
72 Informatica Economică vol. 16, no. 3/2012

Optimization Solutions for Improving the Performance of the Parallel
Reduction Algorithm Using Graphics Processing Units

Ion LUNGU1, Dana-Mihaela PETROSANU2, Alexandru PIRJAN3

1Academy of Economic Studies, Bucharest, Romania
2University Politehnica of Bucharest, Romania

3Romanian-American University, Bucharest, Romania
ion.lungu@ie.ase.ro, danap@mathem.pub.ro, alex@pirjan.com

In this paper, we research, analyze and develop optimization solutions for the parallel
reduction function using graphics processing units (GPUs) that implement the Compute
Unified Device Architecture (CUDA), a modern and novel approach for improving the
software performance of data processing applications and algorithms. Many of these
applications and algorithms make use of the reduction function in their computational steps.
After having designed the function and its algorithmic steps in CUDA, we have progressively
developed and implemented optimization solutions for the reduction function. In order to
confirm, test and evaluate the solutions’ efficiency, we have developed a custom tailored
benchmark suite. We have analyzed the obtained experimental results regarding: the
comparison of the execution time and bandwidth when using graphic processing units
covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104) and a
central processing unit; the data type influence; the binary operator’s influence.
Keywords: GPU, Cuda, Kepler Architecture, Parallel Reduction, Thread Blocks

Introduction
Initially, graphics processing units

(GPUs) have been designed solely for
graphic specific rendering purposes, but later,
by the end of the 1990s, these processors
became programmable at a hardware level. In
November 2006, the NVidia company
released the GeForce 8800 GTX, the first
GPU to support the new CUDA (Compute
Unified Device Architecture) by unifying
both software and hardware components [1].
This new parallel programming model uses
the huge parallel computational processing
power of the GPU to solve complex
processing tasks in a much more efficient
manner than by using traditional processing
methods based on central processing units
(CPUs). This novel architecture offers
several new components, specifically
designed for alleviating the limitations of
previous GPUs architectures and easing the
processing of general-purpose computations
through graphics processing units. Unlike
previous GPU hardware architectures, the
Compute Unified Device Architecture
employs a unified implementation that makes

it possible for the GPU to perform general-
purpose computations.
In this context, the development of high
performance optimization solutions using
high-performance basic functional blocks
(like the parallel reduction algorithmic
function) leads to a tremendous improvement
in the parallel data processing. In the
scientific literature, this type of research is of
great interest, many researchers studying the
potential to optimize algorithmic functions
using the CUDA architecture [2], [3], [4],
[5], [6]. None of the works so far (to our best
knowledge) has studied optimization
solutions that scale in terms of resource
allocation and performance on all the
available CUDA architectures, especially on
the latest Kepler CUDA architecture.
The latest three CUDA-enabled graphic cards
are GTX 280 from the Tesla GT200
architecture, GTX 480 from the Fermi
GF100 architecture and GTX 680 from the
Kepler GK104 architecture [7].
The GTX 280 graphics processor, launched
on 16 Jun 2008, is based on 65 nm
fabrication technology, has 240 CUDA cores,
30 streaming multiprocessors and 1.4 billion

1

Informatica Economică vol. 16, no. 3/2012 73

of transistors, the processor clock runs at
1296 MHz, the graphics clock at 602 MHz. It
comes with 1024 MB of memory in the
standard configuration, having an effective
clock of 1107 MHz, a 512-bit GDDR3
memory interface width and 141.7 GB/sec
memory bandwidth. It has the maximum
board power (TDP) of 236 Watts, a texture
fill rate of 48.2 billion/sec, 80 texture units
and 32 ROP units.
The GTX 480 graphics processor, launched
on 26 March 2010, is based on 40 nm
fabrication technology, 480 CUDA cores, 15
streaming multiprocessors and 3.2 billion of
transistors, the processor clock runs at 1401
MHz and the graphics clock at 700 MHz. It
comes with 1536 MB of memory in the
standard configuration, having an effective
clock of 3700 MHz, a 384-bit GDDR5
memory interface width and 177.4 GB/sec
memory bandwidth. It has the maximum
board power (TDP) of 250 Watts, a texture
fill rate of 42 billion/sec, 60 texture units and
48 ROP units.
The newest CUDA graphic card, the GTX
680, released on 22 March 2012, is based on
28 nm fabrication technology, 1536 CUDA
cores, 8 streaming multiprocessors and 3.54
billion of transistors, the boost clock runs at
1058 MHz and the graphics clock at 1006
MHz. It comes with 2048 MB of memory in
the standard configuration, having an
effective clock of 6000 MHz, a 256-bit
GDDR5 memory interface width and 192.2
GB/sec memory bandwidth. It has the
maximum board power (TDP) of 170 Watts,
a texture fill rate of 128.8 billion/sec, 128
texture units and 32 ROP units. The GK104
poses significant differences regarding the
streaming multiprocessors, that are now
called SMX units and incorporates several
important architectural changes in order to
deliver an improved performance and power
efficiency. Taking into consideration the
above-mentioned technical specifications, we
aimed to research, develop and study
optimization solutions for the parallel
reduction function that fully uses the
processing power of CUDA enabled GPUs

covering the main generations (Tesla GT200,
Fermi GF100, Kepler GK104).
We paid particular attention to obtain a
software solution that dynamically adjusts
the number of thread blocks, threads per
block and the number of processed elements
per thread in order to harness the
computational processing power of GPUs as
to reach a performance peak.

2 Designing an Efficient Scalable CUDA
Parallel Reduction Algorithmic Function
The reduction function is extensively used in
many data parallel processing applications
and algorithms, therefore its optimization
improves the performance of all data
processing algorithms and applications that
implement the reduction function.
In the following we define the reduction
function, using an associative binary operator
*, defined on the set of real numbers. For an
input ݊-dimensional vector ݒ =[ܽ, ܽଵ, … , ܽିଵ] with real components, the
reduction operation, denoted by ݀݁ݎሺ∗ሻ,
produces an output real number, defined
through:
ݒሺ∗ሻ݀݁ݎ = ܽ ∗ ܽଵ ⋇ …⋇ ܽିଵ (1)
The associative binary operator used in the
definition of the reduction function can be
the summation, maximum, minimum or the
multiplication operator. In various scientific
fields there are common applications that use
the reduction function and the most common
one is the computation of the scalar product
of two vectors. Considering ݔ ,ݔ]= ,ଵݔ … , ݕ ିଵ] andݔ = ,ݕ] ,ଵݕ … , [ିଵݕ
two vectors with real components, their
scalar product is defined as the real number:
ݔ ⋅ ݕ = ∑ ିଵୀݔ (2)ݕ
This computation requires ݊ multiplication
operations and ݊ − 1 summation operations.
Since multiplication operations are
independent of each other, the reducing
operation defined by (2) facilitates its
execution through parallel multiplication
computations, followed by sequential
summations. Consequently, the main
advantage of using implementations based on
the parallel reduction is that it converts

74 Informatica Economică vol. 16, no. 3/2012

fragments of sequential computations in
parallel equivalent ones.
The intuitive approach for designing the
parallel reduction algorithmic function is to
use only an execution thread that iterates and
computes the sums in the shared memory
starting from the input vector [1], but this
method has a few disadvantages and
limitations as the necessary execution time is
proportional to the input vector’s dimension
and there are hundreds of idle execution
threads.
A more advantageous designing method is
based on the parallel execution of the
reduction, because in this situation the
execution time is proportional to the
logarithm of the input vector’s dimension.
When the size of the input vector is large, we
split it into multiple fragments and allocate
their reduction to a thread block that
processes the fragment and stores its partial
result in the global memory. Afterwards,
these partial results are reduced to a single
element, obtaining the output. We have
called the reduction function at every thread
block’s level depending on the input vector’s
size and the thread block’s dimension, using
the corresponding parameters in order to
obtain the best performance.
The main direction that we have followed
when designing and developing the
optimized parallel reduction algorithmic
function was to obtain a CUDA processing
solution, self-adjustable and self-
configurable (regarding the number of thread
blocks, the number of threads in a block and
the number of processed elements per
thread), depending on the GPU’s
architecture. Our solution offers a high
degree of performance on a wide range of
CUDA GPUs architectures: Tesla GT200
(implemented in the GTX 280), Fermi
GF100 (implemented in the GTX 480),
Kepler GK104 (implemented in the GTX
680). Thus, we have designed the parallel
reduction algorithmic function as to use: a
maximum of 256 threads per block on the
GTX 280; a maximum of 512 threads per
block on the GTX 480 and GTX 680 GPUs.

We have developed the parallel reduction
algorithmic function in 4 steps as we have
also presented in [8]:
Step 1. If the thread block is of size 1, and the

input vector has only one element,
this element is copied as the output
element. If the input vector has 2
elements, they are reduced using the
corresponding binary operator. If the
thread block has a size larger than 1,
the processing continues with Step 2.

Step 2. Each thread reduces sequentially
several elements (8/16/32 depending
on the compute capability of the
GPU’s architecture) in the global
memory, this process taking place in
parallel, between the threads of each
block (at intra-block level) and also
between different blocks (at inter-
block level). The obtained partial
results are being copied from the
global memory into the shared
memory, where they are reduced in
parallel, benefiting from the shared
memory’s increased performance and
low latency.

Step 3. Each thread block’s results are stored
in the global memory. Therefore, it is
obtained an output vector, in which
every element represents the
corresponding sum of each parallel
thread block.

Step 4. Then, the vector’s elements that are
stored in the global memory are
reduced using the host device,
because the GPU would waste its
resources in the final steps of the
reduction as the dataset dimension is
undersized. Therefore, the final
computations will be processed by the
CPU, summing the vector’s
components stored in the global
memory. While the CPU completes
the reduction, the GPU is already
available to process other data.

The above-described parallel reduction’s
implementation is tree-type based and we
have used it within each thread block. Thus,
the reduction algorithmic function is
designed to use multiple thread blocks for

Informatica Economică vol. 16, no. 3/2012 75

processing large dimension input vectors,
offering to each of the GPU’s multi-
processors an enough computational load in
order to fully employ their parallel
processing power. Each thread block will
reduce a part of the input vector’s elements.
After each reduction step, thread blocks
communicate to each other and send their
obtained partial results, in order to process
the next step of the algorithm. For an
efficient reduction of very large input
vectors, we had to globally synchronize the
results among all the thread blocks. Thus,
after each thread block has produced its
result, the process could continue recursively
until the final output has been obtained.
However, in the Compute Unified Device
Architecture there is no possibility to
globally synchronize the results using a
direct instruction in the CUDA API. This
happens because, on one hand there are
hardware difficulties at the graphics
processor level and on the other hand, the
global synchronization would require
developers to use only a few thread blocks,
that would reduce the overall efficiency.
In order to overcome this technical
limitation, we have split the function in
several kernel functions. Each call of a kernel
function provides a synchronization point
and the advantage of the method is that it
does not introduce a significant
computational load that could affect the
performance [5]. The CUDA kernel function
running is asynchronous, requiring
synchronization on the host machine in order
to copy the data from the GPU’s memory
into the system’s memory. The source code
is the same at all the levels of the reduction
algorithmic function and therefore we can
recursively call the kernel functions. This is
done only on the host machine, as a CUDA
kernel function does not allow a recursive
call.
In the following, we present several solutions
that we have developed for optimizing the
performance of the parallel reduction
algorithmic function.

3 Optimization Solutions for Improving
the Performance of the Parallel Reduction
Algorithmic Function in CUDA
Using a thorough analysis of the CUDA
programming guide and of the best practices
depicted in the literature [2], [3], [4], [5], [6]
for developing successful applications in
CUDA, we have identified and developed a
series of optimization solutions for the
parallel reduction algorithmic function. The
main optimization solutions that we have
developed and applied, target aspects
regarding: harnessing the GPU’s
performance; the optimal use of the shared
memory bandwidth; the synchronization
possibilities; the efficient cooperation
between the GPU and the CPU. In the
following we will describe our solutions and
their progressive development.
Solution 1 - The interleaved addressing
technique. Using this technique, we have first
instructed every thread to load one element
from the global memory into the shared
memory. We have then performed the
reduction phase in the shared memory (it had
the advantage of a high throughput) and the
obtained result was loaded back to global
memory. We have found that this technique
had the disadvantage of generating divergent
warps in which the threads did not process
the same tasks. These warps are inefficient in
the reduction phase as they slow down the
data processing; therefore, we have decided
to manage the divergent branching in order to
improve the performance.
Solution 2 - Avoiding the divergent
branching. We have eliminated the above-
mentioned limitations and we have improved
the performance by replacing the divergent
branching with a non-divergent one using a
direct indexing for each element of the input
vector that would be reduced. This technique
has eliminated the divergent warps, but
generated shared memory bank conflicts due
to multiple requests from the same memory
bank, that we had to manage using the
sequential addressing technique.
Solution 3 - The sequential addressing
technique. We have used thread’s indexing
instead of direct indexing in order to manage

76 Informatica Economică vol. 16, no. 3/2012

the shared memory bank conflicts. Although
we have obtained significant improvements
regarding the execution time and bandwidth,
we have observed that further optimizations
are still possible as the GPU’s resources are
not fully employed. When each of the threads
loads an element from the global memory
into the shared memory, half of the threads
within a block remain idle. Therefore, for
solving this situation, we have decided to
perform a reduction in the global memory
before loading the data in the shared
memory.
Solution 4 - Performing a reduction of data
stored in the global memory before loading it
into the shared memory. This solution solved
the disadvantages of the sequential
addressing technique and led to significant
performance improvements. Even if the
bandwidth increased considerably, further
optimizations were still achievable. The
reduction function does not involve an
increased computational effort but the large
amount of necessary synchronization
operations caused a performance penalty. In
order to overcome this penalty we have
minimized the number of executed
instructions.
Solution 5 - Minimizing the number of
executed instructions. The parallel reduction
algorithmic function that we have developed
is useful for multicore architectures such as
SIMD (Single Instruction, Multiple Data), in
which case instructions are synchronous
within each warp. We have noticed that, as
the reduction process progresses, the number
of active threads decreases, and when the
number of threads is less than or equal to 32,
only the last warp remained to be executed.
Within this warp we did not have to
synchronize or to validate the threads’
indexes anymore. Consequently, we have
decided to remove these instructions for
obtaining an increase in the overall
performance and to minimize as much as
possible the number of synchronization
operations.
Solution 6 - Processing multiple elements
per thread. By reducing multiple elements
per thread during the same reduction step (8

elements for GTX280, 16 elements for
gtx480 and 512 elements for the GTX680),
we have gained a considerable performance
improvement for the reduction algorithmic
function.
Solution 7 - Decomposing the reduction
function in several smaller ones, in order to
achieve global synchronization. After each
reduction step, the blocks of threads have to
inter-communicate their partial results, so we
had to synchronize them. But in CUDA it is
not technically possible to directly globally
synchronize, so we have decided to
decompose the reduction function into
several smaller kernel functions. Each call of
a kernel function provided a synchronization
point and therefore we have achieved
synchronization with minimal computational
costs.
Solution 8 - Using the CPU to perform the
final computations in the last step of the
reduction algorithm. In the last step of the
reduction algorithm the dataset dimension is
undersized and thus, if we had used the GPU
to perform the reduction in this case, its
resources would have been wasted.
Therefore, we have decided to reduce the
array’s elements from the global memory in
the last step of the reduction using the CPU.
The main advantage of this approach is that
the GPU is already available to process other
computations while the CPU finalizes the
reduction operation.
By implementing these eight solutions, we
have improved the parallel reduction
algorithmic function’s performance,
regarding both the execution time and
bandwidth. In the following, we present a
benchmark suite that we have developed in
order to analyze the performance of the
parallel reduction function in CUDA,
optimized using the above-described
Solutions 1-8.

4 Experimental Results
We have analyzed the performance of the
above described parallel reduction function,
using the Windows 7 64-bit operating system
and the following configuration: Intel i7-
2600K operating at 4.6 GHz with 8 GB

Informatica Economică vol. 16, no. 3/2012 77

(2x4GB) of 1333 MHz, DDR3 dual channel.
We have used the NVIDIA graphic cards
GeForce GTX 280, GTX480 and GTX 680.
Programming and access to the GPUs have
used the CUDA toolkit 4.1, with the NVIDIA
driver version 270.81 (for the GTX 280 and
the GTX 480) and NVidia 301.10 for the
GTX 680. 270.81.
In order to reduce the external traffic to the
GPU, all the processes related to the
graphical user interface have been disabled.
We have used the same measuring time
method that we have used before, when we
have developed other algorithmic function in
CUDA [9], [10], [11].
The parallel reduction algorithm is designed
to be used in a large number of applications
running on GPUs, so the transfer times
between the central processing unit and the
graphic processing unit vary depending on
the complexity of the specific developed
application. Therefore, our measurements do
not include the necessary time for data
transfers.
We have used the CUDA event application
programming interface (API) in order to
compute the average execution time that the
GPU spends for executing the parallel
reduction algorithmic function. This method
has many advantages compared to other
methods that rely on operating system timers,
because those methods usually include
variations from different sources and latency,
being more suitable for the CPU rather than
the GPU.
We have used time events provided by the
CUDA API to mark the moments of the
function’s execution. If we had tried to time
the GPU execution using CPU timers, a
series of problems could have appeared. For
measuring the execution time using CUDA
events, we have created a start and a stop
event. Some of the kernel calls in CUDA C
are asynchronous. The graphic processing
unit begins to execute the code and, before
the GPU has finished, the central processing
unit executes the next code line.
We have used the CUDA API function
“cudaEventSynchronize()” in order to

synchronize and record accurately the value
of the stop event. Thus, we have instructed
the runtime to block all further instructions
until the graphic processing unit has reached
the stop event. When we call the
“cudaEventSynchronize()” function, the
GPU would have completed all processes
before the stop event and the time stamp
could be correctly recorded. Therefore, we
have obtained a reliable measurement of the
execution time in the benchmark suite of the
parallel reduction algorithmic function, as
described in the source code below:

float TimpulTotal = 0;
float timpul = 0;
cudaEvent_t inceput, sfarsit;
cudaEventCreate(&inceput);
cudaEventCreate(&sfarsit);
cudaEventRecord(inceput, 0);
//……………………
//Functia algoritmica de baza al carei
timp de executie il masuram
//……………………
cudaEventRecord(sfarsit, 0);
cudaEventSynchronize(sfarsit);
//calculam timpul dintre evenimentul de
inceput si cel de sfarsit
CUDA_SAFE_CALL(
cudaEventElapsedTime(&timpul, inceput,
sfarsit));
TimpulTotal += timpul;

The first set of tests evaluates the execution
times obtained by applying the parallel
reduction algorithmic function on vectors of
various sizes (35-60,000,000 elements) of
float type elements. We have used the
summation as the associative binary operator.
The vectors were randomly generated, as to
cover a wide range of values. To obtain more
accurate results, we have computed the
average of 10,000 iterations. We have
highlighted the execution time (measured in
milliseconds) and the bandwidth (measured
in gigabytes per second) corresponding to
each input vector, when running the
reduction function on the three NVIDIA
graphic cards and the CPU. In Table 1 and
Table 2 we present the results of the
experimental tests of the reduction
algorithmic function run on the CPU and the
GPUs.

78 Informatica Economică vol. 16, no. 3/2012

Table 1. A comparison between the results obtained on the CPU, GTX 280, GTX 480 and
GTX 680 – the running time (float data type)

Test
no.

Number of
elements

Execution time (ms)
CPU GTX 280 GTX 480 GTX 680

1 35 0.000147 0.074442 0.028267 0.021783
2 128 0.000505 0.072493 0.028867 0.021660
3 256 0.001012 0.077201 0.031434 0.033880
4 260 0.001082 0.073116 0.031420 0.021636
5 512 0.001981 0.072784 0.025498 0.021726
6 1,000 0.003883 0.145758 0.055812 0.036067
7 1,024 0.003985 0.146853 0.060125 0.025151
8 1,030 0.003981 0.140329 0.062212 0.054064
9 32,768 0.129467 0.143899 0.067184 0.054242
10 45,555 0.179772 0.146500 0.052708 0.050089
11 65,536 0.258083 0.147387 0.064974 0.049220
12 131,072 0.520887 0.149085 0.060253 0.076134
13 262,144 1.02914 0.155884 0.063449 0.116000
14 500,111 1.962163 0.159747 0.074067 0.060836
15 524,288 2.062592 0.160366 0.077766 0.062369
16 1,048,555 4.077351 0.178414 0.083419 0.075952
17 1,048,576 4.089703 0.176097 0.090081 0.077899
18 1,048,581 4.092077 0.178931 0.087715 0.091198
19 2,097,152 8.24243 0.208023 0.125539 0.108628
20 2,097,999 8.273636 0.215445 0.129343 0.103861
21 4,194,334 16.688135 0.281550 0.179433 0.160004
22 8,388,600 32.999443 0.414526 0.282094 0.270689
23 16,000,000 61.752274 0.660247 0.530292 0.532815
24 32,000,000 123.678261 1.190001 0.935515 0.891583
25 48,000,000 185.674133 1.696008 1.367220 1.326497
26 60,000,000 231.584732 2.105889 1.671947 1.643266
Total execution

time – 10.000 tests
(h)

1,909 1.909 0.025 0.017

The system’s
power (kW)

0,198 0.198 0.306 0.358

Total energy
consumption

(kWh)
0,378 0.378 0.008 0.006

The GPU’s consumption
compared to the CPU’s

47 times
lower

63 times
lower

75 times
lower

Informatica Economică vol. 16, no. 3/2012 79

Table 2. A comparison between the results obtained on the CPU, GTX 280, GTX 480 and
GTX 680 – the bandwidth (float data type)

Test
no.

Number of
elements

Bandwidth (GB/s)

CPU GTX 280 GTX 480 GTX 680
1 35 0.9524 0.0019 0.0050 0.0064
2 128 1.0139 0.0071 0.0177 0.0236
3 256 1.0119 0.0133 0.0326 0.0302
4 260 0.9612 0.0142 0.0331 0.0481
5 512 1.0338 0.0281 0.0803 0.0943
6 1,000 1.0301 0.0274 0.0717 0.1109
7 1,024 1.0279 0.0279 0.0681 0.1629
8 1,030 1.0349 0.0294 0.0662 0.0762
9 32,768 1.0124 0.9109 1.9509 2.4164
10 45,555 1.0136 1.2438 3.4572 3.6379
11 65,536 1.0157 1.7786 4.0346 5.3260
12 131,072 1.0065 3.5167 8.7014 6.8864
13 262,144 1.0189 6.7266 16.5263 9.0394
14 500,111 1.0195 12.5226 27.0086 32.8826
15 524,288 1.0168 13.0773 26.9675 33.6249
16 1,048,555 1.0287 23.5084 50.2790 55.2220
17 1,048,576 1.0256 23.8181 46.5615 53.8428
18 1,048,581 1.0250 23.4410 47.8176 45.9914
19 2,097,152 1.0177 40.3254 66.8207 77.2233
20 2,097,999 1.0143 38.9519 64.8817 80.8003
21 4,194,334 1.0053 59.5892 93.5020 104.8557
22 8,388,600 1.0168 80.9464 118.9476 123.9592
23 16,000,000 1.0364 96.9334 120.6882 120.1167
24 32,000,000 1.0349 107.5629 136.8230 143.5649
25 48,000,000 1.0341 113.2070 140.4309 144.7421
26 60,000,000 1.0363 113.9661 143.5452 146.0506

We have computed the total execution time
for the 10.000 iterations related to each of the
26 dimensions of vectors. Using an energy
consumption meter device we have measured
the system’s power (kW) and then calculated
the total energy consumption in each of the
four analyzed cases (running the tests on the
CPU and on the three GPUs). The system
consumes 47 times less power when the test
suite is run on the GTX 280 GPU compared
to the i7-2600K CPU. The power
consumption is 63 times better for the GTX

480 GPU and 75 times better for the GTX
680 than for the i7-2600K CPU.
In Figure 1 and Figure 2 we present the
obtained experimental results by running the
parallel reduction algorithmic function on the
CPU and on the three GPUs, when the input
array has a relatively low dimension (35-
1,030 elements). In this case we have noticed
that the central processing unit offers the best
execution time and bandwidth, because in
this case it has not been generated an enough
computational load in order to use the huge
parallel processing capacity of the GPU.

80 Informatica Economică vol. 16, no. 3/2012

Fig. 1. The execution time for 35 - 1,030 elements of the input array

Fig. 2. The bandwidth for 35 - 1,030 elements of the input array

In Figure 3 and Figure 4 there are presented
the obtained experimental results when
running the parallel reduction algorithmic
function on a large dimension input array
(32,768-60,000,000 elements). In this case
we have noticed that the GTX 680 graphic
card offers the best results (lower execution
time, higher bandwidth), followed by the
GTX 480, the GTX 280 and the CPU,

because this time it has been created a
sufficient computational load to fully employ
the huge parallel processing capacity of the
GPUs and to use at maximum the
512/256/128 threads per block we have
allocated for each of the graphics processors.
The CUDA implementation offers a high
degree of performance whether the vector’s
dimension is a power of two or it is not.

Informatica Economică vol. 16, no. 3/2012 81

Fig. 3. The execution time for 32,768-60,000,000 elements of the input array

Fig. 4. The bandwidth for 32,768-60,000,000 elements of the input array

The next set of tests evaluates the influence
of the data types on the performance of the
above described parallel reduction
algorithmic function. The function has been
designed to allow the selection of the data
type for the input array components, which
can be one of the following types: integer,
unsigned integer, float, double, long long or
unsigned long long. Below are presented the
obtained experimental results when running
the parallel reduction algorithmic function on
the GTX 680 graphic processor, using an
input array of variable dimension (35-
60,000,000 elements). The results represent
the average of 10,000 iterations.

One can observe in Figure 5 that the
performance is comparable when the input
data is of integer, unsigned integer or float
type, the execution time ranging between
0.021783 ms and 1.665599 ms. In the case
when the input data is of double, long long or
unsigned long long type, the performance is
comparable but the execution times are
generally higher than in the three previous
cases, ranging between 0.021628 ms and
3.226117 ms. This is justified taking into
account the amount of necessary memory to
store the analyzed data types.

82 Informatica Economică vol. 16, no. 3/2012

Fig. 5. The influence of data types on the execution time

We have highlighted the bandwidth variation
depending on the input vector’s size for
various data types (Figure 6). Regarding the
bandwidth, the performance is comparable in
all of the six analyzed cases, reflecting the
efficiency of the optimization solutions for

improving the performance of the parallel
reduction algorithm using graphics
processing units that provide constant data
processing speed regardless of the data type
considered.

Fig. 6. The influence of data types on the bandwidth

We have analyzed next the influence of the
associative binary operator used when
defining the parallel reduction function
through equation (1), on the performance of
the function. This function has been designed
to allow the selection of the binary operator
that can be one of the following: summation,
maximum, minimum or multiplication. In
Figure 7 there are presented the experimental
results when running the parallel reduction
function on an input array of variable

dimension (35-60,000,000 elements). We
have chosen float type elements for the input
array. The results represent the average of
10,000 iterations. One can observe that the
performance is comparable in all four cases
of binary operators, the execution times
ranging between 0.021348 ms and 1.680986
ms, thus confirming the efficiency of the
solution, no matter what binary operator is
used.

Informatica Economică vol. 16, no. 3/2012 83

Fig. 7. The influence of the associative binary operator on the execution time

Fig. 8. The influence of the associative binary operator on the bandwidth

When we highlighted the bandwidth
variation for different dimensions of float
data type for the input vector, we have
noticed that the performance is comparable
for the four types of associative binary
operators, the bandwidth ranging from
0.0037 GB/s to 146.0506 GB/s (Figure 8).
The experimental results confirm the
solutions’ efficiency, which offer optimum
results in different situations and thus they
can be implemented in a wide range of
algorithms, without being influenced by the
chosen binary operator.

5 Conclusions
In this paper, we have researched, developed
and analyzed an efficient implementation of
the parallel reduction algorithmic function in
CUDA, using different optimization

solutions. We have first developed the
algorithmic function, highlighting the
algorithm’s steps. We have identified,
developed and implemented a set of solutions
to improve the performance of the parallel
reduction algorithmic function: the
interleaved addressing technique; avoiding
the divergent branching; the sequential
addressing technique; performing a reduction
of data stored in the global memory before
loading it into the shared memory;
minimizing the number of executed
instructions; processing multiple elements
per thread; decomposing the reduction
function in several smaller ones, in order to
achieve synchronization; using the CPU to
perform the final computations in the last
step of the reduction algorithm. In order to
maximally benefit from the huge

84 Informatica Economică vol. 16, no. 3/2012

computational power of the GPU, we have
paid particular attention to continuously
improve and optimize the solutions.
We have analyzed the performance of the
parallel reduction algorithmic function in
CUDA, using a series of experimental tests
and compared it with an alternative approach
run on the central processing unit. In order to
compute the average execution time of the
GPU we have used the CUDA application
programming interface. After having
analyzed the experimental results obtained by
using the developed solutions for optimizing
the performance of the algorithmic function,
we have noticed the following:
• When the parallel reduction function is

run on the GTX 280 graphics processor,
the system consumes 47 times less energy
than when the function is run on the
central processing unit i7-2600K. For the
GTX 480, the power consumption is 63
times smaller and for the GTX 680, 75
times smaller than for the central
processing unit i7-2600K.

• We have obtained improved execution
times and larger bandwidth when
processing large dimension input arrays
on the GTX 680 graphics processing unit
(32,768 – 60,000,000 elements) than using
traditional central processing units. The
GTX 680 recorded an improvement of up
to 140.93x in both execution time
(1.643266 ms versus 231.584732 ms) and
bandwidth (146.0506 GB/s versus 1.0363
GB/s) compared to the i7-2600K
processor.

• The CPU offers the best results (lower
execution time, higher bandwidth) when
the input array has a relatively low
dimension (35 – 1030 elements) that does
not generate an enough computational
load in order to fully use the huge parallel
processing capacity of the GPU. This
aspect imposes the necessity of using a
hybrid solution in order to obtain the best
in class performance for different
scenarios: a solution that uses the CPU
when the input vector’s dimension is low
and the GPU for large data volumes.

• A particular interest was to research how
well the optimization techniques scale to
the latest generation of GPUs from the
Kepler architecture (implemented in the
GTX 680) in contrast to previous GPUs
architectures (like the GTX 280 and GTX
480). The optimization solutions of the
parallel reduction function scaled well
across different GPU architectures,
confirming their efficiency. The function
proves to be applicable and useful in a
wide range of algorithms and data
processing applications, providing optimal
results in various situations.

• When running the parallel reduction
algorithmic function on the GTX 680
processor, using integer, unsigned integer
or float input data types, we have recorded
a comparable performance in terms of
execution times. Processing double, long
long or unsigned long long input data
types, has led to a comparable
performance, but the execution times
increased up to 1.96x (1.642558 ms
compared to 3.226117 ms). The
performance is comparable in all of the
six considered cases regarding the
bandwidth. By analyzing these results we
found that, regardless of the type of data
being processed, the efficiency of the
optimization solutions developed and
applied to the parallel reduction function
is confirmed.

• Using various types of associative binary
operators (summation, maximum,
minimum or multiplication), we found
that the optimization solutions used in
developing the parallel reduction function
offer a high level of performance and we
have recorded comparable results in all
these situations.

• All the obtained experimental results
confirm the efficiency of the parallel
reduction algorithmic function that offers
optimal results in different scenarios
without being significantly influenced by
the type of input data or the chosen binary
operator, and therefore it can be
implemented in a wide range of data
parallel algorithms.

Informatica Economică vol. 16, no. 3/2012 85

There has been a lot of interest in the
literature lately for the optimization of the
parallel reduction algorithmic function, but
none of the works so far (to our best
knowledge) tried to validate if the
optimizations techniques can be applied to a
GPU from the Kepler architecture. The study
demonstrates that the GTX 680, the latest
CUDA-enabled GPU from the Kepler
architecture is capable of efficient and
accurate reduction.
One important aspect to take into account is
that the GTX 280, GTX 480 and GTX 680
are consumer-oriented graphic cards that are
not designed specifically for high
performance scientifically computations, like
the Quadro series. The three graphics
processors are especially optimized for
graphic processing and rendering in video
games and not for scientific computations.
We have preferred these three processors due
to their reduced cost, high level of
performance and wide accessibility. The
registered results, including those on the
GeForce GTX 280 architecture launched four
years ago, far exceed those obtained on the
last generation central processing unit, Sandy
Bridge i7-2600K (even if the CPU has been
overclocked at 4.6 GHz).
The most important goal when designing and
developing the parallel reduction algorithmic
function was to obtain a CUDA processing
solution that is self-adjustable and self-
configurable (regarding the number of thread
blocks, number of threads per block, number
of elements processed per thread) depending
on the GPU’s architecture. The experimental
results proved that the developed solution
offers a high degree of performance on an
entire range of CUDA enabled GPUs: the
Tesla GT200 architecture, launched on 16
Jun 2008; the Fermi GF100 architecture,
launched on 26 March 2010 and the Kepler
GK104 architecture, released on 22 March
2012. The high level of performance
achieved on various GPUs architectures from
different generations confirms the efficiency
and the high degree of applicability for the
optimization solutions of the parallel
reduction algorithmic function in CUDA. As

this high performance has been recorded in a
variety of scenarios, the developed reduction
function proves its applicability and
usefulness in a wide range of algorithms.
Moreover, the Compute Unified Device
Architecture represents a novel approach for
developing efficient parallel software on
multithreaded architectures, a very useful
tool for developing solutions that optimize
the data processing at low-costs and with a
spectacular performance.

References
[1] J. Sanders and E. Kandrot, CUDA by

Example: An Introduction to General-
Purpose GPU Programming. Boston:
Addison-Wesley Professional, 2010, pp.
79-94.

[2] G. E. Blelloch, “Prefix Sums and Their
Applications“, in Synthesis of Parallel
Algorithms. San Francisco: Morgan
Kaufmann, 2009, pp. 35-59.

[3] S. Sengupta, M. Harris and M. Garland,
“Efficient Parallel Scan Algorithms for
GPUs“, Nvidia Technical Report NVR-
2008-003, December 2008.

[4] N. Satish, M. Harris and M. Garland,
„Designing efficient sorting algorithms
for manycore GPUs, in Proceedings of
the 23rd IEEE International Parallel
and Distributed Processing Symposium,
Rome, 2009, pp. 1-10.

[5] S. Sengupta, M. Harris, Y. Zhang and J.
D. Owens, “Scan primitives for GPU
computing“, in Graphics Hardware
2007 ACM SIGGRAPH/Eurographics
Symposium proceedings, San Diego,
2007, pp. 97-106.

[6] W. W. Hwu, GPU Computing Gems
Jade Edition, San Francisco: Morgan
Kaufmann, 2011, pp. 1-560.

[7] GeForce Graphics Cards,
http://www.nvidia.com/object/geforce_f
amily.html, accessed at 10 July 2012.

[8] I. Lungu, D. M. Petrosanu D. and A.
Pirjan, “Solutions for optimizing the
parallel reduction algorithm using the
Compute Unified Device Architecture,
in Proc. of The Eleventh International
Conference on Informatics in Economy

86 Informatica Economică vol. 16, no. 3/2012

– Education, Research & Business
Technologies IE 2012, ASE Bucharest,
2012, pp. 7-11.

[9] A. Pirjan, “Improving software
performance in the Compute Unified
Device Architecture“, Informatica
Economica, vol. 14, no. 4, pp. 30-47,
December 2010.

[10] A. Pirjan, “Solutions for optimizing the
stream compaction algorithmic function
using the Compute Unified Device

Architecture“, Journal of Information
Systems & Operations Management,
vol. 6, no. 1, pp. 216-231, June 2012.

[11] I. Lungu, A. Pirjan and D. M. Petrosanu,
“Solutions For Optimizing The Data
Parallel Prefix Sum Algorithm Using
The Compute Unified Device
Architecture“, Journal of Information
Systems & Operations Management,
vol. 5, no. 2.1, pp. 465-477, Dec. 2011.

Ion LUNGU is a Professor at the Economic Informatics Department at the
Faculty of Cybernetics, Statistics and Economic Informatics from the
Academy of Economic Studies of Bucharest. He has graduated the Faculty of
Economic Cybernetics in 1974, holds a PhD diploma in Economics from
1983 and, starting with 1999 is a PhD coordinator in the field of Economic
Informatics. He is the author of 41 books in the domain of economic
informatics, 57 published articles (among which 20 articles ISI indexed or

included in international databases) and 39 scientific papers published in conferences
proceedings (among which 5 papers ISI indexed and 15 included in international databases).
He participated (as director or as team member) in more than 20 research projects that have
been financed from national research programs. He is a CNCSIS expert evaluator and
member of the scientific board for the ISI indexed journal Economic Computation and
Economic Cybernetics Studies and Research. He is also a member of INFOREC professional
association and honorific member of Economic Independence academic association. In 2005
he founded the master program Databases for Business Support, who’s manager he is and in
2010 he founded Databases Journal. His fields of interest include Databases, Design of
Economic Information Systems, Database Management Systems, Decision Support Systems,
Executive Information Systems and Business Intelligence.

Dana-Mihaela PETROSANU has graduated the Faculty of Mathematics and
Computer Science, from the University of Bucharest, in 1988. She holds a
PhD diploma in Mathematics since 2010. She was a teaching assistant from
1990 and currently she is a senior lecturer at the Faculty of Applied Sciences
from the University Politehnica in Bucharest. She is the author of 2 books and
21 journal articles, in the fields of interest: Applied Mathematics, Geometry,
Mechanics, Differential Equations and Complex Analysis. She was a member

in 9 scientific research projects.

Alexandru PIRJAN has graduated the Faculty of Computer Science for
Business Management in 2005. He holds a MA Degree in Computer Science
for Business from 2007. He joined the staff of the Romanian-American
University as a stagier teaching assistant in 2005 and a Lecturer Assistant in
2008. He is a PhD candidate since 2009 at the Doctoral School from the
Bucharest Academy of Economic Studies. He is currently a member of the
Department of Informatics, Statistics and Mathematics from the Romanian-

American University. He is the author of more than 28 journal articles and a book. He was a
member in 6 national scientific research projects. His work focuses on parallel processing,
database applications, artificial intelligence and quality of software applications.

