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Bio-inspired algorithms become among the most powerful algorithms for optimization. In this 
paper, we intend to provide one of the recent bio-inspired metaheuristic which is the Firefly 
Algorithm (FF) to optimize power dispatching. For evaluation, we adapt the particle swarm 
optimization to the problem in the same way as the firefly algorithm. The application is done 
in an IEEE-14 and on two thermal plant networks. In one of the examples, we neglect power 
loss and pollutant emissions. The comparison with the particle swarm optimization (PSO), 
demonstrate the efficiency of firefly algorithm to reach the best cost in less than one second. 
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Introduction 
Currently, a set of nature-inspired 

metaheuristics based on the natural behavior 
of birds, ants, swarms, and bees, have 
emerged as an alternative to rise above the 
difficulties presented by conventional meth-
ods in optimizations problems. 
Economic power dispatching is one of the 
difficult optimization problems. Resolution 
by metaheuristics can avoid significant fi-
nancial loss. 
In this paper, we adapt the firefly algorithm 
to economic dispatching problem. For this, 
we describe in the second section the eco-
nomic problem and its formulation. In the 
third section, we present the used 
metaheuristic, its origin and its parameters. 
In the fourth section, we describe our adapta-
tion of the particle swarm optimization 
(PSO) and the Firefly algorithm (FF) to the 
problem.  In the last section, we discuss the 
results of the metaheuristics on two net-
works. Finally, we give a conclusion. 
 
2 Power Economic Dispatching  
Description: 
Economic dispatch problem has become a 
decisive task in the operation and planning of 
power system. The aim is to schedule the 
committed generating units output so as to 

meet the required load demand at minimum 
cost fulfilling all system operational con-
straints. Improvement can lead to significant 
cost saving (from 0, 03 $ to 0,20 $ per kWh) 
[4]. 
Methods in the literature: 
Various conventional methods like nonlinear 
programming [32] [39], Bundle method [33], 
dynamic programming [45], mixed integer 
linear programming [6] [17] [18] [31] [39], 
quadratic programming [12], Lagrange relax-
ation method [12] [49], network flow method 
[14], direct search method [56] reported in 
the literature are used to resolve such prob-
lems.  
Practically, economic dispatching problem is 
nonlinear, no convex with multiple local op-
timal points due to the inclusion of valve 
point loading effect, multiple fuel options 
with diverse equality and inequality con-
straints.  
Conventional methods have failed to solve 
such problems as they are sensitive to initial 
estimates and converge into local optimal so-
lution and computational complexity.  
Heuristic optimization techniques based on 
artificial intelligence concepts operational re-
search, such as Tabu search [29] [31], neural 
network [26] [28] [33] [36] 
[58],evolutionary,  programming [36] [45] 
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[50] [64] and genetic algorithms [2] [7] [39] 
[51] [54] [57], simulated annealing [4] [54] 
[55],ant colony optimization [20] [47], parti-
cle swarm optimization [9] [10] [22] [23] 
[24] [25] [27] [39] [40] [41] [48] [50] [52] 
[53] [64] [65] provide the better solution. 
PSO has gained popularity as the best suita-
ble solution algorithm for such problems.  
Formulation : 
Having a network with N generators nodes 
where: 
𝑝𝑔𝑘  : Power of generator k. 
𝑝𝐿 : Lost power. 
𝑝𝐷 : Requested power. 
Economic dispatch problem can be repre-
sented as a quadratic fuel cost objective func-
tion as described in (1). 

𝑓�𝑝𝑔� = � 𝑓𝑘 (𝑝𝑔𝑘)
𝑛

𝑘=1
  

 (1) 
𝑓 : Total cost 
𝑓𝑘 : Cost of node k 
with considering equality constraint (2) to 
demand and inequality constraint (3). 

� 𝑝𝑔𝑘 − 𝑝𝐿 = 𝑝𝐷

𝑛

𝑘=1
   (2) 

𝑃𝑔,min ≤ 𝑝𝑔𝑘 ≤ 𝑃𝑔,𝑚𝑎𝑥    (3) 
 

A cost of a power generator 𝑝𝑔𝑘  can be for-
mulated by (4). 

𝑓𝑘 �𝑝𝑔𝑘� = 𝑐𝑘 + 𝑏𝑘𝑝𝑔𝑘 + 𝑎𝑘𝑝𝑔𝑘
2 +

𝑑𝑘 sin 𝑒𝑘(𝑝𝑔,𝑚𝑖𝑛 − 𝑝𝑔𝑘)(4) 
So that: 
𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 :Power Cost coefficients  
𝑑𝑘 , 𝑒𝑘 :  Thermal power Cost coefficients. 
 
The 4th term is for thermal power but can be 
neglected. 
 
Thermal Emission Constraint: 
In the case of thermal power, the atmospheric 
pollutants such as sulphur oxides (SOx) and 
nitrogen oxides (NOx) caused by conven-
tional thermal units can be modeled separate-
ly. However the total emission of these pollu-
tants which is the sum of a quadratic and an 
exponential function can be expressed as (5) : 

𝐸 (𝑝) = ∑ 𝛼𝑘 𝑝𝑔𝑘
2 + 𝛽𝑘 𝑝𝑔𝑘 + 𝑐𝑘 +𝑛

𝑘=1
𝜂𝑘𝑒𝛿𝑘𝑝𝑔𝑘 < 𝑀𝐸 (5) 

where: ME is the maximum allowable 
amount of pollutant during the dispatch peri-
od which is the EPA’s hourly emission target 
[65] and 𝛼𝑘 , 𝛽𝑘 , 𝑐𝑘 , 𝛿𝑘 , 𝜂𝑘 are emission co-
efficients. 
 
3 Firefly Algorithm 
Inspiration: 
Fireflies, belong with family of Lampyridae, 
are small winged beetles capable of produc-
ing a cold light flashes in order to attract ma-
tes. They are believed to have a capacitor-
like mechanism, that slowly charges until a 
certain threshold is reached, at which they re-
lease the energy in the form of light, after 
which the cycle repeats [11] 
Firefly algorithm, developed by [60] is in-
spired by the light attenuation over the dis-
tance and fireflies’ mutual attraction, rather 
than by the phenomenon of the fireflies’ light 
flashing. Algorithm considers what each fire-
fly observes at the point of its position, when 
trying to move to a greater light-source, than 
its own. Cold light is a light producing little 
or no heat. 
Algorithm: 
The Firefly Algorithm is one of the newest 
meta-heuristics developed by Yang [59] [60] 
[61] [62]. One can find few articles concern-
ing the continuous firefly algorithm [1] [13] 
[15] [19] [30]. A validation of continuous 
firefly algorithm on stochastic functions is 
given in [59].  
Sayadi et al. [42] proposed the first discrete 
version for permutation flow shop problem 
using a binary coding of solution and a prob-
ability formula for discretization. We can al-
so find other discretization for economic 
problem such as [3][11][21]. 
Pseudo-code of the Firefly Algorithm (FF) 
may look as follows: 

 
Procedure FF Metaheuristic (Nbr_gen: the 
max. number of generations) 
Begin 
γ: the light absorption coefficient 
Define the objective function of  f(x), 
where x=(x1,........,xd) in domain d 
Generate the initial population of fire-
flies or xi (i=1, 2 ,..., nb) 
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Determine the light intensity Ii at xi 
via f(xi) 
While (iter<Nbr_Gen) 
For i = 1 to nb  //all nb fireflies 
For j=1 to nb  //nb fireflies 
if (Ij> Ii) 
Attractiveness βi,j varies with distance 
ri,j 
move firefly i towards j with attrac-
tiveness βi,j 
else 
move firefly i randomly 
end if 
Evaluate new solutions 
update light intensity Ii 
End for j 
End for i 
Rank the fireflies and find the current 
best 
iter++  //iteration 
End while 
End procedure 
 

Parameters: 
In the firefly algorithm, there are five im-
portant issues: 
• Light Intensity. In the simplest case for 

minimum optimization problems, the 
brightness I of a firefly  at a particular lo-
cation x can be chosen as: I(x) ≡ 1/f(x) 

• Attractiveness. In the firefly algorithm, 
the main form of attractiveness function 
can be any monotonically decreasing 
functions such as the following general-
ized form: 

𝛽𝑖,𝑗 = 𝛽0
∗𝑒−𝛾𝑟𝑖,𝑗    

 (5) 
Where 𝑟𝑖,𝑗  is the distance between two fire-
flies i and j, 𝛽0

∗ is the attractiveness where the 
distance is null and γ is a fixed light absorp-
tion coefficient. 
• Distance. The distance between any two 

fireflies i and j at xi and xj can be the 
Cartesian distance as follows: 

𝑟𝑖,𝑗 = �∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝑑
𝑘=1   

 (6) 
where xi,k is the kth component of the ith fire-
fly.  

• Movement. The movement of a firefly i at-
tracted to another more attractive (brighter) 
firefly j, is determined by (7). 

𝑥𝑖 = �1 − 𝛽𝑖,𝑗�𝑥𝑖 + 𝛽𝑖,𝑗𝑥𝑗 + 𝛼(𝑟𝑎𝑛𝑑 − 1
2� )              

(7) 

where the first and second term is due to the 
attraction while the third term is randomiza-
tion with α being the randomization parame-
ter and “rand” is a generator of random num-
bers uniformly distributed in [0, 1]. 
 
4 Application to Power Economic Dis-
patching 
Particles Swarm Optimization to economic 
dispatching: 
The pseudo code of Particles swarm optimi-
zation seems to be as bellow: 
 
Procedure PSO Meta-heuristic(Nbr_gen: 
max number of generations) 
Begin 
φg, φp, ω: coefficients to be initialized 
Define the objective function of f(x), 
x=(x1...,xd) in domain d 
Generate the initial population of par-
ticles pi (i=1,..., nb) 
Determine the fitness fiti at pi via 
f(pi) 
Initialize the best fitness for each 
particle fbesti=fiti and best positions 
besti=pi 
Determine the global best fitness 
fgbest=min(fbesti) and its position gbest 
While (iter<Nbr_Gen) 
For i = 1 to nb   //all nb par-
ticle 
      vi = ω vi +φp rand(besti-
xi)+φg rand(gbest-xi) //velocity 
      Apply the velocity constriction in 
d 
      pi =pi+vi 
      Apply the position constriction in 
d 
End for i 
For i = 1 to nb   //all nb par-
ticle 
     Calculate fiti  

if (fiti < fBesti) 
fBesti=fiti 
best=pi 

Endif 
End for i 
Determine the global best fitness 
fgbest=min(fbesti) and its position gbest 
iter++ 
End while 
End procedure 
 
where Besti  is the best position of particle I 
with the fitness fBesti  and gbest is the global 
best position of all particles with the fitness 
fgest. 
In this study, we retain the principles below: 
• Fitness. The fitness is simply the objec-

tive function 
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• Position. The new position is the calcu-
late by the formula 8: 

pi =pi+vi  (8) 
where pi is the current position of a particle 
i. 
• Velocity. We keep the equation of ve-

locity vi of a solution i as shown in for-
mula 9.  

vi = ω vi +φp rand(besti-
xi)+φg rand(gbest-xi)  (9) 

 
where φg, φp, are coefficients initialized de-
pending to sample . 
 
The ω parameter decrease following the for-
mula (10)[43]: 

ω =  ωmax − (ωmax−ωmin)×iter
max_gen

 (10) 
 
We initialize ωmax, ωmindepending to the 
sample in the section V. 
 
Firefly algorithm to economic dispatching: 
To accelerate the FF algorithm, we suggest 
that alpha parameter increase following the 
formula (11): 

α = (αmax−αmin)×iter
max_gen

− αmax  (11) 
Correction and Constriction: 
Fireflies’ attractiveness, randomly move-
ments and Particle shifting provide float var-
iables which sometimes do not respect con-
straints. We add before the intensity or the 
fitness update two functions. The first cor-
rects position so that it stays in the domain 
[pmin, pmax]. The second corrects it so that the 
total power will be equal to request power. In 

the particle swarm optimization, the con-
striction of velocity is based on the same 
principle of the first corrector. 
In the two algorithms we don’t admit any vi-
olation of loss and demand constraint (for-
mula (3)).  
 
5 Computational Results  
Data: 
The implementation is done in C++ builder 
32 bits in a personal computer with a Intel 
CPU of 22.67 Ghz and a RAM of 3,12 GO. 
In a first example, we consider a IEEE net-
work of 14 nodes [38] with two generators 
G1 and G2.There costs are:  
 

f1(Pg1) = 0.006 Pg1
2 + 1.5 Pg1 + 100 

f2(Pg2) = 0.009 Pg2
2 + 2.1 Pg2 + 130 

under equality constraint: 
Pg1+Pg2 – PD– PL = 0 

And inequality constraint : 
135 ≤ Pg1 ≤ 195 (MW) 
70 ≤ Pg2 ≤ 145 (MW) 

Requested Power is fixed to: 
PD=259 (MW) 
Lost power is constant and equal to: 
PL=16.2 (MW) 
 
In a second example, we consider a four unit 
thermal plant system (CS4)[43]. It has 4 gen-
erators where the total power losses PL are 
considered 0. The data for the 4 generators 
(cost coefficients and limits of generated 
powers) are presented in Table 1. The total 
power demanded in the system is PD=520 
MW. 

 
Table 1. Data of a CS4 thermal plant  power System (2nd  example) 

Generator a($/MW2) b($/MW) c($) pmin 
(MW) 

pmax 
(MW) 

1 0.00875 18.24 750 30 120 
2 0.00754 18.87 680 50 160 
3 0.0031 19.05 650 50 200 
4 0.00423 17.9 900 100 300 

 
In the third example, we consider a network 
inspired from [34] with 5 generators. The 
emission is considered and it should be up to 
ME where ME=1700. 

Requested Power is fixed to: PD=518(MW) 
We consider a constant Loss power of  
PL=7.34 (MW) 
under equality constraint: Pg – PD– PL = 0. 



Informatica Economică vol. 16, no 2/2012  49 

 

The data for the generators (cost coefficients 
and limits of generated powers) are presented 

in Table 2.  

 
Table 2. Data of a 5 generators wind power System (3rd   example) 

Gene-
rator 

c($) b($/ 
MW) 

a($/ 
MW2) 

e($/ 
MW2) 

d($ 
/MW2) 

α β γ η δ pmin 
(MW) 

pmax 
(MW) 

1 786.79 38.53 0.152 0.041 450 103.39 -2.444 0.031 0.503 0.0207 470 135 
2 451.32 46.16 0.105 0.036 600 103.39 -2.444 0.031 0.503 0.0207 470 150 
3 1049.99 40.39 0.028 0.028 320 300.39 -4.069 0.051 0.496 0.0202 340 73 
4 1243.53 38.30 0.035 0.052 260 300.39 -4.069 0.051 0.496 0.0202 300 60 
5 1658.57 36.30 0.021 0.063 280 320 -3.813 0.034 0.497 0.0200 243 73 
 
In the three examples, PSO parameters are 
φg,=1.75, φp=2.75, ωmax = 1,  ωmin =
0.4 while FF parameters are  αmax =
10, αmin = 0.02    , 𝛽0

∗ = 0.5, γ = 0.1 . 
Results: 

We optimize the first system with 10 fireflies 
in 50 iterations. We Remarque as shown in 
Figure 1 that the firefly algorithm reach a 
good cost of 790,48 $/h since the 16th itera-
tion and its reach an optimum 781,95 $/h at 
the 21th iteration . 

 

 
Fig. 1. Improvement of total cost with 10 fireflies in  50 iteration. 1st Exemple 

 
The Table 3 shows the average CPU time, 
average total cost and minimum cost found in 
a simulation of 20 replications. 
 

Table 3. The average and minimum output in 20 trials with the best generators powers. 1st 
Example 

Trials 
Nb.   

avg. 
Cost 

CPU 
time  
(hs.) 

Min 
Cost 

Pg1  Pg2  

10 783,26 0 781,958 195 80,2 
 
In another simulation, we optimize IEEE-14 
dispatching using 20 fireflies. We can ob-
serve from Figure 2 that since initial solution 

of the first population at iteration 0 has the 
cost of 784,1 $/h. At the 3rd iteration the op-
timizer can reach the optimum of 781,95 $/h. 
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Fig. 2. Improvement of total cost with 20 fireflies in  50 iteration.1st example. 

 
The firefly algorithm can find a cost function 
equal to 781,958 $/h at 20th iteration environ 
with only 10 fireflies and in a CPU time be-
low 1 hundredth second. 
An example of an optimization of the CS4 

system with the same initial population is 
given in Figure 3.We clearly observe that the 
firefly algorithm is better than PSO one for 
this example. 

 

 
Fig. 3. Improvement of cost with 15 fireflies and 15 particles in 50 iterations, 2nd  example. 

 
The average , best and worst Costs as the av-
erage of CPU times in 100 trials are given in 
Figure 4.They can confirm that firefly algo-
rithm get the best cost of 12919.78711 $  

where the best cost found by PSO is 
12920.01172 $. Firefly algorithm average 
and worst costs are also better than particle 
swarm optimization costs.  
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Fig. 4. Comparison of average, worst and best cost, 2nd example, number of tri-

als=100,number of iteration=50, number of particles=15. 
 

The CPU time of PSO which is equal to 
0.2619 hundredth seconds (Figure 5) seems 
to be less than FF time (0.8339 hundredth se-
conds). This is due that the firefly algorithm 
is based on the comparison of fireflies to-

gether so it has a complexity of O(N2) while 
the PSO algorithm is based only on the com-
parison of each particle with its best position 
in history so it has a complexity of O(N). 

 

 
Fig. 5. Comparison of average CPU time(hundredth seconds), 2nd  example, number of tri-

als=100,number of iteration=50, number of particles=15. 
 
The rounded best powers are 91.3108 and 
64.8567 MW 
We optimize the second system with 6 fire-
flies in 50 iterations. We detect as shown in 

Figure 6 that the firefly algorithm reach a 
best cost of at the 6th iteration so it is un-
doubtedly faster than PSO algorithm in term 
of iterations. 
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Fig. 6. Improvement of total cost with 15 fireflies or 15 particles in 50 iterations, 3rd example 

 
One hundredth trials with 50 iterations give 
the results in Figure 7. We view that the fire-

fly algorithm gives an optimum slightly litter 
than the PSO one.  

 

 
Fig. 7. Comparison of average, worst and best cost, 3rd   example, number of tri-

als=100,number of iteration=50, number of particles=15. 
 

The average CPU time and the best emission found are given in Table 4. 
 

Table 4. Comparison of average CPU time and best emission, 3rd   example, number of tri-
als=100,number of iteration=50, number of particles=15. 

Algorithm Avg. CPU time(hs.) Best Emission 
FF 36,44201 1617.878 
PSO 0,519999 1617.873 

 
We decrease the number of iterations to 20 
and of particles and fireflies to 6 and we de-
tect the same results with a CPU time of 10 
hundredth seconds of FF and 0.1 hundredth 
second of PSO. We conclude that due to the 

emission constraint no improvement could be 
possible beyond the values found. 
The best powers of the 5 generators are 150, 
135, 73 ,60 and 107.33995056 MW. 
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6 Conclusion  
In this paper we showed the efficiency and 
the feasibility of the recent algorithm which 
is the firefly metaheuristic to resolve eco-
nomic power dispatching problem. This 
problem with nonlinear function has also the 
particularity to have hard constraints. So we 
avoid using any subjective penalty parameter 
to guarantee that it will be the constraints ful-
filling. However, the firefly algorithm based 
on a comparison of fireflies together and the 
movements of them even if they are good, 
increase the chance to find the optimum. 
That is why the algorithm allows us to find 
easily a best cost on ieee-14 and on two 
thermal plant network dispatching with and 
without pollutant emission. Our Future works 
will focus in the comparison of this algorithm 
to economic dispatch test systems and other 
dynamic version with renewable power. 
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