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This paper is an extension to the "Distributed Parallel Architecture for Storing and Pro-
cessing Large Datasets" paper presented at the WSEAS SEPADS’12 conference in Cam-
bridge. In its original version the paper went over the benefits of using a distributed parallel 
architecture to store and process large datasets. This paper analyzes the problem of storing, 
processing and retrieving meaningful insight from petabytes of data. It provides a survey on 
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Introduction 
A look back to the immediate history 

shows that the data storing capacity is con-
tinuously increasing, while the cost per GB 
stored is decreasing, figure 1. The first hard 
disk came from IBM in 1956, it was called 
The IBM 350 Disk Storage and it had a ca-
pacity of 5 MB, [10-11]. In 1980, IBM 3380 
breaks the gigabyte-capacity limit providing 
storage for 2.52 GB. After 27 years, Hitachi 
GST that acquired IBM drive division in 
2003, deliver the first terabyte hard drive. Af-
ter only two years, in 2009, Western Digital 
launches industry’s first two terabyte hard 
drive. In 2011, Seagate introduces the 
world’s first 4TB hard drive, [11].  
 

 
Fig. 1. Average HDD capacity (based on 

[13]) 
 
In terms of price [12], the cost per gigabyte 
decreased from an average of 300.000 $ to a 
merely an average of 11 cents in the last 30 

years, figure 2. As a fact, in 1981 you must 
use 200 Seagate units, each having a five 
megabytes capacity and costing 1700$, to 
store one gigabyte of data.  
 

 
Fig. 2. Average $ cost per GB (based on 

[13]) 
 
The reduce costs for data storage has repre-
sented the main premise of the current data 
age, in which it is possible to record and 
store almost everything, from business to 
personal data. As an example, in the field of 
digital photos, it is estimated that around the 
world has been taken over 3.5 trillion photos 
and in 2011 alone have been made around 
360 billion new snapshots, [16]. Also, the 
availability and the speed of Internet connec-
tions around the world have generated in-
creased data traffic that is generated by a 
wide range of mobile devices and desktop 
computers. Only for mobile data, Cisco ex-
pects that mobile data traffic will grow from 
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0.6 exabytes (EB) in 2011 to 6.3 EB in 2015, 
[8].  The expansion of data communications 
has promoted different data services, social, 
economic or scientific, to central nodes for 
storing and distributing large amounts of da-
ta. For example, Facebook social network 
hosts more than 140 billion photos, which is 
more than double compared to 60 billion pic-
tures at the end of 2010. In terms of storage, 
all these snapshots data take up more than 14 
petabytes. In other fields, like research, the 
Large Hadron Collider particle accelerator 
near Geneva, will produce about 15 petabytes 
of data per year. The SETI project is record-
ing each month around 30 terabytes of data 
which are processed by over 250.000 com-
puters each day, [14]. The supercomputer of 
the German Climate Computing Center 
(DKRZ) has a storage capacity of 60 
petabytes of climate data. In the financial 
sector, records of every day financial opera-
tions generate huge amounts of data. Solely, 
the New York Stock Exchange records about 
one terabyte of trade data per day, [15]. 
Despite this spectacular evolution of storage 
capacities and of deposits size, the problem 
that arises is to be able to process it. This is-
sue is generated by available computing 
power, algorithms complexity and access 
speeds. This paper makes a survey of differ-
ent technologies used to manage and process 
large data volumes and proposes a distributed 
and parallel architecture used to acquire, 
store and process large datasets. The objec-
tive of the proposed architecture is to imple-

ment a cluster analysis model. 
 
2 Processing and storing large datasets 
As professor Anand Rajaraman questioned, 
more data usually beats better algorithm 
[15]. The question is used to highlight the ef-
ficiency of a proposed algorithm for the Net-
flix Challenge, [17]. Despite the statement is 
still debatable, it brings up a true point. A 
given data mining algorithm yields better re-
sults with more data and it can reach the 
same accuracy of results of a better or more 
complex algorithm. In the end, the objective 
of a data analysis and mining system is to 
process more data with better algorithms, 
[15]. 
In many fields more data is important be-
cause it provides a more accurate description 
of the analyzed phenomenon. With more da-
ta, data mining algorithms are able to extract 
a wider group of influence factors and more 
subtle influences. 
Today, large datasets means volumes of hun-
dreds of terabytes or petabytes and these are 
real scenarios. The problem of storing these 
large datasets is generated by the impossibil-
ity to have a drive with that size and more 
important, by the large amount of time re-
quired to access it. 
Access speed of large data is affected by the 
disk speed performances [22], Table 1, inter-
nal data transfer, external data transfer, cache 
memory, access time, rotational latency, that 
generate delays and bottlenecks.  

 
Table 1. Example of disk drives performance (source [22]) 

Interface HDD 
Spindle 
[rpm] 

Average 
rotational 

latency [ms] 

Internal transfer 
 

[Mbps] 

External transfer 
 

[MBps] 

Cache 
 

[MB] 

SATA 7,200 11 1030 300 8 – 32 

SCSI 10,000 4.7 – 5.3 944 320 8 

High-end SCSI 15,000 3.6 – 4.0 1142 320 8 – 16 

SAS 10,000 / 15,000 2.9 – 4.4 1142 300 16 

 
Despite the rapid evolution of drives capaci-
ty, described in figure 1, the large datasets of 
up to one petabytes can only be stored on 
multiple disks. Using 4 TB drives requires 

250 of them to store 1 PB of data. Once the 
storage problem is solved another question 
arises, regarding how easy/hard is to read 
that data. Considering an optimal transfer 
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rate of 300 MB/s then the entire dataset is 
read in 38.5 days. A simple solution is to 
read from the all disks at once. In this way, 
the entire dataset is read in only 3.7 hours. 
If we take into consideration the communica-
tion channel, then other bottlenecks are gen-
erated by the available bandwidth. In the end, 
the performance of the solution is reduced to 
the speed of the slowest component. 
Other characteristics of large data sets add 
supplementary levels of difficulty: 
 many input sources; in different econom-

ic and social fields there are multiple 
sources of information; 

 redundancy, as the same data can be pro-
vided by different sources; 

 lack of normalization or data representa-
tion standards; data can have different 
formats, unique IDs, measurement units; 

 different degrees of integrity and con-
sistency; data that describes the same 
phenomenon can vary in terms of meas-
ured characteristics, measuring units, 
time of the record, methods used.   

For limited datasets the efficient data man-
agement solution is given by relational SQL 
databases, [20], but for large datasets some of 
their founding principles are eroded [3], [20], 
[21]. 
 
3 Proposed Approach 
The next solutions provide answers to the 
question regarding how to store and process 
large datasets in an efficient manner that can 
justify the effort. 
 
3.1 Large Data Sets Storage 
When accessing large data sets, the storage 
file system can become a bottle neck. That's 
why a lot of thought was put into redesigning 
the traditional file system for better perfor-
mance when accessing large files of data.  

 
Fig. 3. Simplified GFS Architecture 

 
In a distributed approach, the file system 
aims to achieve the following goals: 
 it should be scalable; the file system 

should allow for additional hardware to 
be added to increase storing capacity 
and/or performance. 

 it should offer high performance; the file 
system should be able to locate the data 
of interest on the distributed nodes in a 
timely manner. 

 it should reliable; the file system should 
be able to recreate from the distributed 
nodes the original data in a complete and 
undistorted manner. 

 it should have high availability; the file 
system should account for failures and 
incorporate mechanisms for monitoring, 
error detection, fault tolerance and auto-
matic recovery. 

Google, one of the biggest search engine ser-
vices providers, which handles “big web da-
ta” has published a paper about the file sys-
tem they claim it's being used by their busi-
ness called "The Google File System". 
From an architecture point of view the 
Google File System (GFS) comprises of a 
"single master", multiple "chunk servers" and 
it's being accessed by multiple "clients". 

GFS Clients GFS Master 

Chunk Serv-
ers 

(file name, chunk index) 

(chunk handle, chunk loca-
tions) 

(chunk handle, byte range) 

(chunk data) 

Instructions to chunk server 

Chunk server state 
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In the simplified version of the GFS architec-
ture, figure 3 it shows how the GFS clients 
communicate with the master and with the 
chunk servers. Basically the clients are ask-
ing for a file and the GFS master tells them 
which chunk servers contain the data for that 
file. Then the GFS clients make a request for 
the data at those respective chunk servers. 
Then GFS chunk servers transmit the data di-
rectly to the GFS clients. No user data actual-
ly passes the GFS master, this way it avoids 
having the GFS master as a bottleneck in the 
data transmission. 
Periodically, the GFS master communicates 
with the chunk servers to get their state and 
to transmit them instructions. 
Each chunk of data is identified by an immu-
table and globally unique 64 bit chunk handle 
assigned by the master at the time of chunk 
creation [33]. 
The chunk size is a key differentiator from 
more common file system. GFS uses 64 MB 
for a chunk, limiting this way the number or 
requests to the master for chunk locations, it 
reduces the network overhead and it reduces 
the metadata size on the master, allowing the 
master to store the metadata in memory. 
Hadoop, a software framework derived from 
Google's papers about MapReduce and GFS, 
offers a similar file system, called Hadoop 
Distributed Files System (HDFS).  
What GFS was identifying as "Master" it's 
being called NameNode in HDFS and the 
GFS "Chunk Servers" can be found as 
"Datanodes" in HDFS. 
 
3.2 ETL 
The Extract, Transform and Load (ETL) pro-
cess provides an intermediary transfor-
mations layer between outside sources and 
the end target database.  
In literature [29], [30] we identified ETL and 
ELT. ETL refers to extract, transform and 
load in this case activities start with the use 
of applications to perform data transfor-
mations outside of a database on a row-by-
row basis, and on the other hand ELT refers 
to extract, load and transform which implied 
the use first the relational databases, before 
performing any transformations of source da-

ta into target data. 
The ETL process [32] is base on three ele-
ments: 
 Extract – The process in which the data is 

read from multiple source systems into a 
single format. In this process data is ex-
tracted from the data source;  

 Transform – In this step, the source data 
is transform into a format relevant to the 
solution. The process transform the data 
from the various systems and made it 
consistent;  

 Load – The transformed data is now writ-
ten into the warehouse. 

Usually the systems that acquire data are op-
timized so that the data is being stored as fast 
as possible. Most of the time comprehensive 
analyses require access to multiple sources of 
data. It’s common that those sources store 
raw data that yields minimal information un-
less properly process. 
This is where the ETL or ELT processes 
come into play. An ETL process will take the 
data, stored in multiple sources, transform it, 
so that the metrics and KPIs are readily ac-
cessible, and load it in an environment that 
has been modeled so that the analysis queries 
are more efficient [23]. An ETL system is 
part of a bigger architecture that includes at 
least one Database Management System, 
DBMS. It is placed upstream from a DBMS 
because it feeds data directly into the next 
level. 
The ETL tools advantages are [29], [30], 
[31]: 
 save time and costs when developing and 

maintaining data migration tasks; 
 use for complex processes to extract, 

transform, and load heterogeneous data 
into a data warehouse or to perform other 
data migration tasks; 

 in larger organizations for different data 
integration and warehouse projects ac-
cumulate; 

 such processes encompass common sub-
processes, shared data sources and tar-
gets, and same or similar operations; 

 ETL tools support all common databases, 
file formats and data transformations, 
simplify the reuse of already created 
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(sub-)processes due to a collaborative de-
velopment platform and provide central 
scheduling. 

 Portability: usually the ETL code can be 
developed one a specific target database 
and ported later to other supported data-
bases. 

When developing the ETL process, there are 
two options: either takes advantage of an ex-
isting ETL tool, some key players, in this 
domain, are: IBM DataStage, Ab Initio, 
Informatica or custom code it. Both ap-
proaches have benefits and pitfalls that need 
to be carefully considered when selecting 
what better fits the specific environment. 
The benefits of an in-house custom built ETL 
process are: 
 Flexibility; the custom ETL process can 

be designed to solve requirements specif-
ic to the organization that some of the 
ETL tools may have limitation with; 

 Performance; the custom ETL process 
can be finely tuned for better perfor-
mance; 

 Tool agnostic; the custom ETL process 
can be built using skills available in-
house; 

 Cost efficient: custom ETL processes 
usually use resources already available in 
the organization, eliminating the addi-
tional costs with licensing an ETL tool 
and training the internal resources on us-
ing that specific ETL tool. 

 
3.3 MapReduce, Hadoop and HBase 
MapReduce (MR) is a programming model 
and an associated implementation for pro-
cessing and generating large data sets, [18]. 
The model was developed by Jeffrey Dean 
and Sanjay Ghemawat at Google. The foun-
dations of the MapReduce model are defined 
by a map function used top process key-value 
pairs and a reduce functions that merges all 
intermediate values of the same key.  
The large data set is split in smaller subsets 
which are processed in parallel by a large 
cluster of commodity machines.  
Map function [27] takes an input data and 
produces a set of intermediate subsets. The 
MapReduce library groups together all in-

termediate subsets associated with the same 
intermediate key and send them to the Re-
duce function. 
The Reduce function, also accepts an inter-
mediate key and subsets. This function merg-
es together these subsets and key to form a 
possibly smaller set of values. Normally just 
zero or one output value is produced per Re-
duce function.  
In [26] is highlight that many real world 
tasks such used MapReduce model. This 
model is used for web search service, for 
sorting and processing the data, for data min-
ing, for machine learning and for a big num-
ber of other systems. 
The entire framework manages how data is 
split among nodes and how intermediary 
query results are aggregate. 
A general MapReduce architecture can be il-
lustrated as Figure 4. 
 

 
Fig. 4. MapReduce architecture (based on 

[28]) 
 
The MR advantages are [1], [6], [7], [18], 
[20], [24], [27]: 
 the model is easy to use, even for pro-

grammers without experience with paral-
lel and distributed systems; 

 storage-system independence as it not re-
quires proprietary database file systems 
or predefined data models; data is stored 
in plain text files and it is not required to 
respect relational data schemes or any 
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structure; in fact the architecture can use 
data that has an arbitrary format;   

 fault tolerance; 
 the framework is available from high lev-

el programming languages; one such so-
lution is the open-source Apache Hadoop 
project which is implemented in Java; 

 the query language allows record-level 
manipulation; 

 projects as Pig and Hive [34] are provid-
ing a rich interface that allows program-
mers to do join datasets without repeating 
simple MapReduce code fragments; 

Hadoop is a distributed computing platform, 
which is an open source implementation of 
the MapReduce framework proposed by 
Google [28].  It is based on Java and uses the 
Hadoop Distributed File System (HDFS). 
HDFS is the primary storage system used by 
Hadoop applications. It is uses to create mul-
tiple replicas of data blocks for reliability, 
distributing them around the clusters and 
splitting the task into small blocks. The rela-
tionship between Hadoop, HBase and HDFS 
can be illustrated as Figure 5. 
HBase is a distributed database. HBase is an 
open source project for a database, distribut-
ed, versioned, column-oriented, modeled af-
ter Google’ Bigtable [25]. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The relationship between Hadoop, 
HBase and HDFS (based on [28]) 

 
Some as the features of HBASE as listed at 
[25] are: 
 convenient base classes for backing 

Hadoop MapReduce jobs with HBase ta-
bles including cascading, hive and pig 
source and sink modules; 

 query predicate push down via server 
side scan and get filters; 

 optimizations for real time queries ; 
 a Thrift gateway and a REST-ful Web 

service that supports XML, Protobuf, and 
binary data encoding options  

 extensible JRuby based (JIRB) shell;  
 support for exporting metrics via the 

Hadoop metrics subsystem to files or 
Ganglia; or via JMX. 

HBase database stores data in labeled tables. 
In this context [28] the table is designed to 
have a sparse structure and data is stored in 
table rows, and each row has a unique key 
with arbitrary number of columns. 
 
3.4 Parallel database systems 
A distributed database (DDB) is a collection 
of multiple, logically interconnected data-
bases distributed over a computer network. A 
distributed database management system, 
distributed DBMS, is the software system 
that permits the management of the distribut-
ed database and makes the distribution trans-
parent to the users. A parallel DBMS is a 
DBMS implemented on a multiprocessor 
computer. [21]. The parallel DBMS imple-
ments the concept of horizontal partitioning 
[24] by distributing parts of a large relational 
table across multiple nodes to be processed in 
parallel. This requires a partitioned execution 
of the SQL operators. Some basic operations, 
like a simple SELECT, can be executed in-
dependently on all the nodes. More complex 
operations are executed through a multiple-
operator pipeline. Different multiprocessor 
parallel system architectures [21], like share-
memory, share-disks or share nothing, define 
possible strategies to implement a parallel 
DBMS, each with its own advantages and 
drawbacks. The share-nothing approach dis-
tributes data across independent nodes and 
has been implemented by many commercial 
systems as it provides extensibility and avail-
ability. 
Based on the above definitions, we can con-
clude that parallel database systems improve 
performance of data processing by paralleliz-
ing loading, indexing and querying data. In 
distributed database systems, data is stored in 

HDFS 

HBase Hadoop 

Input 

Input 

Input 

Output 
Output 

Output 
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different DBMSs that can function inde-
pendently. Because parallel database systems 
may distribute data to increase the architec-
ture performance, there is a fine line that sep-
arates the two concepts in real implementa-
tions.   
Despite the differences between parallel and 
distributed DBMSs, most of their advantages 
are common to a simple DBMS, [20],[35]: 
 stored data is conform to a well-defined 

schema; this validates the data and pro-
vides data integrity; 

 data is structured in a relational paradigm 
of rows and columns; 

 SQL queries are fast; 
 the SQL query language is flexible, easy 

to learn and read and allows program-
mers to implement complex operations 
with ease;  

 use hash or B-tree indexes to speed up 
access to data; 

 can efficiently process datasets up to two 
petabytes of data. 

Known commercial parallel databases as Te-
radata, Aster Data, Netezza [9], DATAllegro, 
Vertica, Greenplum, IBM DB2 and Oracle 
Exadata, have been proven successful be-
cause: 
 allow linear scale-up, [21]; the system 

can maintain constant performance as the 
database size is increasing by adding 
more nodes to the parallel system; 

 allow linear speed-up, [21]; for a data-
base with a constant size, the perfor-
mance can be increased by adding more 
components like processors, memory and 
disks; 

 implement inter-query, intra-query and 
intra-operation parallelism, [21]; 

 reduced implementation effort; 
 reduced administration effort; 
 high availability. 
In a massively parallel processing architec-
ture (MPP), adding more hardware allows for 
more storage capacity and increases queries 
speeds. MPP architecture, implemented as a 
data warehouse appliance, reduces the im-
plementation effort as the hardware and 
software are preinstalled and tested to work 
on the appliance, prior to the acquisition.  It 

also reduces the administration effort as it 
comes as a single vendor out of the box solu-
tion. The data warehouse appliances offer 
high availability through built-in fail-over 
capabilities using data redundancy for each 
disk. 
Ideally, each processing unit of the data 
warehouse appliance should process the same 
amount of data at any given time. To achieve 
that, the data should be distributed uniformly 
across each processing unit. Data skew is a 
measure to evaluate how data is distributed 
across each processing unit. A data skew of 0 
means that the same number of records is 
distributed on each processing unit. A data 
skew of 0 is ideal. 
By having each processing unit do the same 
amount of work it ensures that all processing 
units finish their task about the same time, 
minimizing any waiting times. 
Another aspect that has an important impact 
on the query performance is having the all 
the data that is related on the same pro-
cessing unit. This way the time required to 
transfer data between the processing units is 
eliminated. For example, if the user requires 
the sales by country report, having both the 
sales data for a customer and his geographic 
information on the same processing unit will 
ensure that the processing unit has all the in-
formation that it needs and each processing 
unit is able to perform its tasks independent-
ly. 
The way data is distributed across the parallel 
database nodes influence the overall perfor-
mance. Though the power of the parallel 
DBMS is given by the number of nodes, this 
can be also a drawback. For simple queries 
the actual processing time can be much 
smaller to the time needed to launch the par-
allel operation. Also, nodes can become hot 
spots or bottle necks as they delay the entire 
system. 
 
4 Proposed architecture 
The proposed architecture is used to process 
large financial datasets. The results of the da-
ta mining analysis help economists to identi-
fy patterns in economic clusters that validate 
existing economic models or help to define 
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new ones. The bottom-up approach is more 
efficient, but more difficult to implement,  
because it can suggests, based on real eco-
nomic data, relations between economic fac-
tors that are specific to the cluster model. The 
difficulty comes from the large volume of 
economic data that needs to be analyzed. 
The architecture, described in figure 6, has 
three layers: 
 the input layer implements data acquisi-

tion processes; it gets data from different 
sources, reports, data repositories and ar-
chives which are managed by govern-
mental and public structures, economic 
agencies and institutions, NGO projects; 
some global sources of statistical eco-
nomic data are  Eurostat, International 
Monetary Fund and World Bank; the 
problem of these sources is that they use 
independent data schemes and bringing 
them to a common format it is an inten-
sive data processing stage taking into 
consideration national data sources or 
crawling the Web for free data,  the task 
becomes a very complex one; 

 the data layer stores and process large da-
tasets of economic and financial records; 
this layer implements distributed, parallel 
processing; 

 the user layer provides access to data and 
manage requests for analysis and reports. 

The ETL intermediary layer placed between 
the first two main layers, collects data from 
the data crawler and harvester component, 
converts it in a new form and loads it in the 
parallel DBMS data store. The ETL normal-
ize data, transforms it based on a predefined 
structure and discards not needed or incon-
sistent information. 
The ETL layer inserts data in the parallel dis-
tributed DBMS that implements the Hadoop 
and MapReduce framework. The objective of 
the layer is to normalize data and bring it to a 
common format, requested by the parallel 
DBMS. 
Using an ETL process, data collected by the 
data crawler & harvester gets consolidated, 
transformed and loaded into the parallel 
DBMS, using a data model optimized for da-
ta retrieval and analysis.  

It is important that the ETL server also sup-
ports parallel processing allowing it to trans-
form large data sets in timely manner. ETL 
tools like Ab Initio, DataStage and 
Informatica have this capability built in. If 
the ETL server does not support parallel pro-
cessing, then it should just define the trans-
formations and push the processing to the 
target parallel DBMS. 
 

 
Fig. 6. Proposed architecture 

 
The user will submit his inquiries through a 
front end application server, which will con-
vert them into queries and submit them to the 
parallel DBMS for processing. 
The front end application server will include 
an user friendly metadata layer, that will al-
low the user to query the data ad-hoc, it will 
also include canned reports and dashboards. 
The objective of the proposed architecture is 
to separate the layers that are data processing 
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intensive and to link them by ETL services 
that will act as data buffers or cache zones. 
Also the ETL will support the transformation 
effort. 
For the end user the architecture is complete-
ly transparent. All he will experience is the 
look and feel of the front end application.  
Based on extensive comparisons between 
MR and parallel DBMS, [6], [20], [24], we 
conclude that there is no all-scenarios good 
solution for large scale data analysis because: 
 both solutions can be used for the same 

processing task; you can implement any 
parallel processing task based either on a 
combinations of queries or a set of MR 
jobs; 

 the two approaches are complementary; 
each solution gives better performance 
over the other one in particular data sce-
narios; you must decide with approach 
saves time for the needed data processing 
task; 

 the process of configuring and loading da-
ta into the parallel DBMS is more com-
plex and time consuming than the setting 
up of the MR architecture; one reason is 
that the DBMS requires complex schemas 
to describe data, whereas MR can process 
data in arbitrary format; 

 the performance of the parallel DBMS is 
given by system fine tune level; the sys-
tem must be configured accordingly to the 
tasks needed to complete and to the avail-
able resources; 

 common MR implementations take full 
advantage of the reduced complexity by 
processing data with simple structure, be-
cause the entire MR model is built on the 
key-value pair format; a MR system  can 
be used to process more complex data, but 
the input data structure must be integrated 
in a custom parser in order to obtain ap-
propriate semantics; not relaying on a 
common recognized data structure has an-
other drawback as data is not validated by 
default by the system; this can conduct to 
situations in which modified data violates 
integrity or other constraints; in contrast, 
the  SQL query language used by any par-
allel DBMS, takes full advantage of the 

data schema in order to obtain a full de-
scription of the data; the same schema is 
used to validate data; 

 DBMSs use B-trees indexes to achieve 
fast searching times; indexes can be de-
fined on any attributes are managed by the 
system; MR framework does not imple-
ment this built-in facility and an imple-
mentation of a similar functionality is 
done by the programmers who control the 
data fetching mechanism; 

 DBMSs provide high level querying  lan-
guages, like SQL, which are ease to read 
and write; instead the MR use code frag-
ments, seen as algorithms, to process rec-
ords; projects as Pig and Hive [34] are 
providing a rich interface based on high–
level programming languages that allows 
programmers to reuse code fragments. 

 parallel DBMSs have been proved to be 
more efficient in terms of speed but they 
are more vulnerable to node failures. 

A decision which approach to take must be 
made taking into consideration: 
 performance criteria; 
 internal structure of processed data; 
 available hardware infrastructure; 
 maintenance and software costs. 
A combined MR-parallel DBMS solution, 
[36] can be a possibility as it benefits from 
each approach advantages.  
 
5 Conclusion 
Processing large datasets obtained from mul-
tiple sources is a daunting task as it requires 
tremendous storing and processing capaci-
ties. Also, processing and analyzing large 
volumes of data becomes non-feasible using 
a traditional serial approach. Distributing the 
data across multiple processing units and 
parallel processing unit yields linear im-
proved processing speeds. 
When distributing the data is critical that 
each processing unit is allocated the same 
number of records and that all the related da-
ta sets reside on the same processing unit. 
Using a multi-layer architecture to acquire, 
transform, load and analyze the data, ensures 
that each layer can use the best of bread for 
its specific task. For the end user, the experi-
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ence is transparent. Despite the number of 
layers that are behind the scenes, all that it is 
exposed to him is a user friendly interface 
supplied by the front end application server. 
In the end, once the storing and processing 
issues are solved, the real problem is to 
search for relationships between different 
types of data [3]. Others has done it very 
successfully, like Google in Web searching 
or Amazon in e-commerce. 
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