
116 Informatica Economică vol. 16, no. 2/2012

Distributed Parallel Architecture for "Big Data"

Catalin BOJA, Adrian POCOVNICU, Lorena BĂTĂGAN
Department of Economic Informatics and Cybernetics
Academy of Economic Studies, Bucharest, Romania

catalin.boja@ie.ase.ro, pocovnicu@gmail.com, lorena.batagan@ie.ase.ro

This paper is an extension to the "Distributed Parallel Architecture for Storing and Pro-
cessing Large Datasets" paper presented at the WSEAS SEPADS’12 conference in Cam-
bridge. In its original version the paper went over the benefits of using a distributed parallel
architecture to store and process large datasets. This paper analyzes the problem of storing,
processing and retrieving meaningful insight from petabytes of data. It provides a survey on
current distributed and parallel data processing technologies and, based on them, will pro-
pose an architecture that can be used to solve the analyzed problem. In this version there is
more emphasis put on distributed files systems and the ETL processes involved in a distribut-
ed environment.
Keywords: Large Dataset, Distributed, Parallel, Storage, Cluster, Cloud, MapReduce,
Hadoop

Introduction
A look back to the immediate history

shows that the data storing capacity is con-
tinuously increasing, while the cost per GB
stored is decreasing, figure 1. The first hard
disk came from IBM in 1956, it was called
The IBM 350 Disk Storage and it had a ca-
pacity of 5 MB, [10-11]. In 1980, IBM 3380
breaks the gigabyte-capacity limit providing
storage for 2.52 GB. After 27 years, Hitachi
GST that acquired IBM drive division in
2003, deliver the first terabyte hard drive. Af-
ter only two years, in 2009, Western Digital
launches industry’s first two terabyte hard
drive. In 2011, Seagate introduces the
world’s first 4TB hard drive, [11].

Fig. 1. Average HDD capacity (based on

[13])

In terms of price [12], the cost per gigabyte
decreased from an average of 300.000 $ to a
merely an average of 11 cents in the last 30

years, figure 2. As a fact, in 1981 you must
use 200 Seagate units, each having a five
megabytes capacity and costing 1700$, to
store one gigabyte of data.

Fig. 2. Average $ cost per GB (based on

[13])

The reduce costs for data storage has repre-
sented the main premise of the current data
age, in which it is possible to record and
store almost everything, from business to
personal data. As an example, in the field of
digital photos, it is estimated that around the
world has been taken over 3.5 trillion photos
and in 2011 alone have been made around
360 billion new snapshots, [16]. Also, the
availability and the speed of Internet connec-
tions around the world have generated in-
creased data traffic that is generated by a
wide range of mobile devices and desktop
computers. Only for mobile data, Cisco ex-
pects that mobile data traffic will grow from

1

Informatica Economică vol. 16, no. 2/2012 117

0.6 exabytes (EB) in 2011 to 6.3 EB in 2015,
[8]. The expansion of data communications
has promoted different data services, social,
economic or scientific, to central nodes for
storing and distributing large amounts of da-
ta. For example, Facebook social network
hosts more than 140 billion photos, which is
more than double compared to 60 billion pic-
tures at the end of 2010. In terms of storage,
all these snapshots data take up more than 14
petabytes. In other fields, like research, the
Large Hadron Collider particle accelerator
near Geneva, will produce about 15 petabytes
of data per year. The SETI project is record-
ing each month around 30 terabytes of data
which are processed by over 250.000 com-
puters each day, [14]. The supercomputer of
the German Climate Computing Center
(DKRZ) has a storage capacity of 60
petabytes of climate data. In the financial
sector, records of every day financial opera-
tions generate huge amounts of data. Solely,
the New York Stock Exchange records about
one terabyte of trade data per day, [15].
Despite this spectacular evolution of storage
capacities and of deposits size, the problem
that arises is to be able to process it. This is-
sue is generated by available computing
power, algorithms complexity and access
speeds. This paper makes a survey of differ-
ent technologies used to manage and process
large data volumes and proposes a distributed
and parallel architecture used to acquire,
store and process large datasets. The objec-
tive of the proposed architecture is to imple-

ment a cluster analysis model.

2 Processing and storing large datasets
As professor Anand Rajaraman questioned,
more data usually beats better algorithm
[15]. The question is used to highlight the ef-
ficiency of a proposed algorithm for the Net-
flix Challenge, [17]. Despite the statement is
still debatable, it brings up a true point. A
given data mining algorithm yields better re-
sults with more data and it can reach the
same accuracy of results of a better or more
complex algorithm. In the end, the objective
of a data analysis and mining system is to
process more data with better algorithms,
[15].
In many fields more data is important be-
cause it provides a more accurate description
of the analyzed phenomenon. With more da-
ta, data mining algorithms are able to extract
a wider group of influence factors and more
subtle influences.
Today, large datasets means volumes of hun-
dreds of terabytes or petabytes and these are
real scenarios. The problem of storing these
large datasets is generated by the impossibil-
ity to have a drive with that size and more
important, by the large amount of time re-
quired to access it.
Access speed of large data is affected by the
disk speed performances [22], Table 1, inter-
nal data transfer, external data transfer, cache
memory, access time, rotational latency, that
generate delays and bottlenecks.

Table 1. Example of disk drives performance (source [22])

Interface HDD
Spindle
[rpm]

Average
rotational

latency [ms]

Internal transfer

[Mbps]

External transfer

[MBps]

Cache

[MB]

SATA 7,200 11 1030 300 8 – 32

SCSI 10,000 4.7 – 5.3 944 320 8

High-end SCSI 15,000 3.6 – 4.0 1142 320 8 – 16

SAS 10,000 / 15,000 2.9 – 4.4 1142 300 16

Despite the rapid evolution of drives capaci-
ty, described in figure 1, the large datasets of
up to one petabytes can only be stored on
multiple disks. Using 4 TB drives requires

250 of them to store 1 PB of data. Once the
storage problem is solved another question
arises, regarding how easy/hard is to read
that data. Considering an optimal transfer

118 Informatica Economică vol. 16, no. 2/2012

rate of 300 MB/s then the entire dataset is
read in 38.5 days. A simple solution is to
read from the all disks at once. In this way,
the entire dataset is read in only 3.7 hours.
If we take into consideration the communica-
tion channel, then other bottlenecks are gen-
erated by the available bandwidth. In the end,
the performance of the solution is reduced to
the speed of the slowest component.
Other characteristics of large data sets add
supplementary levels of difficulty:
 many input sources; in different econom-

ic and social fields there are multiple
sources of information;

 redundancy, as the same data can be pro-
vided by different sources;

 lack of normalization or data representa-
tion standards; data can have different
formats, unique IDs, measurement units;

 different degrees of integrity and con-
sistency; data that describes the same
phenomenon can vary in terms of meas-
ured characteristics, measuring units,
time of the record, methods used.

For limited datasets the efficient data man-
agement solution is given by relational SQL
databases, [20], but for large datasets some of
their founding principles are eroded [3], [20],
[21].

3 Proposed Approach
The next solutions provide answers to the
question regarding how to store and process
large datasets in an efficient manner that can
justify the effort.

3.1 Large Data Sets Storage
When accessing large data sets, the storage
file system can become a bottle neck. That's
why a lot of thought was put into redesigning
the traditional file system for better perfor-
mance when accessing large files of data.

Fig. 3. Simplified GFS Architecture

In a distributed approach, the file system
aims to achieve the following goals:
 it should be scalable; the file system

should allow for additional hardware to
be added to increase storing capacity
and/or performance.

 it should offer high performance; the file
system should be able to locate the data
of interest on the distributed nodes in a
timely manner.

 it should reliable; the file system should
be able to recreate from the distributed
nodes the original data in a complete and
undistorted manner.

 it should have high availability; the file
system should account for failures and
incorporate mechanisms for monitoring,
error detection, fault tolerance and auto-
matic recovery.

Google, one of the biggest search engine ser-
vices providers, which handles “big web da-
ta” has published a paper about the file sys-
tem they claim it's being used by their busi-
ness called "The Google File System".
From an architecture point of view the
Google File System (GFS) comprises of a
"single master", multiple "chunk servers" and
it's being accessed by multiple "clients".

GFS Clients GFS Master

Chunk Serv-
ers

(file name, chunk index)

(chunk handle, chunk loca-
tions)

(chunk handle, byte range)

(chunk data)

Instructions to chunk server

Chunk server state

Informatica Economică vol. 16, no. 2/2012 119

In the simplified version of the GFS architec-
ture, figure 3 it shows how the GFS clients
communicate with the master and with the
chunk servers. Basically the clients are ask-
ing for a file and the GFS master tells them
which chunk servers contain the data for that
file. Then the GFS clients make a request for
the data at those respective chunk servers.
Then GFS chunk servers transmit the data di-
rectly to the GFS clients. No user data actual-
ly passes the GFS master, this way it avoids
having the GFS master as a bottleneck in the
data transmission.
Periodically, the GFS master communicates
with the chunk servers to get their state and
to transmit them instructions.
Each chunk of data is identified by an immu-
table and globally unique 64 bit chunk handle
assigned by the master at the time of chunk
creation [33].
The chunk size is a key differentiator from
more common file system. GFS uses 64 MB
for a chunk, limiting this way the number or
requests to the master for chunk locations, it
reduces the network overhead and it reduces
the metadata size on the master, allowing the
master to store the metadata in memory.
Hadoop, a software framework derived from
Google's papers about MapReduce and GFS,
offers a similar file system, called Hadoop
Distributed Files System (HDFS).
What GFS was identifying as "Master" it's
being called NameNode in HDFS and the
GFS "Chunk Servers" can be found as
"Datanodes" in HDFS.

3.2 ETL
The Extract, Transform and Load (ETL) pro-
cess provides an intermediary transfor-
mations layer between outside sources and
the end target database.
In literature [29], [30] we identified ETL and
ELT. ETL refers to extract, transform and
load in this case activities start with the use
of applications to perform data transfor-
mations outside of a database on a row-by-
row basis, and on the other hand ELT refers
to extract, load and transform which implied
the use first the relational databases, before
performing any transformations of source da-

ta into target data.
The ETL process [32] is base on three ele-
ments:
 Extract – The process in which the data is

read from multiple source systems into a
single format. In this process data is ex-
tracted from the data source;

 Transform – In this step, the source data
is transform into a format relevant to the
solution. The process transform the data
from the various systems and made it
consistent;

 Load – The transformed data is now writ-
ten into the warehouse.

Usually the systems that acquire data are op-
timized so that the data is being stored as fast
as possible. Most of the time comprehensive
analyses require access to multiple sources of
data. It’s common that those sources store
raw data that yields minimal information un-
less properly process.
This is where the ETL or ELT processes
come into play. An ETL process will take the
data, stored in multiple sources, transform it,
so that the metrics and KPIs are readily ac-
cessible, and load it in an environment that
has been modeled so that the analysis queries
are more efficient [23]. An ETL system is
part of a bigger architecture that includes at
least one Database Management System,
DBMS. It is placed upstream from a DBMS
because it feeds data directly into the next
level.
The ETL tools advantages are [29], [30],
[31]:
 save time and costs when developing and

maintaining data migration tasks;
 use for complex processes to extract,

transform, and load heterogeneous data
into a data warehouse or to perform other
data migration tasks;

 in larger organizations for different data
integration and warehouse projects ac-
cumulate;

 such processes encompass common sub-
processes, shared data sources and tar-
gets, and same or similar operations;

 ETL tools support all common databases,
file formats and data transformations,
simplify the reuse of already created

120 Informatica Economică vol. 16, no. 2/2012

(sub-)processes due to a collaborative de-
velopment platform and provide central
scheduling.

 Portability: usually the ETL code can be
developed one a specific target database
and ported later to other supported data-
bases.

When developing the ETL process, there are
two options: either takes advantage of an ex-
isting ETL tool, some key players, in this
domain, are: IBM DataStage, Ab Initio,
Informatica or custom code it. Both ap-
proaches have benefits and pitfalls that need
to be carefully considered when selecting
what better fits the specific environment.
The benefits of an in-house custom built ETL
process are:
 Flexibility; the custom ETL process can

be designed to solve requirements specif-
ic to the organization that some of the
ETL tools may have limitation with;

 Performance; the custom ETL process
can be finely tuned for better perfor-
mance;

 Tool agnostic; the custom ETL process
can be built using skills available in-
house;

 Cost efficient: custom ETL processes
usually use resources already available in
the organization, eliminating the addi-
tional costs with licensing an ETL tool
and training the internal resources on us-
ing that specific ETL tool.

3.3 MapReduce, Hadoop and HBase
MapReduce (MR) is a programming model
and an associated implementation for pro-
cessing and generating large data sets, [18].
The model was developed by Jeffrey Dean
and Sanjay Ghemawat at Google. The foun-
dations of the MapReduce model are defined
by a map function used top process key-value
pairs and a reduce functions that merges all
intermediate values of the same key.
The large data set is split in smaller subsets
which are processed in parallel by a large
cluster of commodity machines.
Map function [27] takes an input data and
produces a set of intermediate subsets. The
MapReduce library groups together all in-

termediate subsets associated with the same
intermediate key and send them to the Re-
duce function.
The Reduce function, also accepts an inter-
mediate key and subsets. This function merg-
es together these subsets and key to form a
possibly smaller set of values. Normally just
zero or one output value is produced per Re-
duce function.
In [26] is highlight that many real world
tasks such used MapReduce model. This
model is used for web search service, for
sorting and processing the data, for data min-
ing, for machine learning and for a big num-
ber of other systems.
The entire framework manages how data is
split among nodes and how intermediary
query results are aggregate.
A general MapReduce architecture can be il-
lustrated as Figure 4.

Fig. 4. MapReduce architecture (based on

[28])

The MR advantages are [1], [6], [7], [18],
[20], [24], [27]:
 the model is easy to use, even for pro-

grammers without experience with paral-
lel and distributed systems;

 storage-system independence as it not re-
quires proprietary database file systems
or predefined data models; data is stored
in plain text files and it is not required to
respect relational data schemes or any

Informatica Economică vol. 16, no. 2/2012 121

structure; in fact the architecture can use
data that has an arbitrary format;

 fault tolerance;
 the framework is available from high lev-

el programming languages; one such so-
lution is the open-source Apache Hadoop
project which is implemented in Java;

 the query language allows record-level
manipulation;

 projects as Pig and Hive [34] are provid-
ing a rich interface that allows program-
mers to do join datasets without repeating
simple MapReduce code fragments;

Hadoop is a distributed computing platform,
which is an open source implementation of
the MapReduce framework proposed by
Google [28]. It is based on Java and uses the
Hadoop Distributed File System (HDFS).
HDFS is the primary storage system used by
Hadoop applications. It is uses to create mul-
tiple replicas of data blocks for reliability,
distributing them around the clusters and
splitting the task into small blocks. The rela-
tionship between Hadoop, HBase and HDFS
can be illustrated as Figure 5.
HBase is a distributed database. HBase is an
open source project for a database, distribut-
ed, versioned, column-oriented, modeled af-
ter Google’ Bigtable [25].

Fig. 5. The relationship between Hadoop,
HBase and HDFS (based on [28])

Some as the features of HBASE as listed at
[25] are:
 convenient base classes for backing

Hadoop MapReduce jobs with HBase ta-
bles including cascading, hive and pig
source and sink modules;

 query predicate push down via server
side scan and get filters;

 optimizations for real time queries ;
 a Thrift gateway and a REST-ful Web

service that supports XML, Protobuf, and
binary data encoding options

 extensible JRuby based (JIRB) shell;
 support for exporting metrics via the

Hadoop metrics subsystem to files or
Ganglia; or via JMX.

HBase database stores data in labeled tables.
In this context [28] the table is designed to
have a sparse structure and data is stored in
table rows, and each row has a unique key
with arbitrary number of columns.

3.4 Parallel database systems
A distributed database (DDB) is a collection
of multiple, logically interconnected data-
bases distributed over a computer network. A
distributed database management system,
distributed DBMS, is the software system
that permits the management of the distribut-
ed database and makes the distribution trans-
parent to the users. A parallel DBMS is a
DBMS implemented on a multiprocessor
computer. [21]. The parallel DBMS imple-
ments the concept of horizontal partitioning
[24] by distributing parts of a large relational
table across multiple nodes to be processed in
parallel. This requires a partitioned execution
of the SQL operators. Some basic operations,
like a simple SELECT, can be executed in-
dependently on all the nodes. More complex
operations are executed through a multiple-
operator pipeline. Different multiprocessor
parallel system architectures [21], like share-
memory, share-disks or share nothing, define
possible strategies to implement a parallel
DBMS, each with its own advantages and
drawbacks. The share-nothing approach dis-
tributes data across independent nodes and
has been implemented by many commercial
systems as it provides extensibility and avail-
ability.
Based on the above definitions, we can con-
clude that parallel database systems improve
performance of data processing by paralleliz-
ing loading, indexing and querying data. In
distributed database systems, data is stored in

HDFS

HBase Hadoop

Input

Input

Input

Output
Output

Output

122 Informatica Economică vol. 16, no. 2/2012

different DBMSs that can function inde-
pendently. Because parallel database systems
may distribute data to increase the architec-
ture performance, there is a fine line that sep-
arates the two concepts in real implementa-
tions.
Despite the differences between parallel and
distributed DBMSs, most of their advantages
are common to a simple DBMS, [20],[35]:
 stored data is conform to a well-defined

schema; this validates the data and pro-
vides data integrity;

 data is structured in a relational paradigm
of rows and columns;

 SQL queries are fast;
 the SQL query language is flexible, easy

to learn and read and allows program-
mers to implement complex operations
with ease;

 use hash or B-tree indexes to speed up
access to data;

 can efficiently process datasets up to two
petabytes of data.

Known commercial parallel databases as Te-
radata, Aster Data, Netezza [9], DATAllegro,
Vertica, Greenplum, IBM DB2 and Oracle
Exadata, have been proven successful be-
cause:
 allow linear scale-up, [21]; the system

can maintain constant performance as the
database size is increasing by adding
more nodes to the parallel system;

 allow linear speed-up, [21]; for a data-
base with a constant size, the perfor-
mance can be increased by adding more
components like processors, memory and
disks;

 implement inter-query, intra-query and
intra-operation parallelism, [21];

 reduced implementation effort;
 reduced administration effort;
 high availability.
In a massively parallel processing architec-
ture (MPP), adding more hardware allows for
more storage capacity and increases queries
speeds. MPP architecture, implemented as a
data warehouse appliance, reduces the im-
plementation effort as the hardware and
software are preinstalled and tested to work
on the appliance, prior to the acquisition. It

also reduces the administration effort as it
comes as a single vendor out of the box solu-
tion. The data warehouse appliances offer
high availability through built-in fail-over
capabilities using data redundancy for each
disk.
Ideally, each processing unit of the data
warehouse appliance should process the same
amount of data at any given time. To achieve
that, the data should be distributed uniformly
across each processing unit. Data skew is a
measure to evaluate how data is distributed
across each processing unit. A data skew of 0
means that the same number of records is
distributed on each processing unit. A data
skew of 0 is ideal.
By having each processing unit do the same
amount of work it ensures that all processing
units finish their task about the same time,
minimizing any waiting times.
Another aspect that has an important impact
on the query performance is having the all
the data that is related on the same pro-
cessing unit. This way the time required to
transfer data between the processing units is
eliminated. For example, if the user requires
the sales by country report, having both the
sales data for a customer and his geographic
information on the same processing unit will
ensure that the processing unit has all the in-
formation that it needs and each processing
unit is able to perform its tasks independent-
ly.
The way data is distributed across the parallel
database nodes influence the overall perfor-
mance. Though the power of the parallel
DBMS is given by the number of nodes, this
can be also a drawback. For simple queries
the actual processing time can be much
smaller to the time needed to launch the par-
allel operation. Also, nodes can become hot
spots or bottle necks as they delay the entire
system.

4 Proposed architecture
The proposed architecture is used to process
large financial datasets. The results of the da-
ta mining analysis help economists to identi-
fy patterns in economic clusters that validate
existing economic models or help to define

Informatica Economică vol. 16, no. 2/2012 123

new ones. The bottom-up approach is more
efficient, but more difficult to implement,
because it can suggests, based on real eco-
nomic data, relations between economic fac-
tors that are specific to the cluster model. The
difficulty comes from the large volume of
economic data that needs to be analyzed.
The architecture, described in figure 6, has
three layers:
 the input layer implements data acquisi-

tion processes; it gets data from different
sources, reports, data repositories and ar-
chives which are managed by govern-
mental and public structures, economic
agencies and institutions, NGO projects;
some global sources of statistical eco-
nomic data are Eurostat, International
Monetary Fund and World Bank; the
problem of these sources is that they use
independent data schemes and bringing
them to a common format it is an inten-
sive data processing stage taking into
consideration national data sources or
crawling the Web for free data, the task
becomes a very complex one;

 the data layer stores and process large da-
tasets of economic and financial records;
this layer implements distributed, parallel
processing;

 the user layer provides access to data and
manage requests for analysis and reports.

The ETL intermediary layer placed between
the first two main layers, collects data from
the data crawler and harvester component,
converts it in a new form and loads it in the
parallel DBMS data store. The ETL normal-
ize data, transforms it based on a predefined
structure and discards not needed or incon-
sistent information.
The ETL layer inserts data in the parallel dis-
tributed DBMS that implements the Hadoop
and MapReduce framework. The objective of
the layer is to normalize data and bring it to a
common format, requested by the parallel
DBMS.
Using an ETL process, data collected by the
data crawler & harvester gets consolidated,
transformed and loaded into the parallel
DBMS, using a data model optimized for da-
ta retrieval and analysis.

It is important that the ETL server also sup-
ports parallel processing allowing it to trans-
form large data sets in timely manner. ETL
tools like Ab Initio, DataStage and
Informatica have this capability built in. If
the ETL server does not support parallel pro-
cessing, then it should just define the trans-
formations and push the processing to the
target parallel DBMS.

Fig. 6. Proposed architecture

The user will submit his inquiries through a
front end application server, which will con-
vert them into queries and submit them to the
parallel DBMS for processing.
The front end application server will include
an user friendly metadata layer, that will al-
low the user to query the data ad-hoc, it will
also include canned reports and dashboards.
The objective of the proposed architecture is
to separate the layers that are data processing

124 Informatica Economică vol. 16, no. 2/2012

intensive and to link them by ETL services
that will act as data buffers or cache zones.
Also the ETL will support the transformation
effort.
For the end user the architecture is complete-
ly transparent. All he will experience is the
look and feel of the front end application.
Based on extensive comparisons between
MR and parallel DBMS, [6], [20], [24], we
conclude that there is no all-scenarios good
solution for large scale data analysis because:
 both solutions can be used for the same

processing task; you can implement any
parallel processing task based either on a
combinations of queries or a set of MR
jobs;

 the two approaches are complementary;
each solution gives better performance
over the other one in particular data sce-
narios; you must decide with approach
saves time for the needed data processing
task;

 the process of configuring and loading da-
ta into the parallel DBMS is more com-
plex and time consuming than the setting
up of the MR architecture; one reason is
that the DBMS requires complex schemas
to describe data, whereas MR can process
data in arbitrary format;

 the performance of the parallel DBMS is
given by system fine tune level; the sys-
tem must be configured accordingly to the
tasks needed to complete and to the avail-
able resources;

 common MR implementations take full
advantage of the reduced complexity by
processing data with simple structure, be-
cause the entire MR model is built on the
key-value pair format; a MR system can
be used to process more complex data, but
the input data structure must be integrated
in a custom parser in order to obtain ap-
propriate semantics; not relaying on a
common recognized data structure has an-
other drawback as data is not validated by
default by the system; this can conduct to
situations in which modified data violates
integrity or other constraints; in contrast,
the SQL query language used by any par-
allel DBMS, takes full advantage of the

data schema in order to obtain a full de-
scription of the data; the same schema is
used to validate data;

 DBMSs use B-trees indexes to achieve
fast searching times; indexes can be de-
fined on any attributes are managed by the
system; MR framework does not imple-
ment this built-in facility and an imple-
mentation of a similar functionality is
done by the programmers who control the
data fetching mechanism;

 DBMSs provide high level querying lan-
guages, like SQL, which are ease to read
and write; instead the MR use code frag-
ments, seen as algorithms, to process rec-
ords; projects as Pig and Hive [34] are
providing a rich interface based on high–
level programming languages that allows
programmers to reuse code fragments.

 parallel DBMSs have been proved to be
more efficient in terms of speed but they
are more vulnerable to node failures.

A decision which approach to take must be
made taking into consideration:
 performance criteria;
 internal structure of processed data;
 available hardware infrastructure;
 maintenance and software costs.
A combined MR-parallel DBMS solution,
[36] can be a possibility as it benefits from
each approach advantages.

5 Conclusion
Processing large datasets obtained from mul-
tiple sources is a daunting task as it requires
tremendous storing and processing capaci-
ties. Also, processing and analyzing large
volumes of data becomes non-feasible using
a traditional serial approach. Distributing the
data across multiple processing units and
parallel processing unit yields linear im-
proved processing speeds.
When distributing the data is critical that
each processing unit is allocated the same
number of records and that all the related da-
ta sets reside on the same processing unit.
Using a multi-layer architecture to acquire,
transform, load and analyze the data, ensures
that each layer can use the best of bread for
its specific task. For the end user, the experi-

Informatica Economică vol. 16, no. 2/2012 125

ence is transparent. Despite the number of
layers that are behind the scenes, all that it is
exposed to him is a user friendly interface
supplied by the front end application server.
In the end, once the storing and processing
issues are solved, the real problem is to
search for relationships between different
types of data [3]. Others has done it very
successfully, like Google in Web searching
or Amazon in e-commerce.

Acknowledgment
This work was supported from the European
Social Fund through Sectored Operational
Programmer Human Resources Development
2007-2013, project number
POSDRU/89/1.5/S/59184, “Performance and
excellence in postdoctoral research in Roma-
nian economics science domain”.

References
[1] T. White, Hadoop: The Definitive Guide,

O’Reilly, 2009
[2] G. Bruce Berriman, S. L. Groom, “How

Will Astronomy Archives Survive the
Data Tsunami?,” ACM Queue, Vol. 9
No. 10, 2011,
http://queue.acm.org/detail.cfm?id=2047
483

[3] P. Helland, “If You Have Too Much Da-
ta, then “Good Enough” Is Good
Enough,” Vol. 9 No. 5, ACM Queue,
2011

[4] Apache Hadoop,
http://en.wikipedia.org/wiki/Hadoop

[5] Apache Software Foundation, Apache
Hadoop,
http://wiki.apache.org/hadoop/FrontPage

[6] J. Dean, S. Ghemawat, “MapReduce: A
Flexible Data Processing Tool,” Com-
munications of the ACM, vol. 53, no. 1,
2010

[7] M. C. Chu-Carroll, Databases are ham-
mers; MapReduce is a screwdriver,
Good Math, Bad Math, 2008,
http://scienceblogs.com/goodmath/
2008/01/databases_are_hammers_mapre
duc.php

[8] Cisco, Cisco Visual Networking Index:
Global Mobile Data Traffic Forecast

Update, 2010–2015,
http://www.cisco.com/en/US/solutions/c
ollateral/ns341/ns525/ns537/ns705/ns82
7/white_paper_c11-520862.html

[9] D. Henschen, “New York Stock Ex-
change Ticks on Data Warehouse Appli-
ances,” InformationWeek, 2008,
http://www.informationweek.com/news/
software/bi/207800705

[10] IBM, IBM 350 disk storage unit,
http://www-
03.ibm.com/ibm/history/exhibits/storage
/storage_profile.html

[11] Wikipedia, History of IBM magnetic
disk drives,
http://en.wikipedia.org/wiki/History_of_
IBM_magnetic_disk_drives

[12] Wikipedia, History of hard disk drives,
http://en.wikipedia.org/wiki/History_of_
hard_disks

[13] I. Smith, Cost of Hard Drive Storage
Space,
http://ns1758.ca/winch/winchest.html

[14] Seti@home, SETI project,
http://setiathome.berkeley.edu/

[15] A. Rajaraman, More data usually beats
better algorithms, part I and part II,
2008,
http://anand.typepad.com/datawocky/20
08/03/more-data-usual.html

[16] J. Good, How many photos have ever
been taken?, Sep 2011,
http://1000memories.com/blog/

[17] J. Bennett, S. Lanning, “The Netflix
Prize,” Proceedings of KDD Cup and
Workshop 2007, San Jose, California,
2007

[18] J. Dean, S. Ghemawat, “MapReduce:
simplified data processing on large clus-
ters,” Commun. ACM, Vol. 51, No. 1,
pp. 107–113, 2008.

[19] S. Messenger, Meet the world's most
powerful weather supercomputer, 2009,
http://www.treehugger.com/clean-
technology/meet-the-worlds-most-
powerful-weather-supercomputer.html

[20] A. Pavlo, E. Paulson, A. Rasin, D.J.
Abadi, D.J. DeWitt, S. Madden and M
Stonebraker, “A comparison of ap-
proaches to large-scale data analysis,” In

126 Informatica Economică vol. 16, no. 2/2012

Proceedings of the 2009 ACM SIGMOD
International Conference, 2009.

[21] M. Tamer Özsu, P. Valduriez, “Distrib-
uted and Parallel Database System,”
ACM Computing Surveys, vol. 28, 1996,
pp. 125 – 128

[22] Seagate, Performance Considerations,
http://www.seagate.com/www/en-
us/support/before_you_buy/speed_consi
derations

[23] P. Vassiliadis, “A Survey of Extract-
Transform-Load Technology,” Interna-
tional Journal of Data Warehousing &
Mining, Vol. 5, No. 3, pp. 1-27, 2009

[24] M. Stonebreaker et al., “MapReduce and
Parallel DBMSs: Friends or Foes,”
Communications of the ACM 53(1):64--
71 2010.

[25] Apache HBASE,
http://hbase.apache.org/

[26] H. Yang, A. Dasdan, R. Hsiao, D. Par-
ker, “Map-reduce-merge: simplified re-
lational data processing on large clus-
ters,” Rain (2007), Publisher: ACM,
Pages: 1029-1040 ISBN: 781595936868
,
http://www.mendeley.com/research/map
reducemergesimplified-relational-data-
processing-on-large-clusters/

[27] J. Dean, S. Ghemawat, “MapReduce:
Simplified Data Processing on Large
Clusters,” USENIX Association OSDI
’04: 6th Symposium on Operating Sys-
tems Design and Implementation,
http://static.usenix.org/event/osdi04/tech
/full_papers/dean/dean.pdf

[28] X. Yu, “Estimating Language Models
Using Hadoop and Hbase,” Master of
Science Artificial Intelligence, Universi-
ty of Edinburgh, 2008,
http://homepages.inf.ed.ac.uk/miles/msc-
projects/yu.pdf

[29] ETL Architecture Guide
http://www.ipcdesigns.com/etl_metadata
/ETL_Architecture_Guide.html

[30] W. Dumey, A Generalized Lesson in
ETL Architecture Durable Impact Con-

sulting, Inc., June 11, 2007, Available
online at:
http://www.scribd.com/doc/55883818/A
-Generalized-Lesson-in-ETL-
Architecture

[31] A. Albrecht, METL: Managing and Inte-
grating ETL Processes, VLDB ‘09, Au-
gust 2428, 2009, Lyon, France Copy-
right 2009 VLDB Endowment, ACM,
http://www.vldb.org/pvldb/2/vldb09-
1051.pdf

[32] R. Davenport, ETL vs ELT, June 2008,
Insource IT Consultancy, Insource Data
Academy,
http://www.dataacademy.com/files/ETL-
vs-ELT-White-Paper.pdf

[33] S. Ghemawat, H. Gobioff and Shun-Tak
Leung (GOOGLE) - The Google File
System,
http://www.cs.brown.edu/courses/cs295-
11/2006/gfs.pdf

[34] C. Olston, B. Reed, U. Srivastava, R.
Kumar and A. Tomkins, “Pig Latin: A
Not-So-Foreign Language for Data Pro-
cessing,” In SIGMOD ’08, pp. 1099–
1110, 2008.

[35] S. Pukdesree, V. Lacharoj and P.
Sirisang, “Performance Evaluation of
Distributed Database on PC Cluster
Computers,” WSEAS Transactions on
Computers, Issue 1, Vol. 10, January
2011, pp. 21 – 30, ISSN 1109-2750.

[36] A. Abouzeid, K. Bajda-Pawlikowski,
D.J. Abadi, A. Silberschatz and A.
Rasin, “HadoopDB: An architectural hy-
brid of MapReduce and DBMS technol-
ogies for analytical workloads,” In Pro-
ceedings of the Conference on Very
Large Databases, 2009.

[37] C. Boja, A. Pocovnicu, “Distributed Par-
allel Architecture for Storing and Pro-
cessing Large Datasets,” 11th WSEAS
Int. Conf. on SOFTWARE ENGINEER-
ING, PARALLEL and DISTRIBUTED
SYSTEMS (SEPADS '12), Cambridge,
UK, February 22-24, 2012, ISBN: 978-
1-61804-070-1, pp. 125-130.

Informatica Economică vol. 16, no. 2/2012 127

Catalin BOJA is Lecturer at the Economic Informatics Department at the
Academy of Economic Studies in Bucharest, Romania. In June 2004 he has
graduated the Faculty of Cybernetics, Statistics and Economic Informatics at
the Academy of Economic Studies in Bucharest. In March 2006 he has grad-
uated the Informatics Project Management Master program organized by the
Academy of Economic Studies of Bucharest. He is a team member in various
undergoing university research projects where he applied most of his project

management knowledge. Also he has received a type D IPMA certification in project man-
agement from Romanian Project Management Association which is partner of the IPMA or-
ganization. He is the author of more than 40 journal articles and scientific presentations at
conferences. His work focuses on the analysis of data structures, assembler and high level
programming languages. He is currently holding a PhD degree on software optimization and
on improvement of software applications performance.

Adrian POCOVNICU is a PhD Candidate at Academy of Economic Stud-
ies. His main research areas are: Multimedia Databases, Information Retriev-
al, Multimedia Compression Algorithms and Data Integration. He is a Data
Integration Consultant for ISA Consulting, USA.

Lorena BĂTĂGAN has graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 2002. She has become teaching assistant in 2002.
She has been university lecturer since 2009. She is university lecturer at Fac-
ulty of Cybernetics, Statistics and Economic Informatics from Academy of
Economic Studies. She holds a PhD degree in Economic Cybernetics and Sta-
tistics in 2007. She is the author and co-author of 4 books and over 50 articles
in journals and proceedings of national and international conferences, sympo-

siums.

	Distributed Parallel Architecture for "Big Data"

