512 threads per 
block on the GTX 480 and GTX 680 GPUs. 

We have developed the parallel reduction 
algorithmic function in 4 steps as we have 
also presented in [8]: 
Step 1. If the thread block is of size 1, and the 

input vector has only one element, 
this element is copied as the output 
element. If the input vector has 2 
elements, they are reduced using the 
corresponding binary operator. If the 
thread block has a size larger than 1, 
the processing continues with Step 2. 

Step 2. Each thread reduces sequentially 
several elements (8/16/32 depending 
on the compute capability of the 
GPU’s architecture) in the global 
memory, this process taking place in 
parallel, between the threads of each 
block (at intra-block level) and also 
between different blocks (at inter-
block level). The obtained partial 
results are being copied from the 
global memory into the shared 
memory, where they are reduced in 
parallel, benefiting from the shared 
memory’s increased performance and 
low latency. 

Step 3. Each thread block’s results are stored 
in the global memory. Therefore, it is 
obtained an output vector, in which 
every element represents the 
corresponding sum of each parallel 
thread block.  

Step 4. Then, the vector’s elements that are 
stored in the global memory are 
reduced using the host device, 
because the GPU would waste its 
resources in the final steps of the 
reduction as the dataset dimension is 
undersized. Therefore, the final 
computations will be processed by the 
CPU, summing the vector’s 
components stored in the global 
memory. While the CPU completes 
the reduction, the GPU is already 
available to process other data. 

The above-described parallel reduction’s 
implementation is tree-type based and we 
have used it within each thread block. Thus, 
the reduction algorithmic function is 
designed to use multiple thread blocks for 



Informatica Economică vol. 16, no. 3/2012  75 

 

processing large dimension input vectors, 
offering to each of the GPU’s multi-
processors an enough computational load in 
order to fully employ their parallel 
processing power. Each thread block will 
reduce a part of the input vector’s elements. 
After each reduction step, thread blocks 
communicate to each other and send their 
obtained partial results, in order to process 
the next step of the algorithm. For an 
efficient reduction of very large input 
vectors, we had to globally synchronize the 
results among all the thread blocks.  Thus, 
after each thread block has produced its 
result, the process could continue recursively 
until the final output has been obtained. 
However, in the Compute Unified Device 
Architecture there is no possibility to 
globally synchronize the results using a 
direct instruction in the CUDA API. This 
happens because, on one hand there are 
hardware difficulties at the graphics 
processor level and on the other hand, the 
global synchronization would require 
developers to use only a few thread blocks, 
that would reduce the overall efficiency. 
In order to overcome this technical 
limitation, we have split the function in 
several kernel functions. Each call of a kernel 
function provides a synchronization point 
and the advantage of the method is that it 
does not introduce a significant 
computational load that could affect the 
performance [5]. The CUDA kernel function 
running is asynchronous, requiring 
synchronization on the host machine in order 
to copy the data from the GPU’s memory 
into the system’s memory. The source code 
is the same at all the levels of the reduction 
algorithmic function and therefore we can 
recursively call the kernel functions. This is 
done only on the host machine, as a CUDA 
kernel function does not allow a recursive 
call. 
In the following, we present several solutions 
that we have developed for optimizing the 
performance of the parallel reduction 
algorithmic function.     
 

3 Optimization Solutions for Improving 
the Performance of the Parallel Reduction 
Algorithmic Function in CUDA 
Using a thorough analysis of the CUDA 
programming guide and of the best practices 
depicted in the literature [2], [3], [4], [5], [6] 
for developing successful applications in 
CUDA, we have identified and developed a 
series of optimization solutions for the 
parallel reduction algorithmic function. The 
main optimization solutions that we have 
developed and applied, target aspects 
regarding: harnessing the GPU’s 
performance; the optimal use of the shared 
memory bandwidth; the synchronization 
possibilities; the efficient cooperation 
between the GPU and the CPU. In the 
following we will describe our solutions and 
their progressive development.  
Solution 1 - The interleaved addressing 
technique. Using this technique, we have first 
instructed every thread to load one element 
from the global memory into the shared 
memory. We have then performed the 
reduction phase in the shared memory (it had 
the advantage of a high throughput) and the 
obtained result was loaded back to global 
memory. We have found that this technique 
had the disadvantage of generating divergent 
warps in which the threads did not process 
the same tasks. These warps are inefficient in 
the reduction phase as they slow down the 
data processing; therefore, we have decided 
to manage the divergent branching in order to 
improve the performance.   
Solution 2 - Avoiding the divergent 
branching. We have eliminated the above-
mentioned limitations and we have improved 
the performance by replacing the divergent 
branching with a non-divergent one using a 
direct indexing for each element of the input 
vector that would be reduced. This technique 
has eliminated the divergent warps, but 
generated shared memory bank conflicts due 
to multiple requests from the same memory 
bank, that we had to manage using the 
sequential addressing technique.   
Solution 3 - The sequential addressing 
technique. We have used thread’s indexing 
instead of direct indexing in order to manage 
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the shared memory bank conflicts. Although 
we have obtained significant improvements 
regarding the execution time and bandwidth, 
we have observed that further optimizations 
are still possible as the GPU’s resources are 
not fully employed. When each of the threads 
loads an element from the global memory 
into the shared memory, half of the threads 
within a block remain idle. Therefore, for 
solving this situation, we have decided to 
perform a reduction in the global memory 
before loading the data in the shared 
memory.    
Solution 4 - Performing a reduction of data 
stored in the global memory before loading it 
into the shared memory. This solution solved 
the disadvantages of the sequential 
addressing technique and led to significant 
performance improvements. Even if the 
bandwidth increased considerably, further 
optimizations were still achievable. The 
reduction function does not involve an 
increased computational effort but the large 
amount of necessary synchronization 
operations caused a performance penalty. In 
order to overcome this penalty we have 
minimized the number of executed 
instructions.   
Solution 5 - Minimizing the number of 
executed instructions. The parallel reduction 
algorithmic function that we have developed 
is useful for multicore architectures such as 
SIMD (Single Instruction, Multiple Data), in 
which case instructions are synchronous 
within each warp. We have noticed that, as 
the reduction process progresses, the number 
of active threads decreases, and when the 
number of threads is less than or equal to 32, 
only the last warp remained to be executed. 
Within this warp we did not have to 
synchronize or to validate the threads’ 
indexes anymore. Consequently, we have 
decided to remove these instructions for 
obtaining an increase in the overall 
performance and to minimize as much as 
possible the number of synchronization 
operations.  
Solution 6 - Processing multiple elements 
per thread. By reducing multiple elements 
per thread during the same reduction step (8 

elements for GTX280, 16 elements for 
gtx480 and 512 elements for the GTX680), 
we have gained a considerable performance 
improvement for the reduction algorithmic 
function.  
Solution 7 - Decomposing the reduction 
function in several smaller ones, in order to 
achieve global synchronization. After each 
reduction step, the blocks of threads have to 
inter-communicate their partial results, so we 
had to synchronize them. But in CUDA it is 
not technically possible to directly globally 
synchronize, so we have decided to 
decompose the reduction function into 
several smaller kernel functions. Each call of 
a kernel function provided a synchronization 
point and therefore we have achieved 
synchronization with minimal computational 
costs.  
Solution 8 - Using the CPU to perform the 
final computations in the last step of the 
reduction algorithm. In the last step of the 
reduction algorithm the dataset dimension is 
undersized and thus, if we had used the GPU 
to perform the reduction in this case, its 
resources would have been wasted. 
Therefore, we have decided to reduce the 
array’s elements from the global memory in 
the last step of the reduction using the CPU. 
The main advantage of this approach is that 
the GPU is already available to process other 
computations while the CPU finalizes the 
reduction operation.  
By implementing these eight solutions, we 
have improved the parallel reduction 
algorithmic function’s performance, 
regarding both the execution time and 
bandwidth. In the following, we present a 
benchmark suite that we have developed in 
order to analyze the performance of the 
parallel reduction function in CUDA, 
optimized using the above-described 
Solutions 1-8.  
 
4 Experimental Results 
We have analyzed the performance of the 
above described parallel reduction function, 
using the Windows 7 64-bit operating system 
and the following configuration: Intel i7-
2600K operating at 4.6 GHz with 8 GB 
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(2x4GB) of 1333 MHz, DDR3 dual channel. 
We have used the NVIDIA graphic cards 
GeForce GTX 280, GTX480 and GTX 680. 
Programming and access to the GPUs have 
used the CUDA toolkit 4.1, with the NVIDIA 
driver version 270.81 (for the GTX 280 and 
the GTX 480) and NVidia 301.10 for the 
GTX 680. 270.81.  
In order to reduce the external traffic to the 
GPU, all the processes related to the 
graphical user interface have been disabled. 
We have used the same measuring time 
method that we have used before, when we 
have developed other algorithmic function in 
CUDA [9], [10], [11]. 
The parallel reduction algorithm is designed 
to be used in a large number of applications 
running on GPUs, so the transfer times 
between the central processing unit and the 
graphic processing unit vary depending on 
the complexity of the specific developed 
application. Therefore, our measurements do 
not include the necessary time for data 
transfers.  
We have used the CUDA event application 
programming interface (API) in order to 
compute the average execution time that the 
GPU spends for executing the parallel 
reduction algorithmic function. This method 
has many advantages compared to other 
methods that rely on operating system timers, 
because those methods usually include 
variations from different sources and latency, 
being more suitable for the CPU rather than 
the GPU.  
We have used time events provided by the 
CUDA API to mark the moments of the 
function’s execution. If we had tried to time 
the GPU execution using CPU timers, a 
series of problems could have appeared. For 
measuring the execution time using CUDA 
events, we have created a start and a stop 
event. Some of the kernel calls in CUDA C 
are asynchronous. The graphic processing 
unit begins to execute the code and, before 
the GPU has finished, the central processing 
unit executes the next code line.  
We have used the CUDA API function 
“cudaEventSynchronize()” in order to 

synchronize and record accurately the value 
of the stop event. Thus, we have instructed 
the runtime to block all further instructions 
until the graphic processing unit has reached 
the stop event. When we call the 
“cudaEventSynchronize()” function, the 
GPU would have completed all processes 
before the stop event and the time stamp 
could be correctly recorded. Therefore, we 
have obtained a reliable measurement of the 
execution time in the benchmark suite of the 
parallel reduction algorithmic function, as 
described in the source code below: 
 
float TimpulTotal = 0; 
float timpul = 0; 
cudaEvent_t inceput, sfarsit; 
cudaEventCreate(&inceput); 
cudaEventCreate(&sfarsit); 
cudaEventRecord(inceput, 0); 
//…………………… 
//Functia algoritmica de baza al carei 
timp de executie il masuram 
//…………………… 
cudaEventRecord(sfarsit, 0); 
cudaEventSynchronize(sfarsit); 
//calculam timpul dintre evenimentul de 
inceput si cel de sfarsit 
CUDA_SAFE_CALL( 
cudaEventElapsedTime(&timpul, inceput, 
sfarsit)); 
TimpulTotal += timpul; 
 

The first set of tests evaluates the execution 
times obtained by applying the parallel 
reduction algorithmic function on vectors of 
various sizes (35-60,000,000 elements) of 
float type elements. We have used the 
summation as the associative binary operator. 
The vectors were randomly generated, as to 
cover a wide range of values. To obtain more 
accurate results, we have computed the 
average of 10,000 iterations. We have 
highlighted the execution time (measured in 
milliseconds) and the bandwidth (measured 
in gigabytes per second) corresponding to 
each input vector, when running the 
reduction function on the three NVIDIA 
graphic cards and the CPU. In Table 1 and 
Table 2 we present the results of the 
experimental tests of the reduction 
algorithmic function run on the CPU and the 
GPUs.  
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Table 1. A comparison between the results obtained on the CPU, GTX 280, GTX 480 and 
GTX 680 – the running time (float data type) 

Test 
no. 

Number of 
elements 

Execution time (ms) 
CPU GTX 280 GTX 480 GTX 680 

1 35 0.000147 0.074442 0.028267 0.021783 
2 128 0.000505 0.072493 0.028867 0.021660 
3 256 0.001012 0.077201 0.031434 0.033880 
4 260 0.001082 0.073116 0.031420 0.021636 
5 512 0.001981 0.072784 0.025498 0.021726 
6 1,000 0.003883 0.145758 0.055812 0.036067 
7 1,024 0.003985 0.146853 0.060125 0.025151 
8 1,030 0.003981 0.140329 0.062212 0.054064 
9 32,768 0.129467 0.143899 0.067184 0.054242 
10 45,555 0.179772 0.146500 0.052708 0.050089 
11 65,536 0.258083 0.147387 0.064974 0.049220 
12 131,072 0.520887 0.149085 0.060253 0.076134 
13 262,144 1.02914 0.155884 0.063449 0.116000 
14 500,111 1.962163 0.159747 0.074067 0.060836 
15 524,288 2.062592 0.160366 0.077766 0.062369 
16 1,048,555 4.077351 0.178414 0.083419 0.075952 
17 1,048,576 4.089703 0.176097 0.090081 0.077899 
18 1,048,581 4.092077 0.178931 0.087715 0.091198 
19 2,097,152 8.24243 0.208023 0.125539 0.108628 
20 2,097,999 8.273636 0.215445 0.129343 0.103861 
21 4,194,334 16.688135 0.281550 0.179433 0.160004 
22 8,388,600 32.999443 0.414526 0.282094 0.270689 
23 16,000,000 61.752274 0.660247 0.530292 0.532815 
24 32,000,000 123.678261 1.190001 0.935515 0.891583 
25 48,000,000 185.674133 1.696008 1.367220 1.326497 
26 60,000,000 231.584732 2.105889 1.671947 1.643266 
Total execution 

time – 10.000 tests 
(h) 

1,909 1.909 0.025 0.017 

The system’s 
power (kW) 

0,198 0.198 0.306 0.358 

Total energy 
consumption 

(kWh) 
0,378 0.378 0.008 0.006 

The GPU’s consumption 
compared to the CPU’s 

47 times 
lower 

63 times 
lower 

75 times 
lower 

 
 
 
 
 
 
 



Informatica Economică vol. 16, no. 3/2012  79 

 

Table 2. A comparison between the results obtained on the CPU, GTX 280, GTX 480 and 
GTX 680 – the bandwidth (float data type) 

Test 
no. 

Number of 
elements 

Bandwidth (GB/s) 

CPU GTX 280 GTX 480 GTX 680 
1 35 0.9524 0.0019 0.0050 0.0064 
2 128 1.0139 0.0071 0.0177 0.0236 
3 256 1.0119 0.0133 0.0326 0.0302 
4 260 0.9612 0.0142 0.0331 0.0481 
5 512 1.0338 0.0281 0.0803 0.0943 
6 1,000 1.0301 0.0274 0.0717 0.1109 
7 1,024 1.0279 0.0279 0.0681 0.1629 
8 1,030 1.0349 0.0294 0.0662 0.0762 
9 32,768 1.0124 0.9109 1.9509 2.4164 
10 45,555 1.0136 1.2438 3.4572 3.6379 
11 65,536 1.0157 1.7786 4.0346 5.3260 
12 131,072 1.0065 3.5167 8.7014 6.8864 
13 262,144 1.0189 6.7266 16.5263 9.0394 
14 500,111 1.0195 12.5226 27.0086 32.8826 
15 524,288 1.0168 13.0773 26.9675 33.6249 
16 1,048,555 1.0287 23.5084 50.2790 55.2220 
17 1,048,576 1.0256 23.8181 46.5615 53.8428 
18 1,048,581 1.0250 23.4410 47.8176 45.9914 
19 2,097,152 1.0177 40.3254 66.8207 77.2233 
20 2,097,999 1.0143 38.9519 64.8817 80.8003 
21 4,194,334 1.0053 59.5892 93.5020 104.8557 
22 8,388,600 1.0168 80.9464 118.9476 123.9592 
23 16,000,000 1.0364 96.9334 120.6882 120.1167 
24 32,000,000 1.0349 107.5629 136.8230 143.5649 
25 48,000,000 1.0341 113.2070 140.4309 144.7421 
26 60,000,000 1.0363 113.9661 143.5452 146.0506 

 
We have computed the total execution time 
for the 10.000 iterations related to each of the 
26 dimensions of vectors. Using an energy 
consumption meter device we have measured 
the system’s power (kW) and then calculated 
the total energy consumption in each of the 
four analyzed cases (running the tests on the 
CPU and on the three GPUs). The system 
consumes 47 times less power when the test 
suite is run on the GTX 280 GPU compared 
to the i7-2600K CPU. The power 
consumption is 63 times better for the GTX 

480 GPU and 75 times better for the GTX 
680 than for the i7-2600K CPU.  
In Figure 1 and Figure 2 we present the 
obtained experimental results by running the 
parallel reduction algorithmic function on the 
CPU and on the three GPUs, when the input 
array has a relatively low dimension (35-
1,030 elements). In this case we have noticed 
that the central processing unit offers the best 
execution time and bandwidth, because in 
this case it has not been generated an enough 
computational load in order to use the huge 
parallel processing capacity of the GPU. 
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Fig. 1. The execution time for 35 - 1,030 elements of the input array 

 

 
Fig. 2. The bandwidth for 35 - 1,030 elements of the input array 

 
In Figure 3 and Figure 4 there are presented 
the obtained experimental results when 
running the parallel reduction algorithmic 
function on a large dimension input array 
(32,768-60,000,000 elements). In this case 
we have noticed that the GTX 680 graphic 
card offers the best results (lower execution 
time, higher bandwidth), followed by the 
GTX 480, the GTX 280 and the CPU, 

because this time it has been created a 
sufficient computational load to fully employ 
the huge parallel processing capacity of the 
GPUs and to use at maximum the 
512/256/128 threads per block we have 
allocated for each of the graphics processors. 
The CUDA implementation offers a high 
degree of performance whether the vector’s 
dimension is a power of two or it is not.  
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Fig. 3. The execution time for 32,768-60,000,000 elements of the input array 

 

 
Fig. 4. The bandwidth for 32,768-60,000,000 elements of the input array 

 
The next set of tests evaluates the influence 
of the data types on the performance of the 
above described parallel reduction 
algorithmic function. The function has been 
designed to allow the selection of the data 
type for the input array components, which 
can be one of the following types: integer, 
unsigned integer, float, double, long long or 
unsigned long long. Below are presented the 
obtained experimental results when running 
the parallel reduction algorithmic function on 
the GTX 680 graphic processor, using an 
input array of variable dimension (35-
60,000,000 elements). The results represent 
the average of 10,000 iterations. 

One can observe in Figure 5 that the 
performance is comparable when the input 
data is of integer, unsigned integer or float 
type, the execution time ranging between 
0.021783 ms and 1.665599 ms. In the case 
when the input data is of double, long long or 
unsigned long long type, the performance is 
comparable but the execution times are 
generally higher than in the three previous 
cases, ranging between 0.021628 ms and 
3.226117 ms. This is justified taking into 
account the amount of necessary memory to 
store the analyzed data types. 
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Fig. 5. The influence of data types on the execution time   

 
We have highlighted the bandwidth variation 
depending on the input vector’s size for 
various data types (Figure 6). Regarding the 
bandwidth, the performance is comparable in 
all of the six analyzed cases, reflecting the 
efficiency of the optimization solutions for 

improving the performance of the parallel 
reduction algorithm using graphics 
processing units that provide constant data 
processing speed regardless of the data type 
considered. 

 

 
Fig. 6. The influence of data types on the bandwidth 

 
We have analyzed next the influence of the 
associative binary operator used when 
defining the parallel reduction function 
through equation (1), on the performance of 
the function. This function has been designed 
to allow the selection of the binary operator 
that can be one of the following: summation, 
maximum, minimum or multiplication. In 
Figure 7 there are presented the experimental 
results when running the parallel reduction 
function on an input array of variable 

dimension (35-60,000,000 elements). We 
have chosen float type elements for the input 
array. The results represent the average of 
10,000 iterations. One can observe that the 
performance is comparable in all four cases 
of binary operators, the execution times 
ranging between 0.021348 ms and 1.680986 
ms, thus confirming the efficiency of the 
solution, no matter what binary operator is 
used.  
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Fig. 7. The influence of the associative binary operator on the execution time   

 

 
Fig. 8. The influence of the associative binary operator on the bandwidth 

 
When we highlighted the bandwidth 
variation for different dimensions of float 
data type for the input vector, we have 
noticed that the performance is comparable 
for the four types of associative binary 
operators, the bandwidth ranging from 
0.0037 GB/s to 146.0506 GB/s (Figure 8). 
The experimental results confirm the 
solutions’ efficiency, which offer optimum 
results in different situations and thus they 
can be implemented in a wide range of 
algorithms, without being influenced by the 
chosen binary operator. 
 
5 Conclusions 
In this paper, we have researched, developed 
and analyzed an efficient implementation of 
the parallel reduction algorithmic function in 
CUDA, using different optimization 

solutions. We have first developed the 
algorithmic function, highlighting the 
algorithm’s steps. We have identified, 
developed and implemented a set of solutions 
to improve the performance of the parallel 
reduction algorithmic function: the 
interleaved addressing technique; avoiding 
the divergent branching; the sequential 
addressing technique; performing a reduction 
of data stored in the global memory before 
loading it into the shared memory; 
minimizing the number of executed 
instructions; processing multiple elements 
per thread; decomposing the reduction 
function in several smaller ones, in order to 
achieve synchronization; using the CPU to 
perform the final computations in the last 
step of the reduction algorithm. In order to 
maximally benefit from the huge 
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computational power of the GPU, we have 
paid particular attention to continuously 
improve and optimize the solutions. 
We have analyzed the performance of the 
parallel reduction algorithmic function in 
CUDA, using a series of experimental tests 
and compared it with an alternative approach 
run on the central processing unit. In order to 
compute the average execution time of the 
GPU we have used the CUDA application 
programming interface. After having 
analyzed the experimental results obtained by 
using the developed solutions for optimizing 
the performance of the algorithmic function, 
we have noticed the following: 
• When the parallel reduction function is 

run on the GTX 280 graphics processor, 
the system consumes 47 times less energy 
than when the function is run on the 
central processing unit i7-2600K. For the 
GTX 480, the power consumption is 63 
times smaller and for the GTX 680, 75 
times smaller than for the central 
processing unit i7-2600K.  

• We have obtained improved execution 
times and larger bandwidth when 
processing large dimension input arrays 
on the GTX 680 graphics processing unit 
(32,768 – 60,000,000 elements) than using 
traditional central processing units. The 
GTX 680 recorded an improvement of up 
to 140.93x in both execution time 
(1.643266 ms versus 231.584732 ms) and 
bandwidth (146.0506 GB/s versus 1.0363 
GB/s) compared to the i7-2600K 
processor. 

• The CPU offers the best results (lower 
execution time, higher bandwidth) when 
the input array has a relatively low 
dimension (35 – 1030 elements) that does 
not generate an enough computational 
load in order to fully use the huge parallel 
processing capacity of the GPU. This 
aspect imposes the necessity of using a 
hybrid solution in order to obtain the best 
in class performance for different 
scenarios: a solution that uses the CPU 
when the input vector’s dimension is low 
and the GPU for large data volumes.  

• A particular interest was to research how 
well the optimization techniques scale to 
the latest generation of GPUs from the 
Kepler architecture (implemented in the 
GTX 680) in contrast to previous GPUs 
architectures (like the GTX 280 and GTX 
480). The optimization solutions of the 
parallel reduction function scaled well 
across different GPU architectures, 
confirming their efficiency. The function 
proves to be applicable and useful in a 
wide range of algorithms and data 
processing applications, providing optimal 
results in various situations. 

• When running the parallel reduction 
algorithmic function on the GTX 680 
processor, using integer, unsigned integer 
or float input data types, we have recorded 
a comparable performance in terms of 
execution times. Processing double, long 
long or unsigned long long input data 
types, has led to a comparable 
performance, but the execution times 
increased up to 1.96x (1.642558 ms 
compared to 3.226117 ms). The 
performance is comparable in all of the 
six considered cases regarding the 
bandwidth. By analyzing these results we 
found that, regardless of the type of data 
being processed, the efficiency of the 
optimization solutions developed and 
applied to the parallel reduction function 
is confirmed. 

• Using various types of associative binary 
operators (summation, maximum, 
minimum or multiplication), we found 
that the optimization solutions used in 
developing the parallel reduction function 
offer a high level of performance and we 
have recorded comparable results in all 
these situations. 

• All the obtained experimental results 
confirm the efficiency of the parallel 
reduction algorithmic function that offers 
optimal results in different scenarios 
without being significantly influenced by 
the type of input data or the chosen binary 
operator, and therefore it can be 
implemented in a wide range of data 
parallel algorithms.  
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There has been a lot of interest in the 
literature lately for the optimization of the 
parallel reduction algorithmic function, but 
none of the works so far (to our best 
knowledge) tried to validate if the 
optimizations techniques can be applied to a 
GPU from the Kepler architecture. The study 
demonstrates that the GTX 680, the latest 
CUDA-enabled GPU from the Kepler 
architecture is capable of efficient and 
accurate reduction.  
One important aspect to take into account is 
that the GTX 280, GTX 480 and GTX 680 
are consumer-oriented graphic cards that are 
not designed specifically for high 
performance scientifically computations, like 
the Quadro series. The three graphics 
processors are especially optimized for 
graphic processing and rendering in video 
games and not for scientific computations. 
We have preferred these three processors due 
to their reduced cost, high level of 
performance and wide accessibility. The 
registered results, including those on the 
GeForce GTX 280 architecture launched four 
years ago, far exceed those obtained on the 
last generation central processing unit, Sandy 
Bridge i7-2600K (even if the CPU has been 
overclocked at 4.6 GHz). 
The most important goal when designing and 
developing the parallel reduction algorithmic 
function was to obtain a CUDA processing 
solution that is self-adjustable and self-
configurable (regarding the number of thread 
blocks, number of threads per block, number 
of elements processed per thread) depending 
on the GPU’s architecture. The experimental 
results proved that the developed solution 
offers a high degree of performance on an 
entire range of CUDA enabled GPUs: the 
Tesla GT200 architecture, launched on 16 
Jun 2008; the Fermi GF100 architecture, 
launched on 26 March 2010 and the Kepler 
GK104 architecture, released on 22 March 
2012. The high level of performance 
achieved on various GPUs architectures from 
different generations confirms the efficiency 
and the high degree of applicability for the 
optimization solutions of the parallel 
reduction algorithmic function in CUDA. As 

this high performance has been recorded in a 
variety of scenarios, the developed reduction 
function proves its applicability and 
usefulness in a wide range of algorithms. 
Moreover, the Compute Unified Device 
Architecture represents a novel approach for 
developing efficient parallel software on 
multithreaded architectures, a very useful 
tool for developing solutions that optimize 
the data processing at low-costs and with a 
spectacular performance. 
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