
Informatica Economică vol. 16, no. 2/2012

142

Integrating Usage Stage Risk Measurement Tools in Distributed
Applications

Cătălin Alexandru TĂNASIE

Academy of Economic Studies, Bucharest, Romania
catalin.tanasie@hotmail.com, catalin.tanasie@doesec.ase.ro

Distributed application features are presented along with associated risks occurring during
the development and production stages. Issues raised by incidents catalogued as risks are
described. The MERICS software application is presented, being built for user-distributed
system interaction analysis and component reliability measurement. The steps taken to
accurately describe risks from an end-user scope, based on a comparative system, are shown.
The model is implemented using previously-described elements as parameters. The
operational impact of analysis is detailed within successive versions of modules composing
distributed applications. Risk management decisions are to be based on the analytic database
built by applying the above.
Keywords: Distributed IT Applications, Risks, Models, Release, Management

 Introduction
Distributed IT applications – DIA –

define a collection of software modules
separated based on function or location and
who interact in order to provide an optimized
solution to a request.
DIA components are characterized by:
- diversity, in the sense that module

development technologies vary widely;
- functional orientation, each component

having a pre-determined, well defined role
in the system;

- technical autonomy, the property of a
component to function even if other
components it interacts with are not
accessible;

- logical autonomy, derived as a notion
from the technical one, but encompassing
a module’s ability to perform its
individual tasks at maximum efficiency
and without waiting for an external
process-based input; when the latter is
required, the interaction occurs
asynchronously;

- redundancy, the presence of common
functions in more than one component,
used to improve system-wide performance
or as backup in case an incident occurs.

The distributed software application post-
release or live stage describes the interval
starting with the first usage of the application
in solving the tasks it was designed to

perform and ending with the moment it is
replaced. Between these two the application
is constantly improved by applying patches
designed to fix eventual errors in design or
implementation and by extending its original
functionality.
The dynamic manner of software
development techniques, hardware and by
extension products introduces the issue of
obsolescence, which shortens an
application’s lifespan. As such, having inter-
communicating components comes with the
advantage of replacing old, poorly
performing modules with new ones in a user-
transparent manner.
IT post-release stage risks describe the
probability of occurrence for an event which
causes the partial or total loss of function for
the application, as well as the probability of
losing data integrity and implicitly lowering
result quality.
Based on the DIA risk definition as concerns
operational and analytical data, these
incidents produce:
- risks concerning data quality or

completeness in storage;
- user-performed analysis risks.

2 User-distributed system interaction
Through the duration of the live stage, the
jobs that DIA perform are triggered directly
or indirectly by user actions. Users are either

1

Informatica Economică vol. 16, no. 2/2012

143

individuals, with varied degrees of technical
knowledge, or identities associated to
processes or components, that interact in
performing a task whose output is given by
previous operations or is based on them.
Identifying target end-user groups is essential
to DIA development, as their members
participate in stages throughout the
development of the solution.
Chronologically ordered based on a DIA’s
lifecycle, the activities involving user input
are:
- functional specification definition, based

on the consulting of the end-users of the
application by analysts, concerning the
identification of the processes that need to
be implemented or optimized;

- functional testing, stage which precedes
the application’s release and in which user
feedback is necessary in order to expose
technical errors or functional ones
appearing in the applied design and which
are easier to discover using test scenarios;
an important part of this stage is
acceptance testing, testing the candidate
version for release on a global scope;

- the roll-out and live stages, involving the
gradual to full usage of the released
application, raising risks linked to the
application’s activity domain,
environment, user and inter-component
authentication as part of obtaining the
result set;

- maintenance, the continuous set of
processes through which DIAs are kept in
a optimally running state and incident
effects are removed; it is considered
technical or functional based on the role
the user plays and his input;

- extending DIA functional coverage,
through associating new modules, process
that includes design, development and
testing based partially on user input.

The users represent the main source for the
input for the application’s modules, in a
direct or indirect manner, and their activities
influence the application’s operational state
and the quality of stored information and
offered results. IT risks, defined as
probabilities of occurrence for events that

cause losses through affecting the
application’s operating status and data
quality, arise through this interaction.
In classifying DIA risks factors such as
frequency, damage assessment through
qualitative or quantitative costs and context
of occurrence are taken into account [1].
In a distributed informatics system, the
communication channels, component
complexity, chosen architectural model,
maintainability, module interdependency and
user actions constitute factors of risk.
The actors involved in post-release DIA
interactions generate security risks described
by scenarios that include compromising
authentication credentials through losing or
accidentally or consciously divulging them
towards unauthorized users. The potential
damage is increased in situations where the
communication channel is not under the
control of the desired parties, as is the case
with most geographically and architecturally
separated applications. Privacy through usage
of secure message protocols and techniques
is not always an option, as it leads to
increased complexity.
DIA post-release usage develops data quality
risks through bad practices such as:
- deficient assignment of user roles

associated to interacting with the
application, resulting in allowing for
initiating specialized tasks by users that do
not poses required functional or technical
knowledge, such as composing and
generating irrelevant reports;

- removal or altering data which in turn acts
as a basis for operations performed
through automated processes in a
transparent, asynchronous manner, not
part of a business flow, as in the case of
altering of operational information by the
database administrator, event that will
affect analysis;

- user impersonation, resulting in storing
erroneous data or altering previously
saved information; this scenario differs
from security risks by the active role
assumed by the attacker as concerning
modifying information;

Informatica Economică vol. 16, no. 2/2012

144

- process impersonation, affecting inter-
component message content;

- inconsistent data acquisition due to
insufficient validation or collecting
irrelevant information;

- performing unwanted operations on
logically associated information, deriving
from design issues and insufficient testing,
as is the case with deleting foreign key
information or intersection table records.

The third risk category is due to external
factors, as viewed from the DIA scope and
consists of:
- vulnerabilities in application availability

due to natural disasters, power surges or
the temporary unavailability of key
functional or technical personnel;

- loss of inter-module or user-to-application
communication channels;

- economical context factors such as
diminishing the maintenance and
operational budget.

The risk management concept defines the
resource allocation and package of measures
destined to preventing incident occurrence
and disaster recovery through minimizing
downtime and damage control. It consists of:
- application startup procedures;
- building a backup framework including a

minimum of functionality, usually started
in a transparent manner related to the
users, as well as designing and
implementing a level of native
redundancy such as doubling key
functionality across multiple components;

- development of specialized components
destined for transient information storage,
such as active session data;

- complex logging of scheduled and
triggered tasks aiming at rebuilding failed
processes and providing error information;

- assuming incident-related costs as part of
the business plan and assigning a risk-
related budget either independent of or
part of the maintenance budget;

- documenting incidents for the purpose of
future avoidance or minimizing
occurrence.

Risk management is an integral part of the
overall project management and involves
decisions based on target user groups input
and client feedback in the context of a
dynamic environment.

3 MERICS. A software application for
data collection, quality assessment and
risk analysis
In order to properly illustrate the post-release
management and usage of a distributed
application and to define the practical
background for analysis processes the
following section presents the MERICS
(Modele de Estimare a Riscurilor
Informatice în Contextul Securizării / IT Risk
Estimation Models in a Secured
Environment) software application.
MERICS components are destined to help
acquire, transform and store information
obtained through user input as well as
operational processes in vision of future
analysis, as well as to determine the
efficiency of used algorithms and to
minimize risks through the development of
an evolutional model of their form based on
evaluating their performance as compared to
a set of results considered as an optimal
form.
Conceptually, the MERICS application is
composed of the following two parts:
- the operational package, reuniting

components destined to help with image
and video content loading, processing and
comparison, marking the differences and
storing the output information; the
application’s use cases are shown in
Figure 1;

- the analytical package, grouping processes
and technologies for operational algorithm
analysis as well as evaluating the
application’s global performance under
criteria such as reliability, scalability,
processing speed and security.

Informatica Economică vol. 16, no. 2/2012

145

Fig. 1. MERICS Use Cases

Architecturally, the MERICS application is
built around components as presented in
Figure 2 and the following paragraphs, in a
decreasing order as concerning the logical
layer they belong to related to the interface,
starting with the databases.
The databases are structured based on input
provided by analyzing target group
requirements, containing additional elements
for storage of contextual information.
The operational database is designed to store
primary information like pictures or video
files, as well as meta-information concerning
their disk storage location, loading date, the
subject of the study and operational methods
used, as well as acquired results. Attributes
relating to the context of their acquirement
are added, among them the session ID. This
enables multiple instances of the same base
content in order to serve as comparison or to
provide backup.
The analytical database is aimed at helping
with the extraction and formatting of
information obtained through processing the
data in its operational counterpart on
analytical processing dimensions – method,

stage, user, subject and file – and to generate
data for building reports. This information
constitutes input for the analytical methods,
but the latter are stored in the operational
database, directly or through referring the
code block they belong to, as their usage is
an operation allowed for distinct user roles.
MERICS.DataOperationsLayer represents
the interface between the logical layer and
the databases, serving as intermediary for
insert, update and query operations
performed on data, as permitted by the
application’s design. Programmatically, it
includes two object classes designed to
enable:
- mirroring the operational and analytical

database structures by building around
class-table, object-record and attribute-
column associations;

- implementing the database interaction
procedures and ensuring operation order,
as in the case of inter-table, foreign key
based interdependencies.

MERICS.Reports is composed of tools used
for preparing reports by applying templates
and filters on information in order to prepare

uc Data Model

Authentication

User

Administrator

Prov iding image file
input

Starting ev aluation and
reports wizards

Prov iding v ideo file
input

Code compilation and
v ersion administration

Database
administration

Error categorizing
and treatment

Visualizing
operational output

reports

Visualizing analytical
reports

«extend»

«extend»

«extend»

Informatica Economică vol. 16, no. 2/2012

146

the content and format necessary for the
presentation layer, either through interface-
built controls or through generating report
files.
MERICS.COMMON encompasses the
collection of objects, properties and methods
common to more than one component, such
as reusable objects, enumerations, structures
reunited in order to avoid circular
dependencies and unwanted redundancy. An
example of such an object is the image or
video content itself, which is transferred
throughout the application logical and
persistence layers. These objects have no
relevancy outside the application’s
components or at the database level and they

are not standard development platform items
as they contain additional information.
MERICS.OperationalLayer is the
application’s architectural nucleus, in the
sense that it integrates functional methods,
storage and data presentation operators,
targeting both operational and analytical
content and reports. Once a new method is
developed, its logic is implemented at this
level and a unique signature is associated in
order to recognize the resulting output at a
later stage. Additionally, this module
contains error processing components. The
reports and user-required analysis translates
to supplementary methods, but no distinction
is made concerning the analytical or
operational scope at this level.

Fig. 2. MERICS Components and Layers

Informatica Economică vol. 16, no. 2/2012

147

MERICS.VideoOperations targets video file
processing. It is not a part of
MERICS.OperationalLayer due to
incompatible software technologies, an
intermediary layer of encapsulation being
required. The operations are partially based
on functionality stored in libraries belonging
to the Windows Application Programming
Interface – Windows API.
MERICS.WEBAPP is a Web application
performing the role of a client for the
services that compose MERICS.WCF and
presenting the user with authentication means
and, based on role-granted access levels, with
a means to perform operations on input data,
either by measuring using varied operations,
or by generating operational or analytical
reports.
MERICS.TEST.DESKTOP is a module used
as part of the development process, as a tool
that allows for accessing the logical layer
without consuming additional resources
necessary for Web service and application
enabling and without compromising data
through its unsecured exposure to external
environments. It is a form-based application
used for testing components added as part of
the logical and persistence layers, as well as
the alterations, reports or database contents.
The interface copies the Web version, except
for authentications, which is integrated with
the Operating System.
Currently the beta version of MERICS is
undergoing testing as part of pre-deployment,
as components are successively activated and
functionalities extended.

4 Data quality risks
The term operational method is defined as
the sum of procedures applied on a dataset as
described by an application use case and
resulting in a series of values interpreted in
the given context. MERICS has operating
methods reuniting a series of steps in image
processing.
An analytical method represents an
evaluation function associated to a process
that occurs as part of the application’s
domain or to the latter’s performance as

opposed to a set of criteria that describe the
optimum behavior. It can involve comparing
different forms of the same algorithm, as
available at different moments or as part of
distinct application versions.
Let O be the set of operational methods
associated to corresponding use cases,
defined as:

𝑂 = {𝑂1,𝑂2 … ,𝑂𝑘, … ,𝑂𝑛},
where:
𝑛 − number of operations applied on
collected data, corresponding to functional
use cases;
𝑂𝑖 − operational method, part of set O at
position i, i=1,𝑛�����.
Let T be the set defining the second
dimension in operational analysis, grouping
the different stages in the evolution of set O
members or their components. Due to the
time arrow associated to application version
progress, the m components correspond to
different dates, but a chronological order of
these is no required:

𝑇 = {𝑇1,𝑇2, … ,𝑇𝑙 , … ,𝑇𝑚},
where:
𝑚 − the number of stages through which
different operational methods pass through
during their lifetime; component or
application based;
𝑇𝑗 − stage at position j in set T.
Applying operational method 𝑂𝑖 at the
timestamp or application version
corresponding to stage 𝑇𝑗 leads to result 𝑟𝑖𝑗.
Consider the R matrix as being composed of
items corresponding to results obtained
through the execution of operational methods
belonging to set O, measured according to
stages as defined in set T,

𝑅 =

⎝

⎜⎜
⎛

𝑟11 𝑟12 …
𝑟21 𝑟22 …
⋮ ⋮ ⋮

𝑟1𝑗 … 𝑟1𝑚
𝑟2𝑗 … 𝑟2𝑚
⋮ ⋮ ⋮

𝑟𝑖1 𝑟𝑖2 …
⋮ ⋮ ⋮
𝑟𝑛1 𝑟𝑛2 …

𝑟𝑖𝑗 … 𝑟𝑖𝑚
⋮ ⋮ ⋮
𝑟𝑛𝑗 … 𝑟𝑛𝑚⎠

⎟⎟
⎞

(1),

where:
𝑛 − operations number,
𝑚 − number of sets,

Informatica Economică vol. 16, no. 2/2012

148

𝑟𝑖𝑗 − numerical coefficient representing the
output obtained by applying operation
i at time or stage j, part of the R
matrix; in case qualitative levels are
associated to numerical values, the
means of obtaining it remains the
same.

Le matrix 𝑅� be composed of results
considered to represent the optimum,

𝑅� =

⎝

⎜
⎜
⎛

𝑟11���� 𝑟12���� …
𝑟21���� 𝑟22���� …
⋮ ⋮ ⋮

𝑟1𝚥���� … 𝑟1𝑚�����
𝑟2𝚥���� … 𝑟2𝑚�����
⋮ ⋮ ⋮

𝑟𝚤1��� 𝑟𝚤2��� …
⋮ ⋮ ⋮
𝑟𝑛1���� 𝑟𝑛2���� …

𝑟𝚤𝚥� … 𝑟𝚤𝑚����
⋮ ⋮ ⋮
𝑟𝑛𝚥���� … 𝑟𝑛𝑚�����⎠

⎟
⎟
⎞

(3),

𝑖 = 1,𝑛�����, 𝑗 = 1,𝑚������,

where:
𝑛 − operations number,
𝑚 − number of sets,
𝑟̅𝑖𝑗 − numerical coefficient representing the

optimum output obtained by applying
operation i at time or stage j, part of
the 𝑅� matrix; in case qualitative levels
are associated to numerical values,
the means of obtaining it remains the
same. It is calculated based on
predetermined known information,
such as specifications, industry
standards or context-enabled features
– in MERICS’ case, identical images
are compared.

If the result of applying a given method is not
quantifiable or impossible to evaluate due to
insufficient data, a value equal to the average
based on the method or stage is associated to
the corresponding item in the matrix. For a
set composed of 3 methods, 𝑂𝑎, 𝑂𝑏, 𝑂𝑐, that
in forms 𝑇𝑢, 𝑇𝑣,𝑇𝑤 – 𝑎, 𝑏, 𝑐 = 1,𝑛�����,
𝑢, 𝑣,𝑤 = 1,𝑚������ – does not have a measurable
output, for n operations and m stages we
obtain:

𝑟𝑖𝑗 =

∑ 𝑟𝑞𝑗𝑛
𝑞=1

𝑞≠𝑎,𝑏,𝑐
𝑛 − 𝑛𝑙𝑗

+
∑ 𝑟𝑖𝑧𝑚

𝑧=1
𝑧≠𝑢,𝑣,𝑤
𝑚 − 𝑛𝑐𝑖

2
 (3),

where:

𝑎, 𝑏, 𝑐 − identifiers matched to
unquantifiable operations on the chosen
value scale;
𝑢, 𝑣,𝑤 − identifiers associated to stages in

which no 𝑟 for operations
𝑂𝑎,𝑂𝑏,𝑂𝑐 can be determined;

𝑟𝑞𝑗 − numerical coefficient representing the
output obtained by applying operation
q at time or stage j, part of the R
matrix;

𝑟𝑖𝑧 − numerical coefficient representing the
output obtained by applying operation
i at time or stage z, part of the R
matrix;

𝑛𝑙𝑗 − number of elements with
unquantifiable values on the current j column
in matrix R;
𝑛𝑐𝑖 − number of elements with
unquantifiable values on the current i line in
matrix R.

Analytical methods, grouped is set A,
are essentially a series of operations applied
to set 𝑅 in order to minimize differences
between obtained results and optimum
corresponding values, through selecting the
methods considered efficient by comparing
their output to set 𝑅� items and revising the
ones that underperform based on the same
criteria.
𝐴𝑜(𝑖), the aggregated index of operational
evolution for method i, is calculated as:

𝐴𝑜(𝑖) = 𝑓(𝑟𝑖.,𝑇) = �𝑓(𝑟𝑖𝑗 ,𝑇𝑗)
𝑚

𝑗=1

,∀ 𝑖 = 1,𝑛�����,

𝑟𝑖. = �𝑟𝑖𝑗| 𝑗 = 1,𝑚�������, 𝑅 =
{𝑟𝑖| 𝑖 = 1,𝑛�����},

where:
𝑓() − operational method analysis function;
𝑟𝑖𝑗 − numerical coefficient representing the

output obtained by applying operation i
at time or stage j, part of the R matrix;

𝑟𝑖. − the collection of results obtained by
applying operation i through all
applicable stages;

𝑇𝑗 − stage at position j in set T;
𝑚 − number of stages.
𝐴𝑠(𝑗), the index of application evolution for
stage j, is calculated as:

Informatica Economică vol. 16, no. 2/2012

149

𝐴𝑠(𝑗) = 𝑔(𝑟𝑖 ,𝑂) = �𝑔(𝑟𝑖𝑗 ,𝑂𝑖)
𝑛

𝑖=1

,∀ 𝑗

= 1,𝑚������ ,
𝑟.𝑗 = �𝑟𝑖𝑗| 𝑖 = 1,𝑛������, 𝑅 =
�𝑟𝑗| 𝑗 = 1,𝑚�������,

where:
𝑔() − stage analysis function;
𝑟𝑖𝑗 − numerical coefficient representing the

output obtained by applying operation
i at time or stage j, part of the R
matrix;

𝑟.𝑗 − the collection of results obtained by
applying all operations in the version
corresponding to stage j;

𝑂𝑖 − operational method at position i in set
O;
𝑛 − number of operations.
Table 1 reflects the relationship between
operations and application stages, as well as
the form of associated analytical forms.
These constitute input to global evolution
indicators, marked as for 𝐴𝑜 operations and
𝐴𝑠 for stages.

Table 1. Operation-stage comparison

E 𝑻𝟏 𝑻𝟐 … 𝑻𝒍 … 𝑻𝒎 Total
ops

𝑂1 𝑓(𝑟11,𝑇1)
/𝑔(𝑟11,𝑂1)

𝑓(𝑟12,𝑇2)
/𝑔(𝑟12,𝑂1)

… 𝑓(𝑟1𝑙 ,𝑇𝑙)
/𝑔(𝑟1𝑙 ,𝑂1)

… 𝑓(𝑟1𝑚,𝑇𝑚)
/𝑔(𝑟1𝑚,𝑂1)

𝐴𝑜(1)

𝑂2 𝑓(𝑟21,𝑇1)

/𝑔(𝑟21,𝑂2)
𝑓(𝑟22,𝑇2)
/𝑔(𝑟22,𝑂2)

… 𝑓(𝑟2𝑙 ,𝑇𝑙)
/𝑔(𝑟2𝑙 ,𝑂2)

… 𝑓(𝑟2𝑚,𝑇𝑚)
/𝑔(𝑟2𝑚,𝑂2)

𝐴𝑜(2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑂𝑘 𝑓(𝑟𝑘1,𝑇1)

/𝑔(𝑟𝑘1,𝑂𝑘)
𝑓(𝑟𝑘2,𝑇2)
/𝑔(𝑟𝑘2,𝑂𝑘)

… 𝑓(𝑟𝑘𝑙 ,𝑇𝑙)
/𝑔(𝑟𝑘𝑙 ,𝑂𝑘)

… 𝑓(𝑟𝑘𝑚,𝑇𝑚)
/𝑔(𝑟𝑘𝑚,𝑂𝑘)

𝐴𝑜(𝑘)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑂𝑛 𝑓(𝑟𝑛1,𝑇1)

/𝑔(𝑟𝑛1,𝑂𝑛)
𝑓(𝑟𝑛2,𝑇2)
/𝑔(𝑟𝑛2,𝑂𝑛)

… 𝑓(𝑟𝑛𝑙 ,𝑇𝑙)
/𝑔(𝑟𝑛𝑙 ,𝑂𝑛)

… 𝑓(𝑟𝑛𝑚,𝑇𝑚)
/𝑔(𝑟𝑛𝑚,𝑂𝑛)

𝐴𝑜(𝑛)

Total
stages

𝐴𝑠(1) 𝐴𝑠(2) … 𝐴𝑠(𝑙) … 𝐴𝑠(𝑚) 𝐴𝑜/𝐴𝑠

The MERICS modules implement the before
mentioned metric as part of the logical layer.
The analytical methods and their output are
stored in the analytical database and
processed for reports.

5 An evolutional model for method
optimization
During a DIA’s post-release lifespan, the
user encounters the situation of picking the
right method in the analysis of its input. Most

of the time, he is unaware of implementation
details or is lacking the technical knowledge
needed to understand the algorithms, as they
are not a part of his interest area. In case the
form of the methods uses is modified, usually
in a user-transparent, no interface altering
mode, the user will lack the ability or
awareness to distinguish between the results
obtained. The variation in results will be due
to changes in input values, evaluation
algorithms or a combination of both. Yet

Informatica Economică vol. 16, no. 2/2012

150

integrating a set of bounded functional or
analytical activities and reports in an IT
system leads to logical dependencies in the
input information format and data relevancy.
MERICS deals with this issue by establishing
an application-wide system of measurement
that relies on performance estimators for
algorithms that are designed to process
images and video content across different
formats and with varying contextual
accuracy. A histogram is performing well in
evaluating similar format and resolution
content such as video frames, but less
relevant or in need of improvement when
dealing with images that undergo rotation
operations or color reversal.
MERICS analytical algorithms performing
tasks like error count, operational algorithm
efficiency measurement, processing speed
and cross-stage evaluation describe in an
exact manner a fundamentally inexact chain
of events.
Lacking the ability to provide, in a classical
sense, proofs for the predictions obtained as
result of applying risk assessment algorithms
leads to the development of an evolutional
algorithm for optimizing the DIA’s methods
by using techniques specific to genetic
algorithms applied to operations as defined in
chapter 4.
Algorithms, defined [1] as heuristic methods
for selection and optimization that imitate
processes associated to natural selection,
introduce the concepts of:
- representation, usually as an array of

binary values. MERICS uses this element
at operation or module level and in
various stages. The correspondence is not
the same as in the genetic representation,
which usually groups randomly generated
collections of tens or hundreds of
thousands of elements;

- the fitness function used for decision-
making;

- the fitness landscape, concept that groups
efficiency evaluators in the process of
analyzing the global application
performance in treating vulnerabilities that
affect the quality of data or the system’s
availability;

- the crossover and mutation functions,
represented in MERICS through
algorithms highlight the performance of
operational methods in processing
compatible input and identifying new
forms for methods as stages advance.

Consider set I of consisting of z input items
serving as parameters for the O set of
operations presented in chapter 4:

𝐼 = {𝑖1, 𝑖2 … , 𝑖𝑡 , … , 𝑖𝑧},
𝑜𝑝: 𝐼 → 𝑅𝑚.,

where:
𝑜𝑝() − operational input processing function
part of set O;
𝑖1. . 𝑖𝑧 − operational input;
𝑅𝑚. − the array formed by assembling the

results of the operational method op()
along the m stages in which it is used;
part of matrix R.

The binary arrays composing the
representation are determined through
evaluating information i through method
op(). The fidelity of the model relates to
describing the operational steps as detailed as
possible. The design stage involves
describing DIA dynamics through UML
diagrams or similar tools.
Figure 3 describes the steps performed in
calculating the similarity degree between two
Bitmap images, by way of splitting them in
pre-determined size cells and calculating the
total values of color components on the
RGBA (Red, Green, Blue, Alpha) scale, in
which the last component indicates the
transparency degree. There occurs an
observable dependency on previously-
computed values, as is the case with
calculating averages for each component,
needing the total cell average, the latter in
turn depending on identifying cell number.
The
CalculateFramePixelComponentSimilarityUs
ingHistogramsV2() method is itself an
optimized form of the same algorithm
applied on the RGB color representation
scale with the purpose of comparing images.
The algorithm’s steps are identified as:
- the setting or calculating of cell matrix

properties;

Informatica Economică vol. 16, no. 2/2012

151

- computing the total value of numerical
indices associated to each cell’s
composing pixels;

- calculating the total cell-to-cell
differences between the video frames or
pictures;

- determining the global similarity and the
angle at which rotating one of the input
items obtains a maximum of resemblance
to the other, 0o if the feature is disabled.

Consider the (0,0,0,0) vector representing the
algorithm’s 4 component steps as described

in the paragraph above and in their initial
form.
The RGB to RGBA scale transition consists
in altering the way in which the totals are
calculated. Cell totals and pixel differences
are not affected, as the manner in which these
color component-based values are
determined remains unchanged.
Consequently, the second generation array
for describing the algorithm’s steps is
(0,0,0,1), the value 1 indicating that a change
has occurred in the last step.

Fig. 3. CalculateFramePixelComponentSimilarityUsingHistogramsV2() steps

Informatica Economică vol. 16, no. 2/2012

152

The fitness function role for these operations
is played by use of f() and g() functions as
described chapter 4’s model, based on the
analysis of the result’s fidelity in providing
relevant data – determined through
comparing successive stages for
improvements or the global impact of the
alteration. The better performance of the
histogram algorithm by switching to the
RGBA scale is determined through this
criterion.
The next stage for the analytical MERICS
module consists of determining the impact
that incidents and security breaches have in
the variation of these values. Based on image
sets the vulnerabilities in designing the
algorithms are identified, as well as the zones
that must be refined through successive
modifications while keeping performing
features.
Steps in method evolution appear as follows:
Step 1. Form 1. (0,0,0,0)
Step 2. Form 1. (1,0,0,0) and determined to
be inferior to 1.
Step 3. Form 1. (0,1,0,0) is superior to 1 
this form is now described as the reference
(0,0,0,0)
Step 4. Form 2. (1,0,0,0) superior to 1  this
form is now described as the reference
(0,0,0,0)
Step 5. Form 3.
If global application performance is impacted
at a random step k, the global estimators are
computed considering the current method at
its k form and the rest at their previous, k-1,
forms.

6 Conclusions
Risk evaluation as applied to data quality and
security creates a framework enabling
decisions related to risk management,
associated to DIAs post-release stages. Based
on analytical algorithms, incidents are
identified and measures taken ensuring the
continual improvement of the operational
methods.
Losses caused by the occurrence of events
negatively impact application performance or
informational content, as well as influence
the data collection and analysis. The cost is

estimated by the user or owner of the
application based on associating value to
functionalities [2].The valuation models
include this subjective factor in their
algorithms, the budget or activity domain
leading to different weights for similar
incidents and subsequently to the refusal or
acceptance of a change in the operations.
An online vendor specializing in digital
content may find that requesting a client’s
physical address in the checkout forms
lowers overall sales due to customer
resilience in providing such information, as
opposed to goods that require shipping, even
if the purpose is clearly stated – an online
survey, for instance. This leads to users
associating different effects for the same
procedure.
MERICS associates operational and
analytical methods aiming at constantly
improving their behavior. The latter’s
dependency on data quality and availability,
as well as including meta-information tools
such as logs and error treatment in the
application’s source code or environment
leads to establishing a mechanism for
refining the algorithms and optimizing the
architectural layout.
DIAs features such as component reliance in
task solving allow for processing
optimization and increase reliability through
enabling flexible security levels, with
enhancements in work speed and inter-
component communication, as well as proper
user identification and message contents
encoding.
Method stages help in describing and
comparing operational functions through
different application versions.
The model allows for abstracting method
components, process used in developing
automatic analytical instruments.

Acknowledgements
The current research effort is augmented by
the help of the DoEsEc project, financed
through the European Social Fund’s Human
Resource Development program. Parts of the
current article were presented in Bucharest
University of Economic Studies’ 11th

Informatica Economică vol. 16, no. 2/2012

153

International Conference on Informatics in
Economy in May 2012 [11].

References
[1] W. B. Langdon, and N. F. McPhee. A

field guide to genetic programming.
Published via http://lulu.com,
http://www.gp-field-guide.org.uk, 2008.
(With contributions by J. R. Koza),
2008, 250 pp.

[2] C. A. Tănasie, S. Vînturis, A.
Grigorovici, Reliability in Distributed
Software Applications, Informatica
Economica, Volume 15, No. 4.

[3] S. Hoermann, M. Aust, M. Schermann,
H. Krcmar, Comparing Risks in
Individual Software Development and
Standard Software Implementation
Projects: A Delphi Study, 45th Hawaii
International Conference on System
Science (HICSS), 4-7 January 2012.

[4] M.P. Lima, J.M.N. David and B.T.
Dantas, Risk Management and Context
in a Collaborative Project Management
Environment for Software Development,
Brazilian Symposium of Collaborative
Systems - Simposio Brasileiro de
Sistemas Colaborativos (SBSC), 5-8
October 2010, pp. 95 - 102

[5] B. Boehm and J. Bhuta, Balancing
Opportunities and Risks in Component-
Based Software Development, IEEE
Software, Volume 25, Issue 6, December
2008, pp. 56 – 63.

[6] Y. Wang, X. Tuo and T. Zhao, A
concrete model of software risk

development, 3rd IEEE International
Conference on Computer Science and
Information Technology (ICCSIT), 9-11
July 2010, pp. 472 – 474.

[7] J.A. Ibrahim, M. Majid, A.H. Hashim
and R.M. Tahar, Risk Quantification in
Coal Procurement for Power
Generation: The Development of Supply
Shortage Impact Matrix, Second
International Conference on
Computational Intelligence, Modeling
and Simulation (CIMSiM), 28-30
September 2010, pp. 401 – 406.

[8] M.Q. Saleem, J. Jaafar and M.F. Hassan,
Model driven security frameworks for
addressing security problems of Service
Oriented Architecture, 2010
International Symposium in Information
Technology (ITSim), 15-17 June 2010,
pp. 1341 – 1346.

[9] J. Pearl, Causality: Models, Reasoning
and Inference, 2nd Edition, Cambridge
University Press, 2009, 484 pp.

[10] M. Sadiq, M.K.I. Rahmani, M.W.
Ahmad, S. Jung, Software risk
assessment and evaluation process
(SRAEP) using model based approach,
Networking and Information Technology
(ICNIT), 2010 International Conference,
11-12 June 2010, pp. 171 – 177.

[11] Post-release distributed software
applications risk management,
Proceedings of the Eleventh
International Conference on Informatics
in Economy IE 2012, 10-11 May 2012,
pg. 36 – 40.

Catalin Alexandru TĂNASIE, born at 18.08.1984 in Pitesti, Arges, is a
graduate of the I. C. Bratianu National College and of the Faculty of
Cybernetics, Statistics and Economic Informatics within the Bucharest
University of Economic Studies, the Economic Informatics specialization,
2007 promotion. Starting 2007 he attended the Informatics Security Master
in the same institution, and is currently a PhD student at the Doctoral School
within the Bucharest University of Economic Studies. He has concerns in the

field of distributed applications programming, evolutionary algorithms development, part of
the field of artificial intelligence - neural and genetic programming. Currently he works as an
application designer in a financial institution. He is involved in creating commercial
applications using development platforms belonging to leaders in the field, companies
including Microsoft, Oracle and IBM.

